Computing modular correspondences for abelian varieties

Jean-Charles Faugère, David Lubicz, Damien Robert

To cite this version:

Jean-Charles Faugère, David Lubicz, Damien Robert. Computing modular correspondences for abelian varieties. Journal of Algebra, 2011, 343 (1), pp.248-277. 10.1016/j.jalgebra.2011.06.031 . hal00426338v1

HAL Id: hal-00426338
 https://hal.science/hal-00426338v1

Submitted on 24 Oct 2009 (v1), last revised 23 Nov 2012 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Computing modular correspondences for abelian varieties

Jean-Charles Faugère ${ }^{1}$, David Lubicz ${ }^{2,3}$, Damien Robert ${ }^{4}$
${ }^{1}$ INRIA, Centre Paris-Rocquencourt, SALSA Project
UPMC, Univ Paris 06, LIP6
CNRS, UMR 7606, LIP6
UFR Ingénierie 919, LIP6 Passy Kennedy, Boite courrier 169, 4, place Jussieu, F-75252 Paris Cedex 05 ${ }^{2}$ CÉLAR, BP 7419, F-35174 Bruz
${ }^{3}$ IRMAR, Universté de Rennes 1, Campus de Beaulieu, F-35042 Rennes
${ }^{4}$ LORIA, CACAO Project
Campus Scientifique
BP 239
54506 Vandoeuvre-lès-Nancy Cedex

Abstract

The aim of this paper is to give a higher dimensional equivalent of the classical modular polynomials $\Phi_{\ell}(X, Y)$. If j is the j-invariant associated to an elliptic curve E_{k} over a field k then the roots of $\Phi_{\ell}(j, X)$ correspond to the j-invariants of the curves which are ℓ-isogeneous to E_{k}. Denote by $X_{0}(N)$ the modular curve which parametrizes the set of elliptic curves together with a N-torsion subgroup. It is possible to interpret $\Phi_{\ell}(X, Y)$ as an equation cutting out the image of a certain modular correspondence $X_{0}(\ell) \rightarrow X_{0}(1) \times X_{0}(1)$ in the product $X_{0}(1) \times X_{0}(1)$. Let g be a positive integer and $\bar{n} \in \mathbb{N}^{g}$. We are interested in the moduli space that we denote by $\mathcal{M}_{\bar{n}}$ of abelian varieties of dimension g over a field k together with an ample symmetric line bundle \mathscr{L} and a symmetric theta structure of type \bar{n}. If ℓ is a prime and let $\bar{\ell}=(\ell, \ldots, \ell)$, there exists a modular correspondence $\mathcal{M}_{\overline{\ell n}} \rightarrow \mathcal{M}_{\bar{n}} \times \mathcal{M}_{\bar{n}}$. We give a system of algebraic equations defining the image of this modular correspondence. We describe an algorithm to solve this system of algebraic equations which is much more efficient than a general purpose Gröbner basis algorithm. As an application, we explain how this algorithm can be used to speed up the initialisation phase of a point counting algorithm.

Keywords: Abelian varieties, Theta functions, Isogenies, Modular correspondences.

1 Introduction

The aim of this paper is to give a higher dimensional equivalent of the classical modular polynomials $\Phi_{\ell}(X, Y)$. We recall that $\Phi_{\ell}(X, Y)$ is a polynomial with integer coefficients and that if j is the j-invariant associated to an elliptic curve E_{k} over a field k then the roots of $\Phi_{\ell}(j, X)$ correspond to the j-invariants of
elliptic curves which are ℓ-isogeneous to E_{k}. These modular polynomials have important algorithmic applications. For instance, Atkin and Elkies (see Elk98) take advantage of the modular parametrisation of ℓ-torsion subgroups of an elliptic curve to improve the original point counting algorithm of Schoof Sch95.

In Sat00, Satoh has introduced an algorithm to count the number of rational points of an elliptic curve E_{k} defined over a finite field k of small characteristic p which rely on the computation of the canonical lift of the j-invariant of E_{k}. Here again it is possible to improve the original lifting algorithm of Satoh VPV01. LL06 by solving over the p-adics an equations given by the modular polynomial $\Phi_{p}(X, Y)$.

This last algorithm has been improved by Kohel in Koh03 using the notion of oriented modular correspondence. For $N \in \mathbb{N}^{*}$, the modular curve $X_{0}(N)$ parametrizes the set of isomorphism classes of elliptic curves together with a N-torsion subgroup. For instance, the curve $X_{0}(1)$ is just the line of j-invariants. Let p be prime to N. A rational map of curves $X_{0}(p N) \rightarrow X_{0}(N) \times X_{0}(N)$ is an oriented modular correspondence if the image of each point represented by a pair (E, G) where G is a subgroup of order $p N$ of E is a couple $\left(\left(E_{1}, G_{1}\right),\left(E_{2}, G_{2}\right)\right)$ with $E_{1}=E$ and G_{1} is the unique subgroup of index p of G, and $E_{2}=E / H$ where H is the unique subgroup of order p of G. In the case that the curve, $X_{0}(N)$ has genus zero, the correspondence can be expressed as a binary equation $\Phi(X, Y)=0$ in $X_{0}(N) \times X_{0}(N)$ cutting out a curve isomorphic to $X_{0}(p N)$ inside the product. For instance, if one consider the oriented correspondence $X_{0}(\ell) \rightarrow X_{0}(1) \times X_{0}(1)$ for ℓ a prime number then the polynomial defining its image in the product is the modular polynomial $\Phi_{\ell}(X, Y)$.

In this paper, we are interested in the computation of an analog of oriented modular correspondences for higher dimensional abelian varieties over a field k. We use a moduli space which is different from the one of Koh03. We fix an integer $g>0$ for the rest of the paper. In the following if n is an integer, \bar{n} denotes the element $(n, \ldots, n) \in \mathbb{Z}^{g}$. We consider the set of triples of the form $\left(A_{k}, \mathscr{L}, \Theta_{\bar{n}}\right)$ where A_{k} is a g dimensional abelian variety equipped with a symmetric ample line bundle \mathscr{L} and a symmetric theta structure $\Theta_{\bar{n}}$ of type \bar{n}. Such a triple is called an abelian variety with a \bar{n}-marking. To a triple $\left(A_{k}, \mathscr{L}, \Theta_{\bar{n}}\right)$, one can associate following Mum66 its theta null point. The locus of theta null points corresponding to the set of abelian varieties with a \bar{n}-marking is a quasiprojective variety $\mathcal{M}_{\bar{n}}$. Moreover, it is proved in Mum67] that if $8 \mid n$ then $\mathcal{M}_{\bar{n}}$ is a classifying space for abelian varieties with a $\overline{\bar{n}}$-marking. We would like to compute oriented modular correspondences in $\mathcal{M}_{\bar{n}}$.

For this, let $\left(A_{k}, \mathscr{L}, \Theta_{\overline{\ell n}}\right)$ be an abelian variety with a $(\overline{\ell n})$-marking. We suppose that ℓ and n are relatively prime. From the theta structure $\Theta_{\overline{\ell n}}$, we deduce a decomposition of the kernel of the polarization $K(\mathscr{L})=K_{1}(\mathscr{L}) \times$ $K_{2}(\mathscr{L})$ into maximal isotropic subspaces for the commutator pairing associated to \mathscr{L}. Let $K(\mathscr{L})[\ell]=K_{1}(\mathscr{L})[\ell] \times K_{2}(\mathscr{L})[\ell]$ be the induced decomposition of the ℓ-torsion part of $K(\mathscr{L})$. Let B_{k} be the quotient of A_{k} by $K_{2}(\mathscr{L})[\ell]$ and C_{k} be the quotient of A_{k} by $K_{1}(\mathscr{L})[\ell]$. In this paper, we show that the theta structure of type $\overline{\ell n}$ of A_{k} induces in a natural manner theta structures of type \bar{n} on B_{k} and
C_{k}. As a consequence, we obtain a modular correspondence, $\mathcal{M}_{\overline{\ell n}} \rightarrow \mathcal{M}_{\bar{n}} \times \mathcal{M}_{\bar{n}}$. In the projective coordinate system provided by theta constants, we give a system of equations for the image of $\mathcal{M}_{\overline{\ell n}}$ in the product $\mathcal{M}_{\bar{n}} \times \mathcal{M}_{\bar{n}}$ as well as an efficient algorithm to solve this system.

This paper is organized as follows. In Section 2 we recall some basic definitions and properties about algebraic theta functions. In Section 3, we define formally the modular correspondence, and then in Section 4 we give explicit equations for the computation of this correspondence. In particular, we define a polynomial system (the equations of the image of $\mathcal{M} \overline{\overline{l n}}$), which solutions give theta null points of isogeneous varieties. In Section 5 , we describe the geometry of these solutions. The last Section is devoted to the description of a fast algorithm compute the solutions.

2 Some notations and basic facts

In this section, we fix some notations for the rest of the paper and recall well known results on abelian varieties and theta structures.

Let A_{k} be a g dimensional abelian variety over a field k. Let \mathscr{L} be a degree d ample symmetric line bundle on A_{k}. From here, we suppose that d is prime to the characteristic of k or that A_{k} is ordinary. Denote by $K(\mathscr{L})$ the kernel of the polarization \mathscr{L} and by $G(\mathscr{L})$ the theta group (see Mum66) associated to \mathscr{L}. The theta group $G(\mathscr{L})$ is by definition the set of pairs (x, ψ) where x is a geometric point of $K(\mathscr{L})$ and ψ is an isomorphism of line bundles ψ : $\mathscr{L} \rightarrow \tau_{x}^{*} \mathscr{L}$ together with the composition law $(x, \psi) \circ(y, \varphi)=\left(x+y, \tau_{y}^{*} \psi \circ\right.$ $\varphi)$. Let $\delta=\left(d_{1}, \ldots, d_{g}\right)$ be a finite sequence of integers such that $d_{i} \mid d_{i+1}$, we consider the finite group scheme $Z(\delta)=\left(\mathbb{Z} / d_{1} \mathbb{Z}\right)_{k} \times_{k} \ldots \times_{k}\left(\mathbb{Z} / d_{g} \mathbb{Z}\right)_{k}$ with elementary divisors given by δ. For a well chosen unique δ, the finite group scheme $K(\delta)=Z(\delta) \times \hat{Z}(\delta)$ (where $\hat{Z}(\delta)$ is the Cartier dual of $Z(\delta)$) is isomorphic to $K(\mathscr{L})$ (see Mum70). The Heisenberg group of type δ is the scheme $\mathcal{H}(\delta)=$ $\mathbb{G}_{m, k} \times Z(\delta) \times \bar{Z}(\delta)$ together with the group law defined on geometric points by $\left(\alpha, x_{1}, x_{2}\right) \cdot\left(\beta, y_{1}, y_{2}\right)=\left(\alpha \cdot \beta \cdot y_{2}\left(x_{1}\right), x_{1}+y_{1}, x_{2}+y_{2}\right)$. We recall Mum66 that a theta structure Θ_{δ} of type δ is an isomorphism of central extension from $\mathcal{H}(\delta)$ to $G(\mathscr{L})$ fitting in the following diagram:

We note that Θ_{δ} induces an isomorphism, denoted $\bar{\Theta}_{\delta}$ in the preceding diagram, from $K(\delta)$ into $K(\mathscr{L})$ and as a consequence a decomposition $K(\mathscr{L})=$ $K_{1}(\mathscr{L}) \times K_{2}(\mathscr{L})$ where $K_{2}(\mathscr{L})$ is the Cartier dual of $K_{1}(\mathscr{L})$. The data of a triple $\left(A_{k}, \mathscr{L}, \Theta_{\delta}\right)$ defines a basis of global sections of \mathscr{L} that we denote $\left(\vartheta_{i}\right)_{i \in Z(\delta)}$ and as a consequence an morphism of A_{k} into \mathbb{P}_{k}^{d-1} where $d=\prod_{i=1}^{g} d_{i}$ is the degree of \mathscr{L}. We briefly recall the construction of this basis. We recall Mum66, pp.

291] that a level subgroup \tilde{K} of $G(\mathscr{L})$ is a subgroup such that \tilde{K} is isomorphic to its image by κ in $K(\mathscr{L})$ where κ is defined in (11). We define the maximal level subgroups \tilde{K}_{1} over $K_{1}(\mathscr{L})$ and \tilde{K}_{2} over $K_{2}(\mathscr{L})$ as the image by Θ_{δ} of the subgroups $(1, x, 0)_{x \in Z(\delta)}$ and $(1,0, y)_{y \in \hat{Z}(\delta)}$ of $\mathcal{H}(\delta)$. Let A_{k}^{0} be the quotient of A_{k} by $K_{2}(\mathscr{L})$ and $\pi: A_{k} \rightarrow A_{k}^{0}$ be the natural projection. By the descent theory of Grothendieck, the data of \tilde{K}_{2} is equivalent to the data of a couple $\left(\mathscr{L}_{0}, \lambda\right)$ where \mathscr{L}_{0} is a degree one ample line bundle on A_{k}^{0} and λ is an isomorphism $\lambda: \pi^{*}\left(\mathscr{L}_{0}\right) \rightarrow \mathscr{L}$. Let s_{0} be the unique global section of \mathscr{L}_{0} up to a constant factor and let $s=\lambda\left(\pi^{*}\left(s_{0}\right)\right)$. We have the following proposition (see Mum66)

Proposition 1. For all $i \in Z(\delta)$, let $\left(x_{i}, \psi_{i}\right)=\Theta_{\delta}((1, i, 0))$. We set $\vartheta_{i}^{\Theta_{\delta}}=$ $\left(\tau_{-x_{i}}^{*} \psi_{i}(s)\right)$. The elements $\left(\vartheta_{i}^{\Theta \delta}\right)_{i \in Z(\delta)}$ form a basis of the global sections of \mathscr{L} which is uniquely determined up to a multiplication by a factor independent of i by the data of Θ_{δ}.

If no ambiguity is possible, we let $\vartheta_{i}^{\Theta_{\delta}}=\vartheta_{i}$ for $i \in Z(\delta)$.
The image of the zero point 0 of A_{k} by the morphism provided by Θ_{δ}, which has homogeneous coordinates $\left(\vartheta_{i}(0)\right)_{i \in Z(\delta)}$, is by definition the theta null point associated to $\left(A_{k}, \mathscr{L}, \Theta_{\delta}\right)$. If Θ_{δ} is symmetric Mum66, pp. 317], we say that $\left(A_{k}, \mathscr{L}, \Theta_{\delta}\right)$ is an abelian variety with a δ-marking. The locus of the theta null points associated to abelian varieties with a δ-marking is a quasi-projective variety denoted \mathcal{M}_{δ}.

Let $\left(A_{k}, \mathscr{L}, \Theta_{\delta}\right)$ be an abelian variety with a δ-marking. We recall that the natural action of $G(\mathscr{L})$ on the global sections of \mathscr{L} is given by $(x, \psi) \cdot f=\tau_{-x}^{*} \psi(f)$ for $f \in \Gamma(\mathscr{L})$ and $(x, \psi) \in G(\mathscr{L})$. There is an action of $\mathcal{H}(\delta)$ on $\left(\vartheta_{i}\right)_{i \in Z(\delta)}$ given by:

$$
\begin{equation*}
(\alpha, i, j) \cdot \vartheta_{k}=\alpha e_{\delta}(k+i,-j) \vartheta_{k+i}, \tag{2}
\end{equation*}
$$

for $(\alpha, i, j) \in \mathcal{H}(\delta)$ and e_{δ} the commutator pairing on $K(\delta)$, which is compatible via Θ_{δ} with the natural action of $G(\mathscr{L})$ on $\left(\vartheta_{i}\right)_{i \in Z(\delta)}$. Using (2), one can compute the coordinates in the projective system given by the $\left(\theta_{i}\right)_{i \in Z(\delta)}$ of any point of $K(\mathscr{L})$ from the data of the theta null point associated to $\left(A_{k}, \mathscr{L}, \Theta_{\delta}\right)$.

Let $\delta=\left(\delta_{1}, \ldots, \delta_{g}\right) \in \mathbb{N}^{g}$ and $\delta^{\prime}=\left(\delta_{1}^{\prime}, \ldots, \delta_{g}^{\prime}\right) \in \mathbb{N}^{g}, \delta \mid \delta^{\prime}$ means that for $i=1, \ldots, g, \delta_{i} \mid \delta_{i}^{\prime}$. If $n \in \mathbb{N}, n \mid \delta$ means that $(n, \ldots, n) \in \mathbb{N}^{g} \mid \delta$. If $\delta \mid \delta^{\prime}$ we have the usual embedding

$$
\begin{equation*}
i: Z(\delta) \rightarrow Z\left(\delta^{\prime}\right),\left(x_{i}\right)_{i \in\{1, \ldots, g\}} \mapsto\left(\delta_{i}^{\prime} / \delta_{i} \cdot x_{i}\right) \tag{3}
\end{equation*}
$$

A basic ingredient of our algorithm is given by the Riemann relations which are algebraic relations satisfied by the theta null values if $4 \mid \delta$.

Theorem 1. Denote by $\hat{Z}(\overline{2})$ the dual group of $Z(\overline{2})$. Let $\left(a_{i}\right)_{i \in Z(\delta)}$ be the theta null points associated to an abelian variety with a δ-marking $\left(A_{k}, \mathscr{L}, \Theta_{\delta}\right)$ where $2 \mid \delta$. For all $x, y, u, v \in Z(2 \delta)$ which are congruent modulo $Z(\overline{2})$, and all $\chi \in \hat{Z}(\overline{2})$,
we have

$$
\begin{aligned}
& \left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{x+y+t} \vartheta_{x-y+t}\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) a_{u+v+t} a_{u-v+t}\right)= \\
& =\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{x+u+t} \vartheta_{x-u+t}\right) \cdot\left(\sum_{t \in Z \overline{(2)}} \chi(t) a_{y+v+t} a_{y-v+t}\right) .
\end{aligned}
$$

Here we embed $Z(\overline{2})$ into $Z(\delta)$ and $Z(\delta)$ into $Z(2 \delta)$ using (3).
It is moreover proved in Mum66 that if $4 \mid \delta$ the image of A_{k} by the projective morphism defined by Θ_{δ} is the closed subvariety of \mathbb{P}_{k}^{d-1} defined by the homogeneous ideal generated by the relations of Theorem 11 .

A consequence of Theorem 11 is the fact that if $4 \mid \delta$, from the knowledge of a valid theta null point $\left(a_{i}\right)_{i \in Z(\delta)}$, one can recover a couple $\left(A_{k}, \mathscr{L}\right)$ from which it comes from. In fact, the abelian variety A_{k} is defined by the homogeneous equations of Theorem 1. Moreover, from the knowledge of the projective embedding of A_{k}, one recover immediately \mathscr{L} by pulling back the sheaf $\mathcal{O}(1)$ of the projective space.

An immediate consequence of the preceding theorem is the
Theorem 2. Let $\left(a_{i}\right)_{i \in Z(\delta)}$ be the theta null point associated to an abelian variety with a δ-marking $\left(A_{k}, \mathscr{L}, \Theta_{\delta}\right)$ where $2 \mid \delta$. For all $x, y, u, v \in Z(2 \delta)$ which are congruent modulo $Z(\delta)$, and all $\chi \in \hat{Z}(\overline{2})$, we have

$$
\begin{aligned}
& \left(\sum_{t \in Z(\overline{2})} \chi(t) a_{x+y+t} a_{x-y+t}\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) a_{u+v+t} a_{u-v+t}\right)= \\
& =\left(\sum_{t \in Z(\overline{2})} \chi(t) a_{x+u+t} a_{x-u+t}\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) a_{y+v+t} a_{y-v+t}\right) .
\end{aligned}
$$

As Θ_{δ} is symmetric, the theta constants also satisfy the additional symmetry relations $a_{i}=a_{-i}, i \in Z(\delta)$.

The Theorem 2 gives equations satisfied by the theta null points of abelian varieties together with a δ-marking. Let $\overline{\mathcal{M}}_{\delta}$ be the projective variety over k defined by the symmetry relations together with the relations from theorem 2 . Mumford proved in Mum67 the following
Theorem 3. Suppose that $8 \mid \delta$. Then

1. \mathcal{M}_{δ} is a classifying space for abelian varieties with a δ-marking: to a theta null point corresponds a unique triple $\left(A_{k}, \mathscr{L}, \Theta_{\delta}\right)$.
2. \mathcal{M}_{δ} is an open subset of $\overline{\mathcal{M}}_{\delta}$.

A geometric point P of $\overline{\mathcal{M}}_{\delta}$ is called a theta constant. If a theta constant P is in \mathcal{M}_{δ} we say that P is a valid theta null point, otherwise we say that P is a degenerate theta null point.

Remark 1. As the results of Section 5 show, $\overline{\mathcal{M}}_{\delta}$ may not be a projective closure of \mathcal{M}_{δ}. Nonetheless, every degenerate theta null point can be obtained from a valid theta null point by a "degenerate" group action (see the discussion after Proposition (), hence the notation.

3 Theta null points and isogenies

In this section, we are interested in the following situation. Let ℓ and n be relatively prime integers and suppose that n is divisible by 2 . Let $\left(A_{k}, \mathscr{L}, \Theta_{\overline{\ell n}}\right)$ be a g-dimensional abelian variety together with a $(\overline{\ell n})$-marking. We recall that the theta structure $\Theta_{\overline{\ell n}}$ induces a decomposition of the kernel of the polarization

$$
\begin{equation*}
K(\mathscr{L})=K_{1}(\mathscr{L}) \times K_{2}(\mathscr{L}) \tag{4}
\end{equation*}
$$

into maximal isotropic subgroups for the commutator pairing associated to \mathscr{L}. Let K be a maximal isotropic ℓ-torsion subgroup of $K(\mathscr{L})$ compatible with the decomposition (4). There are two possible choices for K, one contained in $K_{1}(\mathscr{L})$, the other one in $K_{2}(\mathscr{L})$. In the next paragraph, we explain that a choice of K determines a certain abelian variety together with a \bar{n}-marking. The main results of this Section are Corollary 1 and Proposition 3 which explain how to compute the theta null points associated to the abelian variety together with a \bar{n}-marking defined by a choice of K.

Let X_{k} be the quotient of A_{k} by K and let $\pi: A_{k} \rightarrow X_{k}$ be the natural projection. Let $\kappa: G(\mathscr{L}) \rightarrow K(\mathscr{L})$ be the natural projection deduced from the diagram (戈). As K is a subgroup of $K(\mathscr{L})$, we can consider the subgroup G of $G(\mathscr{L})$ defined as $G=\kappa^{-1}(K)$. Let \tilde{K} be the level subgroup of $G(\mathscr{L})$ defined as the intersection of G with the image of $(1, x, y)_{(x, y) \in Z(\overline{\ell n}) \times \hat{Z}(\overline{\ell n})} \subset \mathcal{H}(\overline{\ell n})$ by $\Theta_{\overline{\ell n}}$. By the descent theory of Grothendieck, we know that the data of \tilde{K} is equivalent to the data of a line bundle \mathscr{X} on X_{k} and an isomorphism $\lambda: \pi^{*}(\mathscr{X}) \rightarrow \mathscr{L}$.

Now, we explain that the $(\overline{\ell n})$-marking on A_{k} induces a \bar{n}-marking on X_{k}. Let $G^{*}(\mathscr{L})$ be the centralizer of \tilde{K} in $G(\mathscr{L})$. Applying Mum66, Proposition 2 pp. 291], we obtain an isomorphism

$$
\begin{equation*}
G^{*}(\mathscr{L}) / \tilde{K} \simeq G(\mathscr{X}) \tag{5}
\end{equation*}
$$

and as a consequence a natural projection $q: G^{*}(\mathscr{L}) \rightarrow G(\mathscr{X})$.
As $\mathcal{H}(\bar{n})$ is generated by the subgroups $1_{\mathbb{G}_{m}} \times Z(\bar{n}) \times 0_{\hat{Z}(\bar{n})}$ and $1_{\mathbb{G}_{m}} \times 0_{Z(\bar{n})} \times$ $\hat{Z}(\bar{n})$, in order to define a theta structure $\Theta_{\bar{n}}: \mathcal{H}(\bar{n}) \rightarrow G(\mathscr{X})$, it is enough to give morphisms $1_{\mathbb{G}_{m}} \times Z(\bar{n}) \times 0_{\hat{Z}(\bar{n})} \rightarrow G(\mathscr{X})$ and $1_{\mathbb{G}_{m}} \times 0_{Z(\bar{n})} \times \hat{Z}(\bar{n}) \rightarrow G(\mathscr{X})$. Let $Z^{*}(\overline{\ell n})$ be such that $1_{\mathbb{G}_{m}} \times Z^{*}(\overline{\ell n}) \times 0_{\hat{Z}(\overline{\ell n})}=\Theta_{\overline{\ell n}}^{-1}\left(G^{*}(\mathscr{L})\right) \cap Z(\overline{\ell n})$ and let $\hat{Z}^{*}(\overline{\ell n})$ be such that $1_{\mathbb{G}_{m}} \times 0_{Z(\overline{\ell n})} \times \hat{Z}^{*}(\overline{\ell n})=\Theta_{\overline{\ell n}}^{-1}\left(G^{*}(\mathscr{L})\right) \cap \hat{Z}(\overline{\ell n})$.

As $\hat{Z}^{*}(\overline{\ell n})$ is in the orthogonal of $\bar{\Theta}_{\overline{\ell n}}^{-1}(K)$ for the commutator pairing, we have $\hat{Z}^{*}(\overline{\ell n})=\hat{Z}(\overline{\ell n})$ or $\hat{Z}^{*}(\overline{\ell n})=\hat{Z}(\bar{n})$ depending on the choice of \tilde{K}. In any case, there exists a natural projection $p: \hat{Z}^{*}(\overline{\ell n}) \rightarrow \hat{Z}(\bar{n})$. In the same way, $Z^{*}(\overline{\ell n})=Z(\overline{\ell n})$ or $Z^{*}(\overline{\ell n})=Z(\bar{n})$ and there is a natural injection $i: Z(\bar{n}) \rightarrow$ $Z^{*}(\overline{\ell n})$.

We can define $\Theta_{\bar{n}}$ as the unique theta structure for \mathscr{X} such that the following diagrams are commutative

where \tilde{i} is deduced from i and \tilde{p} is deduced from p. Using the fact that $\Theta_{\overline{\ell n}}$ is symmetric, it is easy to see that $\Theta_{\bar{n}}$ is also symmetric.

We say that the theta structures $\Theta_{\overline{\ell n}}$ and $\Theta_{\bar{n}}$ are π-compatible (or compatible) if the diagrams (6) and (7) commute.

Let K_{1} and K_{2} be the maximal ℓ-torsion subgroups of respectively $K_{1}(\mathscr{L})$ and $K_{2}(\mathscr{L})$. By taking $K=K_{2}$ and $K=K_{1}$ in the preceding construction, we obtain respectively $\left(B_{k}, \mathscr{L}_{0}, \Theta_{\bar{n}}\right)$ and $\left(C_{k}, \mathscr{M}, \Theta_{\bar{n}}^{\prime}\right)$ two abelian varieties with a \bar{n}-marking. As a consequence, we have a well defined modular correspondence

$$
\begin{equation*}
\Phi_{\ell}: \mathcal{M}_{\overline{\ell n}} \rightarrow \mathcal{M}_{\bar{n}} \times \mathcal{M}_{\bar{n}} \tag{8}
\end{equation*}
$$

Let $\pi: A_{k} \rightarrow B_{k}$ and $\pi^{\prime}: A_{k} \rightarrow C_{k}$ be the isogenies deduced from the construction. Let $[\ell]$ be the isogeny of multiplication by ℓ on B_{k} and let $\hat{\pi}$: $B_{k} \rightarrow A_{k}$ be the isogeny such that $[\ell]=\pi \circ \hat{\pi}$. From the symmetry of \mathscr{L} we deduce that \mathscr{L}_{0} is symmetric and by applying the formula of Mum66, pp. 289], we have $[\ell]^{*} \mathscr{L}_{0}=\mathscr{L}_{0}^{\ell^{2}}$. The following diagram shows that C_{k} is obtain by quotienting B_{k} by a maximal isotropic subgroup of $\left(B_{k}, \mathscr{L}_{0}^{\ell^{2}}\right)$ of order $\ell^{2 g}$.

The following two propositions explain the relation between the theta null point of $\left(A_{k}, \mathscr{L}, \Theta_{\overline{\ell n}}\right)$ and the theta null points of $\left(B_{k}, \mathscr{L}_{0}, \Theta_{\bar{n}}\right)$ and $\left(C_{k}, \mathscr{M}, \Theta_{\bar{n}}^{\prime}\right)$. Keeping the notations of the previous paragraph, we have
Proposition 2. Let $\left(A_{k}, \mathscr{L}, \Theta_{\overline{\ell n}}\right),\left(B_{k}, \mathscr{L}_{0}, \Theta_{\bar{n}}\right)$ and $\pi: A_{k} \rightarrow B_{k}$ be defined as above. There exists a constant factor $\omega \in \bar{k}$ such that for all $i \in Z(\bar{n})$, we have
$\pi^{*}\left(\vartheta_{i}^{\Theta \bar{n}}\right)=\omega \vartheta_{i}^{\Theta_{\overline{\ell n}}}$. In this last relation, $Z(\bar{n})$ is identified as a subgroup of $Z(\overline{\ell n})$ via the map $x \mapsto \ell x$.

Proof. This proposition is a particular case of the isogeny theorem Mum66, Th. 4] but we give here a direct proof.

Let \tilde{K}_{A} be the level subgroup of $G(\mathscr{L})$ defined by the image of $(1,0, y)_{y \in \hat{Z}(\overline{\ell n})}$ by $\Theta_{\overline{\ell n}}$ and let K_{A} be the subgroup of A_{k} which is the image of $(0, y)_{y \in \hat{Z}(\overline{\ell n})}$ by $\bar{\Theta}_{\overline{\ell n}}$. Let D_{k} be the quotient of A_{k} by K_{A} and $\pi_{A}: A_{k} \rightarrow D_{k}$ the natural projection. The data of \tilde{K}_{A} gives a couple $\left(\mathscr{L}_{A}, \lambda_{A}\right)$ where \mathscr{L}_{A} is a degree one line bundle on D_{k} and λ_{A} is an isomorphism $\lambda_{A}: \pi_{A}^{*}\left(\mathscr{L}_{A}\right) \rightarrow \mathscr{L}$. We recall that \tilde{K} be the level subgroup of $G(\mathscr{L})$ defined as the intersection of $G=\kappa^{-1}(K)$ with the image of $(1, x, y)_{(x, y) \in Z(\overline{\ell n}) \times \hat{Z}(\overline{\ell n})} \subset \mathcal{H}(\overline{\ell n})$ by $\Theta_{\overline{\ell n}}$.

In the same manner, we can consider \tilde{K}_{B} the level subgroup of $G\left(\mathscr{L}_{0}\right)$ defined by the image of $(1,0, y)_{y \in \hat{Z}(\bar{n})}$ by $\Theta_{\bar{n}}$ and K_{B} the subgroup of B_{k} which is the image of $(0, y)_{y \in \hat{Z}(\bar{n})}$ by $\bar{\Theta}_{\bar{n}}$. By (6) $K_{B}=\pi\left(K_{A}\right)$ and by definition of π its kernel K is contained in K_{A}. We deduce that D_{k} is the quotient of B_{k} by K_{B} and $\pi_{A}=\pi_{B} \circ \pi$ where π_{B} is the natural projection $B_{k} \rightarrow D_{k}$. Because of (6) and the fact that $\hat{Z}^{*}(\overline{\ell n})=\hat{Z}(\overline{\ell n})$, we have an isomorphism $\tilde{K}_{B} \simeq \tilde{K}_{B} / \tilde{K}$ and the data of \tilde{K}_{B} gives a couple ($\left.\mathscr{L}_{B}, \lambda_{B}\right)$ where λ_{B} is an isomorphism $\lambda_{B}: \pi_{B}^{*}\left(\mathscr{L}_{B}\right) \rightarrow \mathscr{L}_{0}$ and we have $\mathscr{L}_{B}=\mathscr{L}_{A}$ and $\lambda_{A} \circ \pi_{A}^{*}=\lambda \circ \pi^{*} \circ \lambda_{B} \circ \pi_{B}^{*}$.

If s_{0} is the unique global section of \mathscr{L}_{A} up to multiplication by a constant factor, we have $\lambda_{A}\left(\pi_{A}^{*}\left(s_{0}\right)\right)=\lambda\left(\pi^{*}\left(\lambda_{B}\left(\pi_{B}^{*}\left(s_{0}\right)\right)\right)\right)$. By definition, $\vartheta_{0}^{\Theta \pi}=\lambda_{B}\left(\pi_{B}^{*}\left(s_{0}\right)\right)$ and $\vartheta_{0}^{\Theta_{\overline{l n}}}=\lambda_{A}\left(\pi_{A}^{*}\left(s_{0}\right)\right)$. As a consequence, there exists $\omega \in \bar{k}$ such that we have that $\pi^{*}\left(\vartheta_{0}^{\Theta \bar{n}}\right)=\omega \vartheta_{0}^{\Theta_{\overline{\ell n}}}$.

Let $s=\vartheta_{0}^{\Theta_{\overline{l n}}}$ and $s^{\prime}=\vartheta_{0}^{\Theta_{\bar{n}}}$. We set for all $i \in Z(\overline{\ell n}),\left(x_{i}, \psi_{i}\right)=\Theta_{\overline{\ell n}}((1, i, 0))$ and for all $i \in Z(n),\left(x_{i}^{\prime}, \psi_{i}^{\prime}\right)=\Theta_{\bar{n}}((1, i, 0))$. Then $\pi^{*}\left(\vartheta_{i}^{\Theta} \bar{\pi}\right)=\pi^{*}\left(\psi_{i}^{\prime} \tau_{-x_{i}^{\prime}}^{*}\left(s^{\prime}\right)\right)=$ $\psi_{i} \tau_{-x_{i}}^{*} \pi^{*}\left(s^{\prime}\right)$ by the commutativity of (7). But we already know that $\pi^{*}\left(s^{\prime}\right)=\omega s$ and $\psi_{i} \tau_{-x_{i}}^{*}(\omega s)=\omega \vartheta_{i}^{\Theta_{\overline{l n}}}$. This concludes the proof.

As an immediate consequence of the preceding proposition, we have
Corollary 1. Let $\left(A_{k}, \mathscr{L}, \Theta_{\overline{\ell n}}\right)$ and $\left(B_{k}, \mathscr{L}_{0}, \Theta_{\bar{n}}\right)$ be defined as above. Let $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ and $\left(b_{u}\right)_{u \in Z(\bar{n})}$ be theta null points respectively associated to $\left(A_{k}, \mathscr{L}, \Theta_{\overline{\ell n}}\right)$ and $\left(B_{k}, \mathscr{L}_{0}, \Theta_{\bar{n}}\right)$. Considering $Z(\bar{n})$ as a subgroup of $Z(\overline{\ell n})$ via the map $x \mapsto \ell x$, there exists a constant factor $\omega \in \bar{k}$ such that for all $u \in Z(\bar{n}), b_{u}=\omega a_{u}$.
Proposition 3. Let $\left(A_{k}, \mathscr{L}, \Theta_{\overline{\ell n}}\right)$ and $\left(C_{k}, \mathscr{L}_{0}, \Theta_{\bar{n}}\right)$ be defined as above. Let $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ and $\left(c_{u}\right)_{u \in Z(\bar{n})}$ be the theta null points respectively associated to $\left(A_{k}, \mathscr{L}, \Theta_{\overline{\ell n}}\right)$ and $\left(C_{k}, \mathscr{L}_{0}, \Theta_{\bar{n}}\right)$. We have for all $u \in Z(\bar{n})$,

$$
\begin{equation*}
c_{u}=\sum_{t \in Z(\bar{\ell})} a_{u+t} \tag{10}
\end{equation*}
$$

where $Z(\bar{n})$ and $Z(\bar{\ell})$ are considered as subgroups of $Z(\overline{\ell n})$ via the maps $j \mapsto \ell j$ and $j \mapsto n j$.

Proof. The theta structure $\Theta_{\overline{\ell n}}$ (resp. $\Theta_{\bar{n}}^{\prime}$) induces a decomposition of the kernel of the polarization $K(\mathscr{L})=K_{1}(\mathscr{L}) \times K_{2}(\mathscr{L})\left(\right.$ resp. $\left.K(\mathscr{M})=K_{1}(\mathscr{M}) \times K_{2}(\mathscr{M})\right)$. Denote by K^{\prime} the kernel of π^{\prime}. We have that K^{\prime} is a subvariety of $K_{1}(\mathscr{L})$ and we have an isomorphism:

$$
\sigma: K_{1}(\mathscr{L}) / K^{\prime} \rightarrow K_{1}(\mathscr{M})
$$

The hypothesis of Mum66, Th. 4] are then verified and Equation (10) is an immediate application of this theorem.

4 The image of the modular correspondence

In this section, we use the results of the previous section in order to give equations for the image of the modular correspondence Φ_{ℓ}.

We let $\left(B_{k}, \mathscr{L}_{0}, \Theta_{\bar{n}}\right)$ be an abelian variety together with a \bar{n}-marking and denote by $\left(b_{u}\right)_{u \in Z(\bar{n})}$ its associated theta null point. Let ν be the 2 -adic valuation of n. Unless specified, we shall assume that $\nu \geqslant 3$. Let \mathscr{C} be the reduced subvariety of $\mathcal{M}_{\bar{n}} \times \mathcal{M}_{\bar{n}}$ which is the image of $\Phi_{\ell}\left(\mathcal{M}_{\overline{\ell n}}\right)$ in $\mathcal{M}_{\bar{n}} \times \mathcal{M}_{\bar{n}}$ given on geometric points by $\pi:\left(a_{u}\right)_{u \in Z(\overline{\ell n})} \mapsto\left(\left(a_{u}\right)_{u \in Z(\bar{n})},\left(\sum_{t \in Z(\bar{\ell})} a_{u+t}\right)_{u \in Z(\bar{n})}\right)$.

Denote by p_{1} (resp. p_{2}) the restriction to \mathscr{C} of the first (resp. second) projection from $\mathcal{M}_{\bar{n}} \times \mathcal{M}_{\bar{n}}$ into $\mathcal{M}_{\bar{n}}$, and let $\pi_{1}=p_{1} \circ \pi, \pi_{2}=p_{2} \circ \pi$. We would like to compute the algebraic set $\pi_{2}\left(\pi_{1}^{-1}\left(\left(b_{u}\right)_{u \in Z(\bar{n})}\right)\right)$. We remark that this question is the analog in our situation to the computation of the solutions of the equation $\Phi_{\ell}(j, X)$ defined from the modular polynomial and $j \in \bar{k}$ a certain j-invariant.

Let $\mathbb{P}_{k}^{Z(\overline{\ell n})}=\operatorname{Proj}\left(k\left[x_{u} \mid u \in Z(\overline{\ell n})\right]\right)$ be the ambient projective space of $\overline{\mathcal{M}} \overline{\overline{\ell n}}$, and let I be the homogeneous ideal defining $\overline{\mathcal{M}}_{\overline{\ell n}}$ which is spanned by the relations of Theorem 2, together with the symmetry relations. Let J be the image of I under the specialization map

$$
k\left[x_{u} \mid u \in Z(\overline{\ell n})\right] \rightarrow k\left[x_{u} \mid u \in Z(\overline{\ell n}), n u \neq 0\right], \quad x_{u} \mapsto\left\{\begin{array}{l}
b_{u}, \text { if } u \in Z(\bar{n}) \\
x_{u}, \text { else }
\end{array}\right.
$$

and let V_{J} be the affine variety defined by J.
Let $\tilde{\pi}_{1}^{0}: \mathbb{P}_{k}^{Z(\overline{\ell n})} \rightarrow \mathbb{P}_{k}^{Z(\bar{n})}$ and $\tilde{\pi}_{2}^{0}: \mathbb{P}_{k}^{Z(\overline{\ell n})} \rightarrow \mathbb{P}_{k}^{Z(\bar{n})}$ be the morphisms of the ambient projective spaces respectively defined on geometric points by $\left(a_{u}\right)_{u \in Z(\overline{\ell n})} \mapsto\left(a_{u}\right)_{u \in Z(\bar{n})}$ and $\left(a_{u}\right)_{u \in Z(\overline{\ell n})} \mapsto\left(\sum_{t \in Z(\bar{\ell})} a_{u+t}\right)_{u \in Z(\bar{n})}$. Clearly, π_{1} and π_{2} are the restrictions of $\tilde{\pi}_{1}^{0}$ and $\tilde{\pi}_{2}^{0}$ to $\mathcal{M} \overline{\ell n}$. The morphism $\tilde{\pi}_{1}^{0}$ (resp $\tilde{\pi}_{2}^{0}$) restricts to a morphism $\tilde{\pi}_{1}: \overline{\mathcal{M}}_{\overline{\ell n}} \rightarrow \overline{\mathcal{M}}_{\bar{n}}$ (resp $\tilde{\pi}_{2}: \overline{\mathcal{M}}_{\overline{\ell n}} \rightarrow \overline{\mathcal{M}}_{\bar{n}}$). By definition of J, we have $V_{J}=\tilde{\pi}_{1}^{-1}\left(b_{u}\right)_{u \in Z(\bar{n})}$.

Let $S=k\left[y_{u}, x_{v} \mid u \in Z(\bar{n}), v \in Z(\overline{\ell n})\right]$, we can consider J as a subset of S via the natural inclusion of $k\left[x_{u} \mid u \in Z(\overline{\ell n})\right]$ into S. Let \mathcal{L}^{\prime} be the ideal of S generated by J together with the elements $y_{u}-\sum_{t \in Z(\bar{\ell})} x_{u+t}$ and $\mathcal{L}=\mathcal{L}^{\prime} \cap k\left[y_{u} \mid u \in Z(\bar{n})\right]$. Let $V_{\mathcal{L}}$ be the subvariety of $\mathbb{A}^{Z(\bar{n})}$ defined by the ideal \mathcal{L}. By the definition of \mathcal{L}, $V_{\mathcal{L}}$ is the image by $\tilde{\pi}_{2}$ of the fiber V_{J}, so that $V_{\mathcal{L}}=\tilde{\pi}_{2}\left(\tilde{\pi}_{1}^{-1}\left(b_{u}\right)_{u \in Z(\pi)}\right)$.

Proposition 4. Keeping the notations from above, let $\left(b_{u}\right)_{u \in Z(\bar{n})}$ be the geometric point of $\mathcal{M}_{\bar{n}}$ corresponding to $\left(B_{k}, \mathscr{L}_{0}, \Theta_{\bar{n}}\right)$. The algebraic variety $V_{\mathcal{L}}^{0}=$ $\pi_{2}\left(\pi_{1}^{-1}\left(b_{u}\right)_{u \in Z(\bar{n})}\right)$ has dimension 0 and is isomorphic to a subvariety of $V_{\mathcal{L}}$.

Proof. From the preceding discussion the only thing left to prove is that $V_{\mathcal{L}}^{0}$ has dimension 0 . But this follows from the fact that the algebraic variety V_{J} has dimension 0 CL08.

From an algorithmic point of view, the hard part of this modular correspondence is the computation of $V_{J}^{0}=\pi_{1}^{-1}\left(\left(b_{u}\right)_{u \in Z(\bar{n})}\right)$, the set of points in V_{J} that are valid theta null points. We proceed in two steps. First we compute the solutions in V_{J} using a specialized Gröbner basis algorithm (Section 6.3) and then we detect the valid theta null points using the results of the next section (see Theorem (4). But at first we recall the geometric nature of V_{J}^{0} given by Section 3:

Proposition 5. V_{J}^{0} is the locus of theta null points $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ in $\mathcal{M}_{\overline{\ell n}}$ such that if $\left(A_{k}, \mathscr{L}, \Theta_{\overline{\ell n}}\right)$ is the corresponding variety with a $(\overline{\ell n})$-marking then $\Theta_{\overline{\ell n}}$ is compatible with the theta structure $\Theta_{\bar{n}}$ of B_{k}.

Proof. Let $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ be a geometric point of V_{J}^{0}. Let $\left(A_{k}, \mathscr{L}, \Theta_{\overline{\ell n}}\right)$ be a corresponding variety with $(\overline{\ell n})$-marking. If we apply the construction of Section 3 , we get an abelian variety $\left(B_{k}^{\prime}, \mathscr{L}_{0}^{\prime}, \Theta_{\bar{n}}^{\prime}\right)$ with a \bar{n}-marking and an isogeny π : $A_{k} \rightarrow B_{k}^{\prime}$ such that $\Theta_{\overline{\ell n}}$ is compatible with $\Theta_{\bar{n}}^{\prime}$. By definition of J, Corollary 1$]$ shows that the theta null point of B^{\prime} is $\left(b_{u}\right)_{u \in Z(\bar{n})}$. As $\nu \geqslant 2$, by Proposition 1 this means that $B^{\prime} \simeq B$. Since $\nu \geqslant 3$, we even know by Theorem 3 that the triples $\left(B_{k}^{\prime}, \mathscr{L}_{0}^{\prime}, \Theta_{\bar{n}}^{\prime}\right)$ and $\left(B_{k}, \mathscr{L}_{0}, \Theta_{\bar{n}}\right)$ are isomorphic, so that $\Theta_{\overline{\ell n}}$ is compatible with $\Theta_{\bar{n}}$.

We say that the isogeny from Section $3 A_{k} \rightarrow B_{k}$ is the $\bar{\ell}$-isogeny associated to the $(\overline{\ell n})$-marking of A_{k}.

5 The solutions of the system

This section is devoted to the study of the geometric points of V_{J}. Our aim is twofolds. First we need a way to identify degenerate theta null points in V_{J}, and then we would like to know when two geometric points in V_{J} correspond to isomorphic varieties.

If $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ is a valid theta null point, let $\left(A_{k}, \mathscr{L}, \Theta_{\overline{\ell n}}\right)$ be the corresponding abelian variety with a $(\overline{\ell n})$-marking and denote by $\pi: A_{k} \rightarrow B_{k}$ the isogeny defined in Section 3. From the knowledge of $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$, one can recover the coordinates the points of a maximal ℓ-torsion subgroup of B_{k} of rank g. Actually, even if $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ is not a valid theta null point it is possible to associate to $\left(a_{u}\right)_{u \in Z \overline{\ell n})}$ a set of ℓ-torsion points $P_{i} \in B_{k}$. The main result of this section is Theorem which states that a geometric point of V_{J} is non degenerate if and only if the corresponding P_{i} form a maximal subgroup of rank g of the ℓ-torsion
points of B_{k}. To prove this Theorem, we introduce an action from the automorphisms of the theta group to the modular space $\mathcal{M} \overline{\ell n}$. Using Theorem ${ }^{⿴ 囗}$ and this action, we make explicit the structure of V_{J} : we explain when two valid points give isomorphic varieties in Proposition 9, and how to obtain every degenerate points in the discussion following Proposition 7 .

We start by making explicit the structure of the solutions of the algebraic system defined by J. For this let $\rho: Z(\bar{n}) \times Z(\bar{\ell}) \rightarrow Z(\overline{\ell n})$ be the group isomorphism given by $(x, y) \mapsto \ell x+n y$. Denote by $I_{\Theta_{\bar{n}}}$ the ideal of $k\left[y_{u} \mid u \in Z(\bar{n})\right]$ for the theta structure $\Theta_{\bar{n}}$ generated by the equations of Theorem 1 . The homogeneous ideal $I_{\Theta_{\bar{n}}}$ defines a projective variety $V_{I_{\Theta-}}$, isomorphic to B_{k}.

We have the following proposition CL08:
Proposition 6. Let $\left(a_{v}\right)_{v \in Z(\overline{\ell n})}$ be a geometric point of V_{J}. For any $i \in Z(\bar{\ell})$ such that $\left(a_{\rho(j, i)}\right)_{j \in Z(\bar{n})} \neq(0, \ldots, 0)$, let P_{i} be the geometric point, of $\mathbb{P}_{k}^{Z(\bar{n})}$ with homogeneous coordinates $\left(a_{\rho(j, i)}\right)_{j \in Z(\bar{n})}$. Then for all $i \in Z(\bar{\ell})$ such that P_{i} is well defined, P_{i} is a ℓ-torsion point of $V_{I_{\bar{n}}}$.

The proof of the preceding proposition in [CL08] proves moreover that if we denote by S the subset of $Z(\bar{\ell})$ such that P_{i} is well defined for all $i \in S$, then S is a subgroup of $Z(\bar{\ell})$, the set $\left\{P_{i}, i \in S\right\}$ is a subgroup of the group of ℓ-torsion points of $V_{I_{\Theta_{\bar{n}}}}$ and the application $i \in S \rightarrow P_{i} \in B[\ell]$ is a group morphism.

Suppose that $\left(a_{v}\right)_{v \in Z(\overline{\ell n})}$ is a valid theta null point. Let $\left(A_{k}, \mathscr{L}, \Theta_{\overline{\ell n}}\right)$ be the corresponding abelian variety with a $(\overline{\ell n})$-marking and denote by $\pi: A_{k} \rightarrow B_{k}$ the isogeny defined in Section 3. We can consider A_{k} as a closed subvariety of $\mathbb{P}_{k}^{Z \overline{(n)}}$ via the morphism provided by $\Theta_{\overline{\ell n}}$. Using the action (2) of the theta group on $\left(a_{v}\right)_{v \in Z(\overline{\ell n})}$, one sees that for $i \in Z(\bar{\ell})$, the points with homogeneous coordinates $\left(a_{v+n i}\right)_{v \in Z(\overline{\ell n})}$ form the isotropic (for the commutator pairing) ℓ torsion subgroup K_{1} of A_{k} (with the notations of Section 3). By definition of the isogeny π, we have $\pi\left(\left(a_{v+n i}\right)_{v \in Z(\overline{\ell n})}\right)=P_{i}$ and as a consequence $\pi\left(K_{1}\right)=$ $\left\{P_{i}, i \in Z(\bar{\ell})\right\}$. We see that if $\left(a_{v}\right)_{v \in Z(\overline{\ell n})}$ is a valid theta null point then the $\left(P_{i}\right)_{i \in Z(\bar{\ell})}$ are well defined projective points which form a maximal subgroup of rank g of $B_{k}[\ell]$. Moreover, since the kernel of π is $K_{2}, \pi\left(K_{1}\right)=\left\{P_{i}, i \in Z(\bar{\ell})\right\}$ is the kernel of the dual isogeny $\hat{\pi}: B_{k} \rightarrow A_{k}$.

If $\left(a_{v}\right)_{v \in Z(\overline{\ell n})}$ is a general solution, it can happen that certain of the P_{i} are not well defined and as a consequence $\left(a_{v}\right)_{v \in Z(\overline{\ell n})}$ is not a valid theta null point. But even if every P_{i} are well defined, $\left(a_{v}\right)_{v \in Z(\overline{\ell n})}$ need not be a valid theta null point. We need a criterion to identify the solutions of J which correspond to valid theta null points. From the discussion of the preceding paragraph, we know that a necessary condition for a solution $\left(a_{v}\right)_{v \in Z(\overline{\ell n})}$ of J to be a valid theta null point is that $\left(P_{i}\right)_{i \in Z(\bar{\ell})}$ are all valid projective points which form a subgroup of rank g if $B_{k}[\ell]$. The Theorem asserts that this necessary condition is indeed sufficient. In order to prove this theorem, we have to study how a theta null point vary together with a change of the theta structure.

We denote by Aut $\mathcal{H}(\delta)$ the group of automorphisms ψ of $\mathcal{H}(\delta)$ inducing the identity on $\mathbb{G}_{m, k}$:

Obviously, the set of all theta structures for \mathscr{L} is a principal homogeneous space for the group Aut $\mathcal{H}(\delta)$ via the right action $\Theta_{\delta} \cdot \psi=\Theta_{\delta} \circ \psi$ for $\psi \in$ Aut $\mathcal{H}(\delta)$ and Θ_{δ} a theta structure. So we can identify Aut $\mathcal{H}(\delta)$ with the group of automorphisms of theta structures. If ψ is such an automorphism, it induces an automorphism $\bar{\psi}$ of $K(\delta)$. Denote by $S p(K(\delta))$ the group of symplectic automorphisms of $K(\delta)$. The preceding diagram shows that $\bar{\psi}$ is symplectic with respect to the commutator pairing. Conversely, if $\bar{\psi} \in S p(K(\delta))$, we get an element of Aut $\mathcal{H}(\delta)$ defined by $\psi:(\alpha, x, y) \mapsto(\alpha, \psi(x), \psi(y))$. So the morphism $\Psi:$ Aut $\mathcal{H}(\delta) \rightarrow S p(K(\delta)), \psi \mapsto \bar{\psi}$ has a section that we denote by σ. The kernel of Ψ is given by automorphisms preserving a symplectic basis and are determined by a choice of level subgroups \tilde{K}_{1} and \tilde{K}_{2} over maximal isotropic subspaces K_{1} and K_{2}. It is well known BL04, pp. 162] that such choices are in bijection with elements $c \in K(\delta)$: we map $c \in K(\delta)$ to the automorphism of $\mathcal{H}(\delta)$ given by

$$
\begin{equation*}
(\alpha, x, y) \mapsto\left(\alpha e_{\delta}(c, x+y), x, y\right) \tag{11}
\end{equation*}
$$

As a consequence, we get a split exact sequence

Suppose that Θ_{δ} is symmetric, an automorphism $\psi \in \operatorname{Aut} \mathcal{H}(\delta)$ is said to be symmetric if it commutes with the symmetric action $(\alpha, x, y) \mapsto(\alpha,-x,-y)$ on $\mathcal{H}(\delta)$. We denote by $\mathrm{Aut}_{\mathrm{s}} \mathcal{H}(\delta)$ the group of symmetric automorphisms of $\mathcal{H}(\delta)$. Obviously, an automorphism $\psi \in$ Aut $\mathcal{H}(\delta)$ coming from $c \in K(\delta)$ is symmetric if and only if $c \in K(\delta)[2]$ the subgroup of 2-torsion of $K(\delta)$.

Now consider $\left(A_{k}, \mathscr{L}, \Theta_{\delta}\right)$ an abelian variety with a δ-marking and let $\left(\vartheta_{i}\right)_{i \in Z(\delta)}$ be the associated basis of global sections of \mathscr{L}. Note that if $\bar{\psi}$ is a symplectic isomorphism of $K(\delta)$ then $\psi=\sigma(\bar{\psi})$ is symmetric. We suppose that $\bar{\psi}(\hat{Z}(\delta)))=$ $Z^{\psi} \times \hat{Z}^{\psi}$, where $Z^{\psi} \subset Z(\delta)$ and $\hat{Z}^{\psi} \subset \hat{Z}(\delta)$. Denote by $\left(\tilde{\vartheta}_{i}\right)_{i \in Z(\delta)}$ the basis of global sections of \mathscr{L} associated to $\left(A_{k}, \mathscr{L}, \Theta_{\delta} \cdot \psi\right)$. In the following, we give an explicit formula to obtain $\left(\tilde{\vartheta}_{i}\right)_{i \in Z(\delta)}$ from the knowledge of $\left(\vartheta_{i}\right)_{i \in Z(\delta)}$.

Let $A_{k}^{0} \simeq A_{k} / \overline{\Theta_{\delta}}(\bar{\psi}(\hat{Z}(\delta)))$ and $\pi: A_{k} \rightarrow A_{k}^{0}$ be the canonical map. The data of the maximal level subgroup $\Theta_{\delta}\left(\psi\left((1,0, y)_{y \in \hat{Z}(\delta)}\right)\right)$ is equivalent to the data of a line bundle \mathscr{L}_{0} on A_{k}^{0} and an isomorphism $\pi^{*}\left(\mathscr{L}_{0}\right) \rightarrow \mathscr{L}$. Let \tilde{s}_{0} be the unique global section of \mathscr{L}_{0}, we can apply the isogeny theorem Mum66, Th. 4] to obtain

$$
\begin{equation*}
\tilde{\vartheta_{0}}=\lambda \pi^{*}\left(\tilde{s_{0}}\right)=\sum_{i \in Z^{\psi}} \vartheta_{i} \tag{13}
\end{equation*}
$$

for $\lambda \in k^{*}$.
Now by definition we have

$$
\begin{equation*}
\tilde{\vartheta}_{i}=\psi((1, i, 0)) \cdot \tilde{\vartheta}_{0} . \tag{14}
\end{equation*}
$$

where the dot product is the action (2).
By evaluating at 0 the basis of global sections of \mathscr{L} in (14), we get an explicit description of the action of $S p(K(\delta))$ on the geometric points of \mathcal{M}_{δ}. Actually the obtained formulas give a valid action of $S p(K(\delta))$ on the geometric points of $\overline{\mathcal{M}}_{\delta}$.

Now, let $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ be a geometric point of V_{J}^{0}. As Aut $\operatorname{He}_{\mathrm{H}}(\overline{\ell n})$ acts on $\mathcal{M}_{\overline{\ell n}}$, we are interested in the subgroup \mathfrak{H} of Aut $_{\mathrm{s}} \mathcal{H}(\overline{\ell n})$ that leaves $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ in V_{J}^{0}.

Lemma 1. Let $\psi \in \operatorname{Aut} \mathcal{H}(\overline{\ell n})$. We say that ψ is compatible with $\mathcal{H}(\bar{n})$ if it commutes with the morphisms \tilde{p} and \tilde{i} from (6) and (7). Then \mathfrak{H} is the subgroup of compatible symmetric automorphisms of $\mathcal{H}(\overline{\ell n})$. In particular it does not depend on $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ so it is also the subgroup of $\mathrm{Aut}_{\mathrm{s}} \mathcal{H}(\overline{\ell n})$ that leaves V_{J}^{0} invariant.

Proof. Let $\left(A, \mathscr{L}, \Theta_{\overline{\ell n}}\right)$ be a triple corresponding to the theta null point $\left(a_{u}\right)_{u \in Z \overline{(\overline{\ell n})}}$. Let $\psi \in \operatorname{Aut}_{\mathrm{s}} \mathcal{H}(\overline{\ell n})$, and $\left(a_{u}^{\prime}\right)_{u \in Z(\overline{\ell n})}=\psi \cdot\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$. The Proposition 5 shows that $\left(a_{u}^{\prime}\right)_{u \in Z(\overline{\ell n})}$ is in V_{J}^{0} if and only if the associated theta structure $\Theta_{\overline{\ell n}} . \psi$ is compatible with the theta structure $\Theta_{\bar{n}}$ of B. But this means exactly that ψ is compatible with $\mathcal{H}(\bar{n})$.

We can describe more precisely the action of \mathfrak{H} :
Proposition 7. The action of \mathfrak{H} on V_{J}^{0} is generated by the actions given by

$$
\begin{equation*}
\left(a_{u}\right)_{u \in Z \overline{(\overline{\ell n}})} \mapsto\left(a_{\psi_{2}(u)}\right)_{u \in Z \overline{(\overline{\ell n})}}, \tag{15}
\end{equation*}
$$

where ψ_{2} is an automorphism of $Z(\overline{\ell n})$ fixing $Z(\bar{n})$ and

$$
\begin{equation*}
\left(a_{u}\right)_{u \in Z(\overline{\ell n})} \mapsto\left(e_{\overline{\ell n}}\left(\psi_{1}(u), u\right) \cdot a_{u}\right)_{u \in Z \overline{(\overline{\ell n}})} \tag{16}
\end{equation*}
$$

where ψ_{1} is a "symmetric" morphism $Z(\overline{\ell n}) \rightarrow \hat{Z}(\bar{\ell}) \subset \hat{Z}(\overline{\ell n})$ and $e_{\overline{\ell n}}$ is the commutator pairing on $\mathcal{H}(\overline{\ell n})$.
Proof. Let $\psi \in \mathfrak{H}$. Since the exact sequence from equation (12) splits, we only have to study the case where ψ comes from a change of maximal level structure and the case where ψ comes from a symplectic base change of $K(\delta)$. In the former case, let $c \in K(\delta)$ defining the symplectic base change by (11). Then $c \in K(\delta)[2]$ since ψ is symmetric and from the compatibility conditions $c \in \bar{\psi}(\hat{Z}(\bar{\ell}))$. As ℓ is odd, we have $c=0$.

In the latter case, $\bar{\psi}$ can be represented in a basis $\left(v_{\kappa}, \hat{v}_{\kappa}\right)_{\kappa \in\{1, \ldots, g\}}$ of $Z(\overline{\ell n}) \times$ $\hat{Z}(\overline{\ell n})$ by a matrix $M[A, B, C, D]=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in S P_{\delta}^{2 g}(\mathbb{Z})$. Since

$$
K=\bar{\Theta}_{\overline{\ell n}}(\bar{\psi}(\hat{Z}(\bar{\ell}))) \subset \bar{\Theta}_{\overline{\ell n}}(\hat{Z}(\overline{\ell n}))
$$

we have $B=0$. So $D={ }^{t} A^{-1}$ and we see that the action of \mathfrak{H} is generated by the matrices

1. $M[A, B, C, D]$ such that $C=0$. Then A is an automorphism and the compatibility condition implies that it must fix $Z(\bar{n})$. Using (13) and (14) this yields the action (15).
2. $\underline{M}[A, B, C, \bar{D}]$ such that $A=\mathrm{Id}$. Then ${ }^{t} C=C$. For $x \in Z(\overline{\ell n})$, we can write $\bar{\psi}((x, 0))=\left(x, \psi_{1}(x)\right)$. By looking at the conditions (6) and (7) we see that

$$
\begin{equation*}
\bar{\psi}((x, y))-(x, y) \in \bar{\psi}(\hat{Z}(\bar{\ell})) \subset \hat{Z}(\bar{\ell}) \tag{17}
\end{equation*}
$$

for all $(x, y) \in Z^{*}(\overline{\ell n}) \times \hat{Z}^{*}(\overline{\ell n})$. Using $(\sqrt{17})$, we deduce that $\psi_{1}(x)$ is in $\hat{Z}(\bar{\ell})$. In this case, we obtain the action (16) following (13) and (14).

This completes the proof of the proposition.
Remark 2. The action (15) gives an automorphism of the $\left(P_{i}\right)_{i \in Z(\bar{\ell})}$ while the action (16) leaves the $\left(P_{i}\right)_{i \in Z(\bar{\ell})}$ invariant. In fact by taking a basis of $Z(\overline{\ell n})$, we see that if ζ is a $(\ell n)^{t h}$-root of unity, the actions (16) are generated by

$$
a_{\left(n_{1}, n_{2}, \ldots, n_{g}\right)} \mapsto \zeta^{\sum_{i, j \in[1, g]} a_{i, j} n_{i} n_{j}} a_{\left(n_{1}, \ldots, n_{g}\right)}
$$

where $\left(a_{i, j}\right)_{i, j \in[1, g]}$ is a symmetric matrix and $a_{i, j} \in \mathbb{Z} / n \mathbb{Z} \subset \mathbb{Z} / \ell n \mathbb{Z}$ (via $x \mapsto \ell x$) for $i, j \in[1, g]$. So each coefficient of one P_{i} is multiplied by the same $\ell^{t h}$-root of unity.

From the preceding remark, we see that \mathfrak{H} leaves V_{J} invariant. Now, let ψ_{2} be a morphism of $Z(\overline{\ell n})$ fixing $Z(\bar{n})$. Here we do not require ψ_{2} to be an isomorphism. We let ψ_{2} act on V_{J} by

$$
\left(a_{u}\right)_{u \in Z(\overline{\ell n})} \mapsto\left(a_{\psi_{2}(u)}\right)_{u \in Z \overline{(\bar{\ell})}}
$$

Since ψ_{2} fixes $Z(\bar{n}) \subset Z(\overline{\ell n})$, it fixes the 2-torsion points in $Z(\overline{\ell n})$, and it is easy to see that $\left(a_{\psi_{2}(u)}\right)_{u \in Z(\overline{\ell n})}$ satisfies the equations of Theorem 2 and the symmetry relations. As a consequence, the point $\left(a_{\psi_{2}(u)}\right)_{u \in Z(\overline{\ell n})}$ is in $\overline{\mathcal{M}}_{\overline{\ell n}}$. Moreover, as ψ_{2} fixes $Z(\bar{n}),\left(a_{\psi_{2}(u)}\right)_{u \in Z(\overline{\ell n})}$ is a point in V_{J}, so we have a well defined action extending that of the form (15).

By acting on V_{J} with a morphism of $Z(\overline{\ell n})$ fixing $Z(\bar{n})$ which is not an isomorphism, we obtain a point of V_{J} which is degenerate: it is a theta null point such that the associated points P_{i} from Proposition 6 are well defined but not distinct projective points (so they do not form a rank $g \ell$-torsion subgroup of B_{k}).

There is another way to obtain degenerate theta null points in V_{J}. Take any geometric point $\left(a_{u}\right)_{u \in Z(\overline{\ell n})} \in V_{J}$, and a subgroup S of $Z(\bar{\ell})$ (in particular S is not empty). We define a new point $\left(a_{u}^{\prime}\right)_{u \in Z(\overline{\ell n})}$ where

$$
a_{\rho(j, i)}^{\prime}= \begin{cases}a_{\rho(j, i)} & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

Since ℓ is odd, it is easily seen that $\left(a_{u}^{\prime}\right)_{u \in Z(\overline{\ell n})}$ is in general a degenerate point in V_{J} : the P_{i} from Proposition 6 are not defined when $i \notin S$.

Now, we explain that combining the two methods described above, we obtain all the degenerate theta null points of V_{J}. For this, let $\left(a_{u}^{\prime}\right)_{u \in Z(\overline{\ell n})}$ be a degenerate point of V_{J}. Let $S \subset Z(\bar{\ell})$ be the subgroup where the points of ℓ-torsion $P_{i}^{\prime}, i \in S$ of Proposition 6 are well defined. The points P_{i}^{\prime} form a subgroup S^{\prime} of the ℓ torsion points of B_{k}, and $f: S \rightarrow S^{\prime}, i \mapsto P_{i}^{\prime}$ is a group morphism (which may not be an isomorphism, since as $\left(a_{u}^{\prime}\right)_{u \in Z(\overline{\ell n})}$ is degenerate the P_{i}^{\prime} are not necessarily distinct). Now, we embed S^{\prime} into a maximal subgroup T of rank g of $B_{k}[\ell]$, and extend f to a morphism $\tilde{f}: Z(\bar{\ell}) \rightarrow T$ (for instance if $i \notin Z(\bar{\ell})$ then send i to the neutral point $\left.P_{0}^{\prime}\right)$. We take an isomorphism h between $Z(\bar{\ell})$ and T. Theorem that we prove later on shows that there exists a geometric point $\left(a_{u}\right)_{u \in Z(\overline{\ell n})} \in V_{J}^{0}$ such that the corresponding group morphism $i \in Z(\bar{\ell}) \mapsto P_{i}$ is h. Now take ψ_{2} to be the morphism of $Z(\overline{\ell n})=Z(\bar{\ell}) \times Z(\bar{n})$ which is the identity on $Z(\bar{n})$ and $h^{-1} \tilde{f}$ on $Z(\bar{\ell})$. Consider the point $\left(a_{\psi_{2}(u)}\right)_{u \in Z(\overline{\ell n})}$ with the coefficients $\rho(j, i), i \notin S$ taken to be 0 . Then it has exactly the same defined points P_{i}^{\prime} as $\left(a_{u}^{\prime}\right)_{u \in Z(\overline{\ell n})}$. The next lemma shows that it is the same point as $\left(a_{u}^{\prime}\right)_{u \in Z(\overline{\ell n})}$ up to an action of the form (16).

We remark that the degenerate points in V_{J} are exactly the points where the action of \mathfrak{H} is not free: if $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ is a degenerate point such that the corresponding P_{i} are not all well defined, then there is an action of the form (16) giving the same point. If the P_{i} are well defined but do not form a maximal subgroup, then this time there is an action of the form (15) giving the same point.

By Remark 2 we know that if $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ is a theta null point giving the associated group $\left\{P_{i}, i \in Z(\bar{\ell})\right\}$, then the points $\psi \cdot\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ where $\psi \in \mathfrak{H}$ give the same associated group. In fact the converse is true:

Lemma 2. Let $\left(c_{u}\right)_{u \in Z(\overline{\ell n})}$ and $\left(d_{u}\right)_{u \in Z(\overline{\ell n})}$ be two geometric points of V_{J} giving the same associated group $\left\{P_{i}, i \in Z(\bar{\ell})\right\}$. Then there exist $\psi \in \mathfrak{H}$ such that $\left(d_{u}\right)_{u \in Z(\overline{\ell n})}=\psi \cdot\left(c_{u}\right)_{u \in Z \overline{(\overline{\ell n})}}$.

Proof. First, up to an action of type (15), we can suppose that for all $i \in$ $Z(\bar{\ell})$, we have $P_{i}^{\left(c_{u}\right)_{u \in Z(\overline{\ell n})}}=P_{i}^{\left(d_{u}\right)_{u \in Z(\overline{\ell n})}}$. Thus there exist $\lambda_{i} \in \bar{k}$ such that $\left(c_{\rho(j, i)}\right)_{j \in Z(\bar{n})}=\lambda_{i}\left(d_{\rho(j, i)}\right)_{j \in Z(\bar{n})}$. Since $\left(c_{u}\right)_{u \in Z(\overline{\ell n})}$ and $\left(d_{u}\right)_{u \in Z \overline{\ell n})}$ are projective, we can assume that $\lambda_{0}=1$. We will show that up to an action of type (16), for every $i \in Z(\bar{\ell})$ such that P_{i} is well defined, $\lambda_{i}=1$. But first we show that for such points, we have $\lambda_{i}^{\ell}=1$.

Let $i \in Z(\bar{\ell})$ be such that $\left(c_{\rho(j, i)}\right)_{j \in Z(\bar{n})}$ is a well defined projective point. Let $x, y, u, v \in Z(2 \bar{n})$ which are congruent modulo $Z(\bar{n})$, we remark that for $\mu \in\{1, \ldots, \ell\}, \rho(x, \mu . i), \rho(y, i), \rho(u, 0), \rho(v, 0)$ are elements of $Z(2 \overline{\ell n})$ congruent
modulo $Z(\overline{\ell n})$. Calling Theorem 2, we obtain that

$$
\begin{align*}
& \left(\sum_{t \in Z(2)} \chi(t) c_{\rho(x+y+t,(\mu+1) . i)} c_{\rho(x-y+t,(\mu-1) . i)}\right) \cdot\left(\sum_{t \in Z(2)} \chi(t) c_{\rho(u+v+t, 0)} c_{\rho(u-v+t, 0)}\right)= \\
& \quad=\left(\sum_{t \in Z(2)} \chi(t) c_{\rho(x+u+t, \mu . i)} c_{\rho(x-u+t, \mu \cdot i)}\right) \cdot\left(\sum_{t \in Z(2)} \chi(t) c_{\rho(y+v+t, i)} c_{\rho(y-v+t, i)}\right), \tag{18}
\end{align*}
$$

for any $\chi \in \hat{Z}(2)$.
We have a similar formula involving $\left(d_{u}\right)_{u \in Z\left(\overline{\left.\ell 一 ⿻^{\prime}\right)}\right.}$. Using equation (18) and an easy recurrence, we obtain that $\lambda_{\mu . i}=\lambda_{i}^{u_{\mu}}$ where $\left(u_{\mu}\right)$ is a sequence such that $u_{0}=0, u_{1}=1$ and $u_{\mu+1}+u_{\mu-1}=2 . u_{\mu}+2$. The general term of this sequence is $u_{\mu}=\mu^{2}$. For $\mu=\ell$, we have

$$
\begin{equation*}
\lambda_{i}^{\ell^{2}}=\lambda_{\ell . i}=\lambda_{0}=1 \tag{19}
\end{equation*}
$$

Now, by the symmetry relations, we have for $j \in Z(\bar{n}), c_{\rho(j, \mu . i)}=c_{\rho(-j,-\mu . i)}$. Applying this for $\mu=1$ and $j=0$, we obtain that $\lambda_{i}=\lambda_{i}^{(\ell-1)^{2}}$ which together with (19) gives

$$
\begin{equation*}
\lambda_{i}^{\ell}=1 \tag{20}
\end{equation*}
$$

which concludes the claim.
Let $\left(e_{1}, \ldots, e_{g}\right)$ be the canonical basis of $Z(\bar{\ell})$. Up to an action of type (16) we may assume that $\lambda_{e_{i}}=1$ and $\lambda_{e_{i}+e_{j}}=1$ for $i, j \in\{1, \ldots, g\}, j<i$. Now let $a, b \in Z(\bar{\ell})$ be such that $\lambda_{a}=1, \lambda_{b}=1$ and $\lambda_{a-b}=1$. Then by Theorem 2 we have the relations:

$$
\begin{align*}
& \left(\sum_{t \in Z(2)} \chi(t) c_{\rho(x+y+t, a+b)} c_{\rho(x-y+t, a-b)}\right) \cdot\left(\sum_{t \in Z(2)} \chi(t) c_{\rho(u+v+t, 0)} c_{\rho(u-v+t, 0)}\right)= \\
& \quad=\left(\sum_{t \in Z(2)} \chi(t) c_{\rho(x+u+t,-b)} c_{\rho(x-u+t, b)}\right) \cdot\left(\sum_{t \in Z(2)} \chi(t) c_{\rho(y+v+t, a)} c_{\rho(y-v+t, a)}\right) \tag{21}
\end{align*}
$$

Since by symmetry, $\lambda_{-b}=1$, the relations (21) give that $\lambda_{a+b}=1$. An easy recurrence shows that for any $i \in Z(\bar{\ell})$ we have $\lambda_{i}=1$, which concludes the proof.

As a first application of this lemma, we have:
Proposition 8. If ℓ is prime to the characteristic of k and $\nu \geqslant 2$ then V_{J} is a reduced scheme.

Proof. We recall that V_{J} is the affine variety defined by J where J is the image of the homogeneous ideal I defining $\overline{\mathcal{M}}_{\overline{\ell n}}$, under the specialization map

$$
k\left[x_{u} \mid u \in Z(\overline{\ell n})\right] \rightarrow k\left[x_{u} \mid u \in Z(\overline{\ell n}), n u \neq 0\right], \quad x_{u} \mapsto\left\{\begin{array}{l}
b_{u}, \text { if } u \in Z(\bar{n}) \\
x_{u}, \text { else }
\end{array}\right.
$$

with $\left(b_{u}\right)_{u \in Z(\bar{n})}$ the theta null point associated to $\left(B_{k}, \mathscr{L}_{0}, \Theta_{\bar{n}}\right)$.
By definition, V_{J} is a closed subvariety of the affine space $\mathbb{A}^{Z(\overline{\ell n})}$. For $\lambda \in$ $Z(\bar{\ell})$, denote by $\pi_{\lambda}: \mathbb{A}^{Z(\overline{\ell n})} \rightarrow \mathbb{A}^{Z(\bar{n})}$ the projection deduced from the inclusion $\varphi_{\lambda}: k\left[x_{u} \mid u \in Z(\bar{n})\right] \rightarrow k\left[x_{u} \mid u \in Z(\overline{\ell n})\right], x_{u} \mapsto x_{\rho(u, \lambda)}$. In order to prove that V_{J} is a reduced scheme it is enough to prove that for any x geometric point of V_{J} and all $\lambda \in Z(\bar{\ell}), \pi_{\lambda}(x)$ is a reduced point of $\mathbb{A}^{Z(\bar{n})}$. We consider two cases.

If $\pi_{\lambda}(x)$ is not the point at origin of $\mathbb{A}^{Z(\bar{n})}$ then it defines a projective point of $\mathbb{P}^{Z(\bar{\ell})}$ which is a ℓ-torsion point of $V_{I_{\Theta_{\bar{n}}}}$ by Proposition 6. As a consequence, $\pi_{\lambda}(x)$ is contained in the reduced line L between the origin point of $\mathbb{A}^{Z(\bar{n})}$ and $\pi_{\lambda}(x)$. By the preceding lemma, the intersection of V_{J} with L is contained in a variety isomorphic to $\operatorname{Spec}\left(k[x] /\left(x^{\ell}-1\right)\right)$ where $x^{\ell}-1$ is a separated polynomial as ℓ is prime to the characteristic of k. We deduce that x is a reduced point of $\mathbb{A}^{Z(\bar{n})}$.

If $\pi_{\lambda}(x)$ is the origin point of $\mathbb{A}^{Z(\bar{n})}$, it is enough to prove that $\pi_{\lambda}(x)$ is reduced in the case that $\nu=2$. In fact, the set of equations generating J in the case $\nu \geqslant 2$ contains the set of equations generating J in the case $\nu=2$. We suppose now that $\nu=2$. Let $\mathfrak{P}=\left(x_{u} \mid u \in Z(\bar{n})\right)$ be the ideal of $k\left[x_{u} \mid u \in Z(\bar{n})\right]$ defining the reduced point at origin of $\mathbb{A}^{Z(\bar{n})}$. Let $J_{\lambda}=J \cap \varphi_{\lambda}\left(k\left[x_{u} \mid u \in Z(\bar{n})\right]\right)$ and denote by $J_{\lambda \mathfrak{P}}$ the local ring of J_{λ} in \mathfrak{P}. As J is a 0 -dimensional ideal, we know that there exist m a positive integer such that $J_{\lambda \mathfrak{P}} \supset \mathfrak{P}^{m}$ in $k\left[x_{u} \mid u \in Z(\bar{n})\right]_{\mathfrak{P}}$. Let r_{λ} be the smallest integer with this property. We want to show that $r_{\lambda}=1$. In order to do so, we are going to use another formulation of the Riemann relations given by Theorem 17 .

For this, we let $H(\overline{\ell n})=Z(\overline{\ell n}) \times \hat{Z}(\overline{2})$ and $H(\bar{n})=Z(\bar{n}) \times \hat{Z}(\overline{2})$. We denote by $\rho^{\prime}: H(\bar{n}) \times Z(\bar{\ell}) \rightarrow H(\overline{\ell n})$ the natural isomorphism deduced from ρ. For all $v=\left(v^{\prime}, v^{\prime \prime}\right) \in H(\overline{\ell n})$, we let $y_{v}=\sum_{t \in Z(\overline{2})} v^{\prime \prime}(t) x_{v^{\prime}+t}$. Let $a_{1}, a_{2}, a_{3}, a_{4}, \tau \in H(\bar{n})$ such that $2 \tau=a_{1}-a_{2}-a_{3}-a_{4}$. Set $\alpha_{1}=\rho^{\prime}\left(a_{1}, 2 \lambda\right), \alpha_{2}=\rho^{\prime}\left(a_{2}, 0\right), \alpha_{3}=\rho^{\prime}\left(a_{3}, 0\right)$, $\alpha_{4}=\rho^{\prime}\left(a_{4}, 0\right)$ and $\tau_{1}=\rho^{\prime}(\tau, \lambda)$ so that we have $2 \tau_{1}=\alpha_{1}-\alpha_{2}-\alpha_{3}-\alpha_{4}$. We write $\tau=\left(\tau^{\prime}, \tau^{\prime \prime}\right)$ and let $H(\overline{2})=\{x \in H(\overline{\ell n}) \mid x$ is $2-$ torsion modulo $Z(\overline{2}) \times\{0\}\}$. By applying Mum67, formula (C") p. 334], we have the following relation in J :

$$
\begin{align*}
y_{\alpha_{1}} y_{\alpha_{2}} y_{\alpha_{3}} y_{\alpha_{4}} & = \\
& =\frac{1}{2^{g}} \sum_{t \in H(\overline{2})}\left(\tau^{\prime \prime}+t^{\prime \prime}\right)\left(2 t^{\prime}\right) y_{\alpha_{1}-\tau_{1}+t} y_{\alpha_{2}+\tau_{1}+t} y_{\alpha_{3}+\tau_{1}+t} y_{\alpha_{4}+\tau_{1}+t} \tag{22}
\end{align*}
$$

where $t=\left(t^{\prime}, t^{\prime \prime}\right) \in H(\overline{2})$.
By definition, for $i=2,3,4$, if we write $a_{i}=\left(a_{i}^{\prime}, a_{i}^{\prime \prime}\right)$, we have $y_{\alpha_{i}}=$ $\sum_{t \in Z(\overline{2})} a_{i}^{\prime \prime}(t) b_{a_{i}^{\prime}+t}$. As by hypothesis $\left(b_{u}\right)_{u \in Z(\bar{n})}$ is valid theta null points, by applying Mum67, formulas $\left(^{*}\right)$ p. 339], we obtain that for any $a_{i}=\left(a_{i}^{\prime}, a_{i}^{\prime \prime}\right) \in$ $H(\bar{n})$ there exists $\beta_{i}^{\prime} \in 2 Z(\bar{n})$ such that $\sum_{t \in Z(\overline{2})} a_{i}^{\prime \prime}(t) b_{a_{i}^{\prime}+\beta_{i}^{\prime}+t} \neq 0$. As a consequence, for any choice of a_{1}, we can find a_{2}, a_{3}, a_{4}, and $\tau \in H(\bar{n})$ such that $2 \tau=a_{1}-a_{2}-a_{3}-a_{4}$ and for $i=2,3,4, y_{\alpha_{i}}=\sum_{t \in Z(\overline{2})} a_{i}^{\prime \prime}(t) b_{a_{i}^{\prime}+t} \neq 0$. (We can take for instance $a_{1}=a_{2}=a_{3}=a_{4}$ so that $a_{1}-a_{2}-a_{3}-a_{4} \in 2 H(\bar{n})$ and then if necessary add to a_{2}, a_{3}, a_{4} elements of $2 Z(\bar{n})$ in order to have $y_{\left(a_{i}, 0\right)} \neq 0$.)

As an immediate consequence, we obtain that $\pi_{2 \lambda}(x)$ is also the origin point of $\mathbb{A}^{Z(\bar{n})}$.

Let r_{λ}^{\prime} be the smallest integer such that $r_{\lambda}^{\prime} \geqslant r_{\lambda}$ and $4 \mid r_{\lambda}^{\prime}$. We remark that $\varphi_{2 \lambda}\left(k\left[x_{u} \mid u \in Z(\bar{n})\right]\right)=k\left[y_{\rho^{\prime}(v, 2 \lambda)} \mid v \in H(\bar{n})\right]$. Let M be a degree $r_{\lambda}^{\prime} / 4$ monomial in the variables $y_{\rho^{\prime}(v, 2 \lambda)}$. If necessary, by multiplying M by a suitable non null constant, we see that M is equal to a product M^{\prime} of $r_{\lambda}^{\prime} / 4$ polynomials given by the right hand of (22). These polynomials have degree 4 and are sums of products of monomials of the form $y_{\rho^{\prime}(v, \lambda)}$ (using the symmetry relations). We deduce from this that $M^{\prime} \in \mathfrak{P}^{r_{\lambda}}$ and as a consequence $M^{\prime} \in J_{\lambda}$. But this means that $M \in J_{2 \lambda}$ and as M can be any degree $r_{\lambda}^{\prime} / 4$ monomial in the variables $y_{\rho^{\prime}(v, 2 \lambda)}$, we have proved that $J_{2 \lambda \mathfrak{P}} \supset \mathfrak{P}^{r_{\lambda}^{\prime} / 4}$.

Let m be an integer such that $2^{m} \lambda=\lambda$ in $Z(\bar{\ell})$. Using the previous result and an easy recurrence, we see that if $r_{\lambda}>1$ then $r_{\lambda}=r_{2^{m}}<r_{\lambda}$ which is a contradiction.

As a second application of Lemma 2, we have:
Theorem 4. Let $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ be a geometric point of V_{J}. For any $i \in Z(\bar{\ell})$, let P_{i} be the geometric point, if well defined, of $\mathbb{P}_{k_{-}}^{Z(\bar{n})}$ with homogeneous coordinates $\left(a_{\rho(j, i)}\right)_{j \in Z(\bar{n})}$. Denote by S the subset of $Z(\bar{\ell})$ such that P_{i} is a well defined projective point for all $i \in S$. If $K=\left\{P_{i}, i \in S\right\}$ is a maximal ℓ-torsion subgroup of $V_{I_{\Theta_{n}}}$ of rank g then $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ is a well defined theta null point. In other words there exists $\left(A_{k}, \mathscr{L}, \Theta_{\overline{\ell n}}\right)$ an abelian variety together with a $(\overline{\ell n})$-marking with associated theta null point $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$.

Proof. Let A_{k} be the quotient of $B_{k} \simeq V_{I_{\Theta_{\bar{n}}}}$ by K and let $\pi: B_{k} \rightarrow A_{k}$ be the canonical isogeny. As K is a subgroup of $B_{k}[\ell]$, there exists an isogeny $\hat{\pi}: A_{k} \rightarrow B_{k}$ such that $[\ell]=\hat{\pi} \circ \pi$. Let $\mathscr{L}=\hat{\pi}^{*}\left(\mathscr{L}_{0}\right)$. We are going to show that there exists a certain theta structure $\Theta_{\overline{\ell n}}$ such that the theta null point associated to $\left(A_{k}, \mathscr{L}, \Theta_{\overline{\ell n}}\right)$ is $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$.

Let $K\left(\mathscr{L}_{0}\right)=K_{1}\left(\mathscr{L}_{0}\right) \times K_{2}\left(\mathscr{L}_{0}\right)$ be the decomposition into isotropic subspaces for the commutator pairing induced by the theta structure $\Theta_{\bar{n}}$. Denote by \hat{K} the kernel of $\hat{\pi}$. As $\mathscr{L}=\hat{\pi}^{*}\left(\mathscr{L}_{0}\right)$, we know that \hat{K} is an isotropic subgroup of $K(\mathscr{L})$ for the commutator pairing. Moreover, by construction it is contained in the ℓ-torsion subgroup of A and by hypothesis has rank g. We choose a decomposition as isotropic subspaces $K(\mathscr{L})=K_{1}(\mathscr{L}) \times K_{2}(\mathscr{L})$ such that \hat{K} is contained in $K_{2}(\mathscr{L})$ and for $i=1,2, \pi\left(K_{i}(\mathscr{L})[n]\right)=K_{i}\left(\mathscr{L}_{0}\right)$.

Denote by $\kappa: G(\mathscr{L}) \rightarrow K(\mathscr{L})$ the natural projection. By the descent theory of Grothendieck, there exists a unique level subgroup \tilde{K}_{ℓ} of $G(\mathscr{L})$ contained in $\kappa^{-1}(\hat{K})$ such that the quotient of $\left(A_{k}, \mathscr{L}\right)$ by the action defined by \tilde{K}_{ℓ} gives $\left(B_{k}, \mathscr{L}_{0}\right)$. Let $G^{*}(\mathscr{L})$ be the centralizer of \tilde{K}_{ℓ} in $G(\mathscr{L})$. By Mum66, Prop. 2 pp . 291], we have an isomorphism

$$
i: G^{*}(\mathscr{L}) / \tilde{K}_{\ell} \simeq G\left(\mathscr{L}_{0}\right)
$$

Let $G(\mathscr{L})[n]=\kappa^{-1}(K(\mathscr{L})[n])$. We remark that

1. $G(\mathscr{L})[n]$ is contained in $G^{*}(\mathscr{L})$,
2. $\kappa\left(G(\mathscr{L})[n] \cap \tilde{K}_{\ell}\right)$ is the zero subgroup of A_{k}.

Let \tilde{K}_{0} be the level subgroup of $G\left(\mathscr{L}_{0}\right)$ defined as the image by $\Theta_{\bar{n}}$ of the subgroup $(1,0, y)_{y \in \hat{Z}(\bar{n})}$ of $\mathcal{H}(\bar{n})$. An immediate consequence of 1 . and 2 . is that there exists a unique level subgroup \tilde{K}_{n} of $G(\mathscr{L})$ such that $i\left(\tilde{K}_{n}\right)=\tilde{K}_{0}$.

Denote by \tilde{K}_{2} the level subgroup of $G(\mathscr{L})$ whose restriction over $K(\mathscr{L})[n]$ and $K(\mathscr{L})[\ell]$ is respectively given by \tilde{K}_{n} and \tilde{K}_{ℓ}. By construction, we have

$$
\begin{equation*}
i\left(\tilde{K}_{2}\right)=\tilde{K}_{0} \tag{23}
\end{equation*}
$$

Choose any theta structure $\Theta_{\overline{\ell n}}: \mathcal{H}(\overline{\ell n}) \rightarrow G(\mathscr{L})$ such that the image by $\Theta_{\overline{\ell n}}$ of the subgroup $(1,0, y)_{y \in \hat{Z}(\overline{\ell n})}$ is exactly \tilde{K}_{2}. Because of (23) and construction of Proposition 1, we have $\vartheta_{0}^{\Theta_{\overline{l n}}}=\hat{\pi}^{*}\left(\vartheta_{0}^{\Theta}\right)$.

We suppose moreover that $\Theta_{\overline{\ell n}}$ is such that for all $x \in Z(\bar{n}), i\left(\Theta_{\overline{\ell n}}(1, x, 0)\right)=$ $\Theta_{\bar{n}}(1, x, 0)$, where we consider $Z(\bar{n})$ as a subgroup of $Z(\overline{\ell n})$ via the map $x \mapsto \ell x$. We remark that by construction, $\Theta_{\overline{\ell n}}$ and $\Theta_{\bar{n}}$ verify the conditions (6) and (7) and as a consequence are $\hat{\pi}$-compatible. As a consequence of Corollary 11, we have that for all $i \in Z(\bar{n}), \vartheta_{i}^{\Theta_{\overline{\ell n}}}=\hat{\pi}^{*}\left(\vartheta_{i}^{\Theta \bar{\pi}}\right)$.

Let $\left(a_{u}^{\prime}\right)_{u \in Z \overline{(\overline{\ell n})}}$ be the theta null point associated to $\left(A_{k}, \mathscr{L}, \Theta_{\overline{\ell n}}\right)$. For $i \in$ $Z(\bar{n})$, denote by Q_{i} the geometric point of $\mathbb{P}_{k}^{Z(\bar{n})}$ with homogeneous coordinates $\left(a_{\rho(j, i)}^{\prime}\right)_{j \in Z(\bar{n})}$.

We know that the projective coordinates of a maximal isotropic ℓ-torsion subgroup of A_{k} is obtained by the action of the theta group on $\left(a_{u}^{\prime}\right)_{u \in Z \overline{(n)})}$ by translation. Denote by K^{\prime} the ℓ-torsion subgroup of A_{k} given by the points with projective coordinates $\left(a_{v+i}^{\prime}\right)_{v \in Z(\overline{\ell n})}$. By construction, K^{\prime} is the dual of \hat{K} for the commutator pairing which implies that A_{k} is exactly the quotient of B_{k} by $\hat{\pi}\left(K^{\prime}\right)$. As a consequence, we have $\hat{\pi}\left(K^{\prime}\right)=K$.

The applications $Z(\bar{\ell}) \rightarrow B_{k}[\ell], j \mapsto P_{j}$ is a group morphism (see for instance the proof of CL08, Lemma 5.6]), as well as the application $Z(\bar{\ell}) \rightarrow B_{k}[\ell], j \mapsto$ $\hat{\pi}\left(Q_{j}\right)$. By changing the theta structure $\Theta_{\overline{\ell n}}$, we can suppose that for all $j \in Z(\bar{\ell})$, $\hat{\pi}\left(Q_{j}\right)=P_{j}$. As a consequence, for $j \in Z(\bar{\ell})$ there exists $\lambda_{j} \in \bar{k}$ such that for $i \in Z(\bar{n}), a_{\rho(j, i)}=\lambda_{j} a_{\rho(j, i)}^{\prime}$. We know moreover that $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ and $\left(a_{u}^{\prime}\right)_{u \in Z(\overline{\ell n})}$ are geometric points of V_{J}. Applying Lemma 2 we are done.

If $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ is a geometric point of V_{J}, we denote by $G\left(\left(a_{u}\right)_{u \in Z(\overline{\ell n})}\right)$ the subgroup of $B_{k}[\ell]$ generated by the valid projective points $\left(a_{\rho(j, i)}\right)_{j \in Z(\bar{n})}$ for $i \in Z(\bar{\ell})$ of $V_{I_{\bar{n}}}=B_{k}$. The preceding theorem tells us that whenever a solution $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ of J is such that $G\left(\left(a_{u}\right)_{u \in Z(\overline{\ell n})}\right)$ is a maximal ℓ-torsion subgroup of $B_{k}[\ell]$ then it is a valid theta null point, that is, it corresponds to a certain $\left(A_{k}, \mathscr{L}, \Theta_{\overline{\ell n}}\right)$. It would be desirable to be able to determine which maximal rank g subgroups of $B_{k}[\ell]$ can arise as a $G(x)$ where x is a geometric point of V_{J} representing a valid theta null point.

For this, let $\mathscr{M}_{0}=[\ell]^{*} \mathscr{L}_{0}$ on B_{k}. As \mathscr{L}_{0} is symmetric, we have that $\mathscr{M}_{0} \simeq$ $\mathscr{L}_{0}^{\ell^{2}}$ and as a consequence $K\left(\mathscr{M}_{0}\right)$, the kernel of \mathscr{M}_{0} is isomorphic to $\left.Z \overline{\ell^{2} n}\right)$.

The polarisation \mathscr{M}_{0} induces a commutator pairing $e_{\mathscr{M}_{0}}$ on $K\left(\mathscr{M}_{0}\right)$ and as \mathscr{M}_{0} descend to \mathscr{L}_{0} via the isogeny $[\ell]$, we know that $e_{\mathscr{M}_{0}}$ is trivial on $B_{k}[\ell]$. For $x_{1}, x_{2} \in B_{k}[\ell]$, let $x_{1}^{\prime}, x_{2}^{\prime} \in B_{k}\left[\ell^{2}\right]$ be such that $\ell . x_{i}^{\prime}=x_{i}$ for $i=1,2$. We remark that x_{1}^{\prime} and x_{2}^{\prime} are defined up to an element of $B_{k}[\ell]$. As a consequence, $e_{\mathscr{M}_{0}}\left(x_{1}^{\prime}, x_{2}\right)=e_{\mathscr{M}_{0}}\left(x_{1}, x_{2}^{\prime}\right)$, does not depend on the choice of x_{1}^{\prime} and x_{2}^{\prime} and if we put $e_{W}\left(x_{1}, x_{2}\right)=e_{M_{0}}\left(x_{1}^{\prime}, x_{2}\right)$, we obtain a well defined bilinear application $e_{W}: B_{k}[\ell] \times B_{k}[\ell] \rightarrow \bar{k}$. As $e_{\mathscr{M}_{0}}$ is a perfect pairing, for any $x_{1}^{\prime} \in B_{k}\left[\ell^{2}\right]$ there exits $x_{2}^{\prime} \in B_{k}\left[\ell^{2}\right]$ such that $e_{\mathscr{M}_{0}}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ is a primitive $\ell^{2 t h}$ root of unity. As a consequence, for any $x_{1} \in B_{k}[\ell]$ there exists $x_{2} \in B_{k}[\ell]$ such that $e_{W}\left(x_{1}, x_{2}\right)$ is a primitive $\ell^{t h}$ root of unity and e_{W} is also a perfect pairing.

Theorem 5. A maximal ℓ-torsion subgroup of B_{k} of rank g is of the form $G(x)$ where x is a geometric point of V_{J} corresponding to a valid theta null point if and only if $G(x)$ is an isotropic subgroup for the pairing e_{W}.

Proof. Let $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ be a geometric point of V_{J} corresponding to a valid theta null point. We know that $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ is the theta null point of a triple $\left(A_{k}, \mathscr{L}, \Theta_{\overline{\ell n}}\right)$. The theta structure $\Theta_{\overline{\ell n}}$ induces a decomposition $K(\mathscr{L})=K_{1}(\mathscr{L}) \times$ $K_{2}(\mathscr{L})$ into isotropic subgroups for the commutator pairing $e \mathscr{L}$. As the isogeny π is such that $\pi^{*}\left(\vartheta_{i}^{\Theta \bar{n}}\right)=\vartheta_{i}^{\Theta_{\overline{\ell n}}}$ for all $i \in Z(\bar{n})$ (and identifying $i \in Z(\bar{n})$ with $\ell i \in Z(\overline{\ell n})$), we know that $G\left(\left(a_{u}\right)_{u \in Z(\overline{\ell n})}\right)=\pi\left(K_{1}(\mathscr{L})\right)$. We denote by $\hat{\pi}: B_{k} \rightarrow A_{k}$ the isogeny such that $\pi \circ \hat{\pi}=[\ell]$ as in the diagram (9). For any $x_{1}, x_{2} \in G\left(\left(a_{u}\right)_{u \in Z(\overline{\ell n})}\right)$, there exists $\bar{x}_{1}, \bar{x}_{2} \in K_{1}(\mathscr{L})[\ell]$ such that $x_{i}=\pi\left(\bar{x}_{i}\right)$, $i=1,2$. Let $x_{1}^{\prime} \in B_{k}\left[\ell^{2}\right]$ be such that $\ell . x_{1}^{\prime}=x_{1}$. We have $e_{W}\left(x_{1}, x_{2}\right)=$ $e_{\mathscr{M}_{0}}\left(x_{1}^{\prime}, x_{2}\right)=e_{\mathscr{L}}\left(\hat{\pi}\left(x_{1}^{\prime}\right), \hat{\pi}\left(x_{2}\right)\right)$. But $\hat{\pi}\left(x_{2}\right)=\hat{\pi} \circ \pi\left(\bar{x}_{2}\right)=[\ell]\left(\bar{x}_{2}\right)=0$. As a consequence, we have $e_{W}\left(x_{1}, x_{2}\right)=0$.

Now, we prove the opposite direction. Let G be a maximal rank $g \ell$-torsion subgroup of $B_{k}[\ell]$ which is isotropic for the pairing e_{W} and \hat{G} be the dual group of G for the pairing e_{W}. As e_{W} is a perfect pairing, \hat{G} is also a maximal rank g ℓ-torsion subgroup of $B_{k}[\ell]$. We want to show that G is of the form $G(x)$ with x a geometric point of V_{J} where J is defined by the triple $\left(B_{k}, \mathscr{L}_{0}, \Theta_{\bar{n}}\right)$. For this, we consider the isogeny $\hat{\pi}: B_{k} \rightarrow A_{k}$ with kernel the subgroup G of B_{k}. As G is contained in $B_{k}[\ell], G$ is an isotropic subgroup of $\left(B_{k}, \mathscr{M}_{0}\right)$, and \mathscr{M}_{0} descend via $\hat{\pi}$ to a polarization \mathscr{L} on A_{k}. Let $\pi: A_{k} \rightarrow B_{k}$ be the isogeny with kernel $\hat{\pi}(\hat{G})$. By the commutativity of the following diagram,

\mathscr{L} descends via π to \mathscr{L}_{0}.

The theta structure $\Theta_{\bar{n}}$ induces a decomposition $K\left(\mathscr{L}_{0}\right)=K_{1}\left(\mathscr{L}_{0}\right) \times K_{2}\left(\mathscr{L}_{0}\right)$. Let $x_{i}=\hat{\pi}\left(x_{i}^{\prime}\right)$ with $x_{i}^{\prime} \in \hat{G}$ and $i=1,2$. Let $y_{1}^{\prime} \in B_{k}\left[\ell^{2}\right]$ be such that $\ell . y_{1}^{\prime}=x_{1}^{\prime}$. We have by hypothesis $1=e_{W}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=e_{\mathscr{M}_{0}}\left(y_{1}^{\prime}, x_{2}^{\prime}\right)$ and as a consequence $1=e_{\mathscr{M}_{0}}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=e_{\mathscr{L}}\left(x_{1}, x_{2}\right)$. Thus $\hat{\pi}(\hat{G})$ is isotropic for the pairing $e_{\mathscr{L}}$. As a consequence, we can chose a decomposition $K(\mathscr{L})=K_{1}(\mathscr{L}) \times K_{2}(\mathscr{L})$ such that for $i=1,2, \pi\left(K_{i}(\mathscr{L})\right)=K_{i}\left(\mathscr{L}_{0}\right)$ and $K_{2}(\mathscr{L})[\ell]=\hat{\pi}(\hat{G})$. Take any theta structure $\Theta_{\overline{\ell n}}$ for \mathscr{L} compatible with this decomposition. Let $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ be the associated theta null point. By Corollary in, $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ is a geometric point of V_{J}. Moreover, we have $G\left(\left(a_{u}\right)_{u \in Z(\overline{\ell n})}\right)=\pi\left(K_{1}(\mathscr{L})\right)=G$.

Our study of valid theta null points allows us to better understand the geometry of V_{J}^{0}. We know from Proposition 5 that V_{J}^{0} classifies the isogenies $\pi: A_{k} \rightarrow B_{k}$ between marked abelian varieties verifying the compatibility condition.

Taking the dual of π gives an isogeny from B_{k} to A_{k} with kernel $K=$ $\pi\left(K_{1}\right)=\left\{P_{1}, \ldots, P_{n}\right\}$. Thus the theta null points on V_{J}^{0} correspond to varieties $\bar{\ell}$-isogeneous to B_{k}. But we have seen in Proposition ${ }^{\text {J that }}$ thay happen that different points of V_{J}^{0} give the same kernel K and hence the same isogeneous variety. We want to classify the points of V_{J}^{0} corresponding to isomorphic varieties $\bar{\ell}$-isogeneous to B_{k}.

To do that, let K be a maximal isotropic subgroup of rank g of the points of ℓ-torsion of B_{k}. We are interested in the class \mathfrak{T}_{K} of isogenies of kernel K. More precisely, if π is an isogeny from B_{k} to A_{k} with kernel K, then \mathfrak{T}_{K} is the class of isogenies $\pi^{\prime}: B_{k} \rightarrow A_{k}^{\prime}$ such that there exists an isomorphism $\psi: A_{k} \rightarrow A_{k}^{\prime}$ that makes the following diagram commutative:

Proposition 9. Let K be a maximal subgroup of rank g of the points of ℓ-torsion of B_{k} which is isotropic for the pairing e_{W}. There is a point $\left(a_{u}\right)_{u \in Z(\overline{\ell n})} \in V_{J}^{0}$ such that the corresponding dual isogeny $\pi: B_{k} \rightarrow A_{k}$ is in \mathfrak{T}_{K}. Every other point in V_{J}^{0} giving the class \mathfrak{T}_{K} is obtained by the action of \mathfrak{H} on $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$. In particular, the geometric points of V_{J}^{0} / \mathfrak{H} are in bijection with the $\bar{\ell}^{g}$-isogenies of B.

Proof. Let $K=\left\{P_{i}, i \in Z(\bar{\ell})\right\}$ be such a maximal subgroup. Theorem 1 gives a geometric point $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ of V_{J}^{0} corresponding to a marked abelian variety $\left(A_{k}, \mathscr{L}_{A}, \Theta_{A}\right)$ such that the associated isogeny $\tilde{\pi}: A_{k} \rightarrow B_{k}$ sends $K_{1}\left(\mathscr{L}_{A}\right)$ to K. Hence, the unique isogeny $\pi: B_{k} \rightarrow A_{k}$ such that $\tilde{\pi} \circ \pi=[\ell]$, is in \mathfrak{T}_{K}. If $\left(a_{u}^{\prime}\right)_{u \in Z(\overline{\ell n})}$ is another valid theta null point in V_{J}^{0}, corresponding to a marked
abelian variety $\left(A^{\prime}, \mathscr{L}_{A^{\prime}}, \Theta_{A^{\prime}}\right)$ such that the dual of the associated isogeny gives the same class as π, then we have the following diagram:

By definition of the associated isogenies $\tilde{\pi}$ and $\tilde{\pi}^{\prime}$, we know that $\mathscr{L}_{A}=\tilde{\pi}^{*}\left(\mathscr{L}_{B}\right)$ and $\mathscr{L}_{A^{\prime}}=\tilde{\pi}^{\prime *}\left(\mathscr{L}_{B}\right)=\tilde{\psi}^{*}\left(\mathscr{L}_{A}\right)$. So $\tilde{\psi}$ induces a morphism of the theta groups $G\left(\mathscr{L}_{A}\right)$ and $G\left(\mathscr{L}_{A^{\prime}}\right)$, and pulling back by the theta structures we get a symmetric automorphism $\tilde{\psi}$ of $\mathcal{H}(\overline{\ell n})$. Since the theta structures Θ_{A} and $\Theta_{A^{\prime}}$ are compatible with $\Theta_{B}, \tilde{\psi}$ is in \mathfrak{H}. This shows that $\left(a_{u}\right)_{u \in Z(\overline{\ell n})}$ and $\left(a_{u}^{\prime}\right)_{u \in Z(\overline{\ell n})}$ are in the same orbit under \mathfrak{H}.

Together with the study of degenerate theta null points, it is now possible to count the points in V_{J}. For instance, take $g=1, n=4$ and $\ell=3$. Let E be an elliptic curve, and $\left(b_{u}\right)_{u \in(\mathbb{Z} / n \mathbb{Z})}$ be a level 4 theta null point on E. There are $4=\# \mathbb{P}^{1}\left(\mathbb{F}_{3}\right)$ classes of 3 -isogenies from E, and $6=3 \times \varphi(3)$ solutions in V_{J} for each class. The actions (15) are given by $\left(a_{u}\right)_{u \in(\mathbb{Z} / \ell n \mathbb{Z})} \mapsto\left(a_{x . u}\right)_{u \in \mathbb{Z} / \ell n \mathbb{Z}}$ where $x \in \mathbb{Z} / \ell n \mathbb{Z}$ is invertible and congruent to $1 \bmod n$. There are $\varphi(\ell)$ such actions. The actions (16) are given by $\left(a_{u}\right)_{u \in \mathbb{Z} / \ell n \mathbb{Z}} \mapsto\left(\zeta^{c . u^{2}} a_{u}\right)_{u \in \mathbb{Z} / \ell n \mathbb{Z}}$ where ζ is a $\ell^{t h}$-root of unity and $c \in \mathbb{Z} / \ell \mathbb{Z}$.

If $g=2$, it is easy to compute the number of valid theta null point in V_{J}. First, we remark that the number of isogeny classes of degree ℓ^{2} of a given dimension 2 abelian variety B_{k} is parametrised by the points of a Grassmanian $\operatorname{Gr}(2,4)\left(\mathbb{F}_{\ell}\right)$ which are isotropic (see Theorem 司): there are $\left(\ell^{2}+1\right)(\ell+1)$ such points.

Next, the number of actions of the form (15) is parametrised by the number of invertible matrices of dimension 2 with coefficients in \mathbb{F}_{ℓ} with is given by $\left(\ell^{2}-1\right) .\left(\ell^{2}-\ell\right)$. The number of actions of the form (16) is ℓ^{3} (the number of symmetric matrices of dimension 2). As a consequence, the number of valid theta null point in V_{J} is

$$
\ell^{10}-\ell^{8}-\ell^{6}+\ell^{4}
$$

We remark that this number is a $O\left(\ell^{11}\right)$. For $g=2, \ell=3$, we have 51840 valid theta null points in V_{J}.

For a general g and ℓ, we assess the order of the number of valid theta null point which are solution of V_{J}. The number of isotropic points of a Grassmanian $G r(g, 2 . g)\left(\mathbb{F}_{\ell}\right)$ is a $O\left(\ell^{g(g+1) / 2}\right)$. The number of action of the form (15) is a $O\left(\ell^{g^{2}}\right)$ and the number of action of the form is a $O\left(\ell^{g(g+1) / 2}\right)$. We deduce that the number of valid theta null point in V_{J} is bounded by

$$
\begin{equation*}
O\left(\ell^{2 . g^{2}+g}\right) \tag{25}
\end{equation*}
$$

Example 1. In the case of genus 1 and small ℓ it is possible to list all the solutions of V_{J}. We take $\ell=3$ and let E be the elliptic curve given by an affine equation $y^{2}=x^{3}+11 . x+47$ over \mathbb{F}_{79}. A corresponding theta null point of level 4 for E is $(1: 1: 12: 1)$. The four subgroups of 3 -torsion of E are

$$
\begin{aligned}
& K_{1}=\{(1: 1: 12: 1),(37: 54: 46: 1),(8: 60: 74: 1)\} \\
& K_{2}=\{(1: 1: 12: 1),(67: 10: 68: 1),(62: 8: 70: 1)\} \\
& K_{3}=\{(1: 1: 12: 1),(42: 5: 15: 1),(40: 16: 3: 1)\} \\
& K_{4}=\{(1: 1: 12: 1),(72: 56: 31: 1),(69: 24: 33: 1)\}
\end{aligned}
$$

All geometric points of V_{J} are defined over $\mathbb{F}_{79}(v)$ where v is a root of the irreducible polynomial $X^{3}+9 \cdot X+76$. For each of the four subgroups K_{i}, there are 6 geometric points of V_{J} giving the curve E / K_{i}. We give a point in each class (the other points can be obtained via the actions (15) and (16)):

$$
Q_{1}=\left(16 v^{2}+19 v+17: 1: 46: 16 v^{2}+19 v+17: 37: 54: 34 v^{2}+70 v+46:\right.
$$ $\left.54: 37: 16 v^{2}+19 v+17: 46: 1\right)$ corresponds to K_{1}.

$Q_{2}=\left(64 v^{2}+67 v+68: 1: 68: 64 v^{2}+67 v+68: 67: 10: 57 v^{2}+14 v+26:\right.$ 10:67:64v $\left.{ }^{2}+67 v+68: 68: 1\right)$ corresponds to K_{2}.
$Q_{3}=\left(8 v^{2}+49 v+48: 1: 3: 8 v^{2}+49 v+48: 40: 16: 17 v^{2}+35 v+23: 16:\right.$ $\left.40: 8 v^{2}+49 v+48: 3: 1\right)$ corresponds to K_{3}.
$Q_{4}=\left(32 v^{2}+73 v+34: 1: 33: 32 v^{2}+73 v+34: 69: 24: 68 v^{2}+7 v+13:\right.$ $\left.24: 69: 32 v^{2}+73 v+34: 33: 1\right)$ corresponds to K_{4}.

We also have the following degenerate points in V_{J} : if we take $x=9$ in the action (15), the image of the class of any Q_{i} is $\mathcal{C}=\{(55: 1: 12: 55: 1: 1: 28:$ $1: 1: 55: 12: 1),(1: 1: 12: 1: 1: 1: 12: 1: 1: 1: 12: 1),(23: 1: 12: 23: 1:$ $1: 39: 1: 1: 23: 12: 1)\}$. For this class, the corresponding ℓ-torsion subgroup (the points P_{i} of Proposition (6) is $\{(1: 1: 12: 1),(1: 1: 12: 1),(1: 1: 12: 1)\}$ which has rank 0 . On \mathcal{C} the action (15) is trivial, so there are only 3 points in this degenerate class, coming from the action (16). The last degenerate point is ($1: 0: 0: 1: 0: 0: 12: 0: 0: 1: 0: 0)$, alone in its class.

We conclude this section with some remarks concerning the case $\nu=1$ and the case where the characteristic of k is equal to ℓ. First, for computational reasons, for instance in order to limit the number of variables when computing the points of V_{J}, we would like to have ν as small as possible. All the results of Section 5 are valid under the hypothesis that $\nu \geqslant 2$ and that the characteristic of k is different from ℓ. In the case $\nu=1$, we can not even prove that V_{J} is a zero dimensional variety. Nonetheless we have made extensive computations which back the idea that even in the case $\nu=1$, in general, V_{J} is a zero dimensional variety whose degree is of the same order with respect to the parameter ℓ as in the case $\nu=2$.

In the case that the characteristic of the base field k is equal to ℓ and $\nu \geqslant 2$, the proof that V_{J} is a 0 -dimensional scheme is still valid. In this case V_{J} is not anymore reduced and the computation of the number of solutions of V_{J} are not valid. Nonetheless, from our computations, we see that in this case the degree
of the variety V_{J} is of the same order with respect to the parameter ℓ as in the case where the characteristic of k is different from ℓ.

In the following section, we give an algorithm to find the solutions of V_{J}. We can prove that this algorithm is efficient in the case $\nu \geqslant 2$ and when the characteristic of k is different from ℓ. In the case that $\nu=1$ or when the characteristic of k is equal to ℓ we will make the hypothesis that V_{J} is a zero dimensional variety whose degree is given by formula (25). Under these hypothesis, we can also prove that our algorithm is efficient.

6 An efficient algorithm

We would like to use the formulas of Section the compute the image of the modular correspondence Φ_{ℓ} for some positive integer ℓ. We have seen that the main algorithmic difficulty is to solve the polynomial system defined by the equations of Theorem together with the symmetry relations. The aim of this section is to give an algorithm to solve efficiently this system. We have made an implementation of our algorithm and used it to test the heuristics described at the end of Section 5 .

Let $n=2^{\nu}$. In this section, k is a finite field. We let $\left(B_{k}, \mathscr{L}_{0}, \Theta_{\bar{n}}\right)$ be a dimension g abelian variety together with a \bar{n}-marking and we denote by $\left(b_{u}\right)_{u \in Z(\bar{n})}$ its associated theta null point. Let J be the image of the homogeneous ideal defining $\overline{\mathcal{M}}_{\overline{\ell n}}$ given by the equation of Theorem 1 , under the specialization map

$$
k\left[x_{u} \mid u \in Z(\overline{\ell n})\right] \rightarrow k\left[x_{u} \mid u \in Z(\overline{\ell n}), n u \neq 0\right], \quad x_{u} \mapsto\left\{\begin{array}{l}
b_{u}, \text { if } u \in Z(\bar{n}) \\
x_{u}, \text { else }
\end{array}\right.
$$

We denote by V_{J} the 0-dimensional affine variety (heuristically 0-dimensional if $\nu=1$) defined by the ideal J. Let $\rho: Z(\bar{n}) \times Z(\bar{\ell}) \rightarrow Z(\overline{\ell n})$ be the group isomorphism given by $(x, y) \mapsto \ell x+n y$

6.1 Motivation

In order to find the points of the variety V_{J} a first idea is to use an efficient Gröbner basis computation algorithm BW93 such as F_{4} Fau99. We have carried out computations in the case $g=2, \nu=1$ and $\ell=3$ with respect to a total degree order (the DRL AL94, CLO92 or grevlex order) using the computer algebra system Magma BCP97 implementation of F_{4}. From our computation, we could conclude that

- even for a small coefficient field $\left(k=\mathbb{F}_{3^{10}}\right)$, it takes 20 hours of computations using Magma on a powerful computer with 16 Go of RAM;
- as expected from the computations of Section 5, the number of solutions in the algebraic closure \bar{k} of k is big: 30853 solutions in characteristic 3 (We note that this is coherent with the number of solutions discussed after Proposition 9 when $g=2, \nu=2$ and $\ell=3$).
- to fully solve the system (that is to say, find explicitly all the solutions in \bar{k}) we need to compute a second Gröbner basis with respect to a lexicographical order.

This last operation can be done using the FGLM FGLM93] algorithm. In our case it is equivalent to compute the characteristic polynomial of a 30853×30853 matrix. This computation did not finish using Magma for the base field $k=\mathbb{F}_{3^{10}}$. So we see that even for $g=2, \nu=1$ and $\ell=3$ the computation of the points of V_{J} is painful using a generic algorithm. In this section, we give an algorithm to solve efficiently the algebraic system defined by J for small ℓ over a big coefficient field. As an application of our method, we can mention the initialisation phase of a point counting algorithm CL08.

The main idea of our algorithm is to use explicitly the symmetry inside the problem deduced from the action of the theta group: we compute a Gröbner basis not for the whole ideal J but rather a Gröbner basis of a well chosen projection $J \cap k\left[x_{\rho(v, \lambda)} \mid v \in Z(\bar{n})\right]$ for $\lambda \in Z(\bar{\ell})$. With our strategy, the same problem $\left(k=\mathbb{F}_{3^{10}}\right)$ can be solved in seconds and far bigger problems $\left(k=\mathbb{F}_{3^{1500}}\right)$ can be solved in less than 1 hour (see Section 6.6 for experimental results).

6.2 Assumptions

Our method is a combination of existing algorithms. We first describe in full generality the assumptions upon which our algorithm is faster than a general purpose Gröbner basis algorithm. Then, using the results of Section 5 , we explain that these assumptions hold for J in the case that $\nu \geqslant 2$ and that the characteristic of k is not ℓ. If $\nu=1$ or if the characteristic of k is equal to ℓ, we can not prove the assumptions but we have made extensive computations which show that in general our algorithm is much more efficient than a general purpose Gröbner basis algorithm.

Let T be a set $\left[x_{1}, \ldots, x_{s}\right]$ of variables, we assume that $J \subset k[T]$ is a zero dimensional ideal generated by the polynomials $\left[f_{1}, \ldots, f_{m}\right]$ where for $i=1, \ldots, m$, f_{i} is a polynomial in $k[T]$. We make the hypothesis that we can split the set of variables into two subsets $T=X \cup Y$ such that the ideal $K=J \cap k[Y]$ contains low degree polynomials.

In order to make precise what we mean by low degree polynomials, we denote by $I_{g e n}$ an ideal generated by the polynomials $\left[g_{1}, \ldots, g_{m}\right]$ where for $i=1, \ldots, m$, g_{i} is a general polynomial of total degree $\operatorname{deg}\left(f_{i}\right)$. We define for any ideal I of $k[T]$:

$$
D_{Y}(I)=\min \{\operatorname{deg}(g) \mid 0 \neq g \in I \cap k[Y]\}
$$

Our assumption that $J \cap k[Y]$ contains low degree polynomials means that

$$
\begin{equation*}
D_{Y}(J) \ll D_{Y}\left(I_{\text {gen }}\right) \tag{H1-1}
\end{equation*}
$$

The previous assumption implies that our algorithm will perform much faster with the particular ideal J than it would do for a general ideal $I_{g e n}$.

We must also ensure that it is more efficient to compute a Gröbner basis for $J \cap k[Y]$ instead of a Gröbner basis for J. If we suppose that a Gröbner basis computation for a total degree order has the same complexity for J and $I_{g e n}$, we have to check that $D_{Y}(J) \ll D_{T}\left(I_{g e n}\right)$. It is well known that, generically, a lower bound for $D_{T}\left(I_{g e n}\right)$ is given by the Macaulay bound which is given by $D_{T}\left(I_{\text {gen }}\right)=1+\sum_{i=1}^{m}\left(\operatorname{deg}\left(f_{i}\right)-1\right)$ if $m \leqslant s$. We can now state explicitly the second part of our first assumption:

$$
\begin{equation*}
D_{Y}(J) \ll \sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right) \tag{H1-2}
\end{equation*}
$$

Our second assumption is that J can be decomposed into many prime ideals. There exists a positive integer $r \gg 1$ such that

$$
\begin{equation*}
\sqrt{J}=P_{1} \cap \cdots \cap P_{r} \text { and } P_{i} \text { is a prime ideal. } \tag{H2}
\end{equation*}
$$

We recall that for a homogeneous ideal we define the Hilbert function $\mathrm{HF}_{I}(d)=$ $\operatorname{dim}(k[T] / I)_{d}$ and the degree of the ideal $I, \operatorname{deg}(I)$, is given by the Hilbert series $\sum_{i=0}^{\infty} \operatorname{HF}_{I}(d) z^{i}=\frac{M(z)}{(1-z)^{\operatorname{dim}(I)}}$ and $\operatorname{deg}(I)=M(1) \neq 0$. With this, we can state the third (optional) assumption

$$
\begin{equation*}
\operatorname{deg}(\sqrt{I}) \ll \operatorname{deg}(I) \tag{H3}
\end{equation*}
$$

We discuss the validity of hypothesis (H1-1), (H1-2), (H2) and (H3) in the case that J is defined as in the introduction of the present section. First, we remark that $D_{Y}\left(I_{g e n}\right)$ can be easily computed: let $M(s, d)$ be the number of monomials of degree less or equal to d in s variables. The total number of solutions counted with multiplicities of $I_{g e n}$ is given by the Bézout bound: $D=\Pi_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)$. Hence, we have

$$
\begin{equation*}
D_{Y}\left(I_{g e n}\right)=\min _{d}\{M(h, d)>D\}, \tag{26}
\end{equation*}
$$

where h is the cardinal of Y and $M(h, d)=\binom{h+d}{d}$. By considering $M(h, d)$ as a polynomial in the unknown d, we obtain that for a given $h, D_{Y}\left(I_{\text {gen }}\right)$ is the biggest real root of the polynomial:

$$
\frac{1}{h!} \prod_{i=1}^{h}(x+i)=D
$$

As a consequence, we have

$$
\begin{equation*}
D_{Y}\left(I_{\text {gen }}\right) \sim_{D \rightarrow \infty}(h!D)^{\frac{1}{h}} . \tag{27}
\end{equation*}
$$

We know moreover that $\overline{\mathcal{M}}_{\bar{\ell} \eta}$ has dimension $1 / 2 . g .(g+1)$ and is embedded via the relations given in Theorem 1 in the projective space of dimension $(n \ell)^{g}-1$. We deduce that J contains at least $(n \ell)^{g}-1 / 2 . g .(g+1)$ algebraically independent
polynomials. As the equations of Theorem 1 have degree 4, a lower bound for D is $4^{(n \ell)^{g}-1 / 2 . g .(g+1)-1}$.

On the other side, if we chose for $j \in Z(\bar{\ell}), Y=\left[x_{\rho(u, j)} \mid u \in Z(\bar{n})\right]$, we know by Proposition 6 that the solutions of the system $J \cap k[Y]$ can be either the origin point of $\mathbb{A}^{Z(\bar{n})}$ or represent a ℓ-torsion point of $V_{I_{\Theta_{\bar{n}}}}$. In this last case, by Lemma 2 we know that there is ℓ solutions of J corresponding to the same projective points. Denote by D^{\prime} the number of solutions of $J \cap k[Y]$ counted with multiplicities. We have $D^{\prime} \leqslant \ell^{2 g+1}+1$ and using the heuristic evaluation of $D_{Y}(J)$ given by (26), we obtain

$$
\begin{equation*}
D_{Y}(J) \sim_{D \rightarrow \infty}\left(h!D^{\prime}\right)^{\frac{1}{h}} \tag{28}
\end{equation*}
$$

For a fixed g and ν the cardinal of Y are fixed. Using (27) and (28), we see that hypothesis (H1-1) is verified for ℓ big enough.

Next, $1+\sum_{i=1}^{m}\left(\operatorname{deg}\left(f_{i}\right)-1\right)=3 .(n \ell)^{g}$. On the other side, $\left(h!D^{\prime}\right)^{\frac{1}{h}}$ with $D^{\prime} \leqslant \ell^{2 g+1}+1$ and $h=n^{g}$. As $n \geqslant 2$, we have, using the Stirling approximation formula, that $\left(h!D^{\prime}\right)^{\frac{1}{h}}=O(\ell)$ and hypothesis H1-2) is verified as soon as $g \geqslant 2$ and ℓ big enough.

Since we want to find at least one solution of J defined over k, we can assume that such a solution exists. By Proposition 6, this implies that there exists a subgroup G of rank at least 1 of the ℓ-torsion group of $V_{I_{\Theta_{n}}}$ such that all the points of G are defined over k. As the solutions of $J \cap k[Y]$ are points of $V_{I_{\Theta_{\bar{n}}}}[\ell]$, we conclude that for $r \geqslant \ell$ we have:

$$
\sqrt{J}=P_{1} \cap \cdots \cap P_{r} \text { and } P_{i} \text { is a prime ideal, }
$$

and hypothesis ($\mathrm{H2}$) is verified.
In general, we know from Proposition 8 that the hypothesis (H3) is not verified since J is a reduced ideal. Nonetheless, in the case that the characteristic of k is equal to ℓ, the scheme defined by J is not reduced and we use in order to speed up the computations.

6.3 General strategy

In the following, we give a general strategy for computing the solutions of the algebraic system defined by J. All the steps of our algorithm are standard with the exception of step 1 and step 4. In step 1, we try to use as much as possible the assumptions (H1-1) and (H1-2) and step 4 is based upon the assumptions (H2), (H3).

Step 1 Using a specific algorithm given in Section 6.4, we compute a truncated Gröbner basis for an elimination order and a modified graduation. This allows us to obtain an zero dimensional ideal J_{1} contained in J. In general J_{1} is not equal to J. The output of the algorithm is a sequence of polynomials $\left[p_{1}, \ldots, p_{\kappa}\right]$ in $k[Y]$ such that J_{1} is generated by $\left(p_{1}, \ldots, p_{\kappa}\right)$.
Step 2 Compute a Gröbner basis $G_{\text {DRL }}$ of J_{1} for a total degree order (DRL or grevlex). This can be done with any efficient algorithm for computing Gröbner basis, for instance F_{4}.

Step 3 Compute a Gröbner basis $G_{\text {Lex }}$ of J_{1} for a lexicographical order. This can be done by using the FGLM algorithm to change the monomial order of $G_{\text {DRL }}$.
Step 4 Compute a decomposition into primes of the following ideal:

$$
\sqrt{J_{1}}=P_{1} \cap \cdots \cap P_{r}
$$

We assume that $\operatorname{deg}\left(P_{i}\right)=1$ (if it is not the case we replace k by some algebraic extension of k).

Step 5 For i from 1 to r, we repeat the following Steps a,b,c for the ideal $\left(P_{i}\right)+I$:
(a) Compute a Gröbner basis G_{i} of $\left(P_{i}\right)+I$ for a total degree order (DRL).
(b) Change the monomial order to obtain G_{i}^{\prime} a lexicographical Gröbner basis of $\left(P_{i}\right)+I$.
(c) Compute a decomposition into primes: $\sqrt{P_{i}+I}=P_{j_{i-1}+1} \cap \cdots \cap P_{j_{i}}$ (by convention $j_{-1}=r$).
Since we have $\sqrt{I}=\sqrt{J_{1} \cap I}=\sqrt{P_{1} \cap I} \cap \cdots \cap \sqrt{P_{r} \cap I}$ and since the decomposition of each component $\sqrt{P_{i} \cap I}$ is done by step 5 of the previous algorithm, we obtain a decomposition of the ideal I :

$$
\sqrt{I}=P_{r+1} \cap \cdots \cap P_{j_{r}}
$$

Remark 3. Once we have obtained a point P of V_{J} corresponding to a valid theta null point, we can recover all the solutions of V_{J} corresponding to valid theta null points using the action given by Proposition 7 .

6.4 Description of the algorithm

In this section, we give a detailed explanation of the Step 1 and Step 4 of the algorithm described in Section 6.3.

Step 1: elimination algorithm

The normal strategy for computing Gröbner bases (Buchberger, F_{4}, F_{5}) consists in considering first the pairs with the minimal total degree among the list of critical pairs (see CLO92 Bec93], for instance).

In the following, to select critical pairs, we consider only the total degree with respect to the first set of variables X. More precisely:

Definition 1. Partial degree of critical pair $p=(f, g)$:

$$
\begin{aligned}
\operatorname{deg}_{X}(p)=\text { total degree of } & \operatorname{lcm}(\underset{<}{\operatorname{LT}}(f), \underset{<}{\operatorname{LT}}(g)) \\
& \text { in the polynomial ring } R[X] \text { where } R=k[Y] .
\end{aligned}
$$

Moreover, we stop the computation of the Gröbner basis as soon as we find a zero dimensional system in $k[Y]$. Consequently we obtain an new version of the F_{4} algorithm:

Algorithm 6 Algorithm F_{4} (modified version)

```
Input: \(\left\{\begin{array}{l}F \text { a finite subset of } k\left[x_{1}, \ldots, x_{s}\right] \\ <\text { a monomial admissible order } \\ X=\left[x_{1}, \ldots, x_{\kappa}\right] \text { and } Y=\left[x_{\kappa+1}, \ldots, x_{s}\right]\end{array}\right.\)
Output: a finite subset of \(k\left[x_{1}, \ldots, x_{s}\right]\).
\(G:=F\) and \(P:=\left\{\operatorname{CritPair}(f, g) \mid(f, g) \in G^{2}\right.\) with \(\left.f \neq g\right\}\)
while \(P \neq \varnothing\) and \(\operatorname{dim}(G \cap k[Y])>0\) do
    \(d:=\min \left\{\operatorname{deg}_{X}(p) \mid p \in P\right\}\) minimal partial degree of critical pairs
    extract from \(P, P_{d}\) the list of critical pairs of degree d
    \(R:=\) Matrix_Reduction \(\left(\operatorname{Left}\left(P_{d}\right) \cup \operatorname{Right}\left(P_{d}\right), G\right)\)
    for \(h \in R\) do
        \(P:=P \cup\{\operatorname{CritPair}(h, g) \mid g \in G\}\)
    \(G:=G \cup\{h\}\)
return \(G\)
```


Step 4: decomposition into primes

The known general purpose algorithms to compute a primary decomposition of an ideal are inefficient in our case. To speed up the computation, we proceed following the three steps:

Step 1 The basis $G_{\text {Lex }}$ always contains a univariate polynomial $g\left(x_{s}\right)$. We can factorize this polynomial. We will see that this is the most consuming part of the whole algorithm. We obtain

$$
g\left(x_{s}\right)=f_{1}\left(x_{s}\right)^{\alpha_{1}} \cdots f_{l}\left(x_{s}\right)^{\alpha_{l}}
$$

Step 2 For all factors i from 1 to l we apply the lextriangular algorithm Laz92 to obtain efficiently a decomposition into triangular sets of $J_{1}+\left\langle f_{i}\left(x_{s}\right)\right\rangle$.
We can describe the algorithm beginning by the special case of two variables $\left[x_{s-1}, x_{s}\right]$ (this enough in our case since we assume that $k=\bar{k}$ as we will see later). By a theorem of Lazard [Laz85, Theorem 1], the general shape of $G_{\text {Lex }}$ the lexicographical order Gröbner basis is as follows:

$$
\left\{\begin{array}{l}
g\left(x_{s}\right) \tag{29}\\
h_{1}\left(x_{s-1}, x_{s}\right)=g_{1}\left(x_{s}\right)\left(x_{s-1}^{k_{1}}+\cdots\right) \\
h_{2}\left(x_{s-1}, x_{s}\right)=g_{2}\left(x_{s}\right)\left(x_{s-1}^{k_{2}}+\cdots\right) \\
\ldots \\
h_{s}\left(x_{s-1}, x_{s}\right)=x_{s-1}^{k_{s}}+\cdots \\
\text { polynomials in variables } x_{1}, \ldots, x_{s}
\end{array}\right.
$$

with $k_{1}<k_{2}<\cdots<k_{s}$ and $g_{1}\left(x_{s}\right)\left|g_{2}\left(x_{s}\right)\right| \cdots$. Hence we can obtain for free some factors of $g\left(x_{s}\right)$:

Step 3

$$
\begin{aligned}
g\left(x_{s}\right) & =\left(\frac{g\left(x_{s}\right)}{g_{1}\left(x_{s}\right)}\right) g_{1}\left(x_{s}\right) \\
& =\left(\frac{g\left(x_{s}\right)}{g_{1}\left(x_{s}\right)}\right)\left(\frac{g_{1}\left(x_{s}\right)}{g_{2}\left(x_{s}\right)}\right) g_{2}\left(x_{s}\right) \\
& =\cdots
\end{aligned}
$$

For any factor $f_{i}\left(x_{s}\right)$ of $g\left(x_{s}\right)=f_{1}\left(x_{s}\right)^{\alpha_{1}} \cdots f_{l}\left(x_{s}\right)^{\alpha_{l}}$, it is enough to find the first element $h_{j}\left(x_{s-1}, x_{s}\right)$ of the Gröbner basis such that

$$
\operatorname{gcd}\left(f_{i}\left(x_{s}\right), g_{j}\left(x_{s}\right)\right) \neq 0
$$

In our case $k=\bar{k}$ and each factor is linear $f_{i}\left(x_{s}\right)=x_{s}-\beta_{i}$ so that we search for the first j such that $g_{j}\left(\beta_{i}\right) \neq 0$: then we obtain a new polynomial in one variable $h_{j}\left(x_{s-1}, \beta_{i}\right)$ that can be factorized. Hence we can iterate the algorithm for all the other variables x_{s-2}, \ldots, x_{1}.

6.5 First experiments and optimizations

In this section, we give running times for an implementation of the strategy that we have presented in Section 6.2. We also explain some important optimizations.

The main motivation of the examples presented is this section, is to show that the initialisation phase of the point counting algorithm described in CL08 can be made efficient enough to be negligible in the overall running time of the algorithm. For this, we take $g=2$ and $n=2$ and we work over a field k of characteristic 3 or 5 . We construct a theta null point of level 2 corresponding to an abelian variety A_{k} of dimension 2 . We construct the modular correspondence of level ℓ where ℓ is the characteristic of k. Any valid solution of the modular correspondence will corresponds to the theta null point of level 2ℓ of an abelian variety isogeneous to A_{k}. We can then use the algorithm of CL08] to count the number of points of A_{k}.

First experiments As explained in 6.1 if we can try to compute directly a Gröbner basis of the ideal generated by the equations, even when k is very small $\left(k=\mathbb{F}_{3^{10}}\right.$ for instance), it takes 10 hours of computations on a powerful computer with 16 Go of RAM just to compute a DRL Gröbner basis. Moreover, in characteristic 3 , there is a huge number of solutions: 30853 . This imply that there is no hope to solve efficiently the corresponding problem directly.

Keeping the notations of the beginning of Section 6, we apply the method described in 6.3 to find the solutions of J. We let $\nu=1, \ell=3$ and $g=2$ so that $Z(\overline{\ell n})=(\mathbb{Z} / 6 \mathbb{Z})^{2}$. Let $T=\left[x_{u} \mid u \in Z(\overline{\ell n})\right]$. For $j \in Z(\bar{\ell})$, we define $Y=\left[x_{\rho(u, j)} \mid u \in Z(\bar{n})\right]$. Taking $j=\rho(0,1)$ and in the following, for $u=(i, j) \in$ $Z(\overline{\ell n})$, we let $x_{u}=x_{i j}$. With these notations, we take $Y=\left[x_{31}, x_{32}, x_{02}, x_{01}\right]$ and $X=T-Y$ the set of all other variables. Then we consider J embedded in the
polynomial ring $k[T]$ where k is $\mathbb{F}_{3^{k}}$ or $\mathbb{F}_{5^{k}}$. In that case $J \cap k\left[x_{31}, x_{32}, x_{02}, x_{01}\right]=$ $J \cap k[Y]$ is an ideal of degree 160 (to be compared with 30853 the degree of the whole ideal J). When $k=\mathbb{F}_{5^{k}}$ (resp. $k=\mathbb{F}_{3^{k}}$) the polynomial $g\left(x_{s}\right)$ obtained in section 6.4 is a square-free polynomial of degree 124 (resp. a non square-free polynomial of degree 70). We report in the following table some first experiments using the algorithm of section 6.3 implemented in Magma and in C (see section 6.6 for a full description of the experimental framework). First we consider only very small example:

| Algo 6.3 | Step 1 | Step 2 + Step 3 Step 4 | Step 5 |
| :--- | :--- | :--- | :--- | :--- |
| $k=\mathbb{F}_{510}$ | 0.35 sec 0.25 sec | $3.24+0.01=3.25 \mathrm{sec}$ | $8.0+0.77+0.01+0.08=8.86 \mathrm{sec}$ |
| $k=\mathbb{F}_{5^{20}}$ | 0.35 sec 1.14 sec | $28.4+0.04=28.44 \mathrm{sec} 39.3+9.1+0.05+0.49=48.94 \mathrm{sec}$ | |

Even if the theoretical complexity is linear in the size of k it is clear that, in practice, the behavior of the algorithm is not linear in $\log (k)$. Moreover, when we increase the size of k, step 5 becomes the most consuming part of our algorithm. Hence, even if the new algorithm is efficient enough to solve the problem for a small base field k, the problems become intractable when $\# k>5^{100}$. In the next paragraph we propose several optimizations to overcome this limitation.

Optimizations The idea is to apply recursively the algorithm of section 6.3 to perform the step 5: we split again the first of variable into two parts: $X=$ $X^{\prime} \cup Y^{\prime}=X^{\prime} \cup\left[x_{42}, x_{21}, x_{51}, x_{12}\right]$.

Algo 6.3	Original Step 5	Recursive Step 5
$k=\mathbb{F}_{5^{10}}$	$8.0+0.77+0.01+0.08=8.86 \mathrm{sec}$	$0.05+0.41+0.33+0.01=0.8 \mathrm{sec}$
$k=\mathbb{F}_{5^{20}}$	$39.3+9.1+0.05+0.49=48.94 \mathrm{sec}$	$0.12+1.53+2.44+0.01+0.02=4.1 \mathrm{sec}$
$k=\mathbb{F}_{5^{40}}$		$0.13+2.46+7.16+0.01+0.01=9.78 \mathrm{sec}$

When $k=\mathbb{F}_{3^{k}}$ we obtain in step 3 of the algorithm 6.3 the following lexicographical Gröbner basis:

$$
\left\{\begin{array}{l}
g\left(x_{01}\right) \text { of degree } 70 \\
h_{1}\left(x_{02}, x_{01}\right)=g_{1}\left(x_{01}\right)\left(x_{02}^{2}+\cdots\right) \text { and } g_{1} \text { of degree } 39 \\
h_{2}\left(x_{02}, x_{0,1}\right)=x_{02}^{3}+\cdots \\
\cdots \text { polynomials in variables } x_{31}, x_{32}, x_{02}, x_{01}
\end{array}\right.
$$

and thus we can split $g_{1}\left(x_{01}\right)$ into two factors:

$$
\begin{aligned}
g_{1}\left(x_{01}\right) & =\left(x_{01}+\alpha_{1}\right)^{3}\left(x_{01}+\alpha_{2}\right)^{9} \cdots\left(x_{01}+\alpha_{4}\right)^{9} \\
\frac{g\left(x_{01}\right)}{g_{1}\left(x_{01}\right)} & =x_{01}\left(x_{01}+\beta_{1}\right)^{3}\left(x_{01}+\beta_{2}\right)^{9} \cdots\left(x_{01}+\beta_{3}\right)^{9}
\end{aligned}
$$

Hence the polynomial $g_{1}\left(x_{01}\right)$ can be efficiently factorized when k is big.

6.6 Experimental results

Programming language - Workstation

The experimental results have been obtained with several Xeon bi-processor 3.2 Ghz, with 16 Gb of Ram. The instances of our problem have been generated using the Magma software. We used the Magma version 2.14 for our computations. The F_{5} Fau02 algorithm have been implemented in C language in the FGb software and we used this implementation for computing the first Gröbner base. All the other computations are performed under Magma including factorizing some univariate polynomials and computing Gröbner bases using the F_{4} algorithm.

Table Notation

The following notations are used in the tables of Fig. 1 and Fig. 2 below:

- k is the ground field, $k^{\prime} \supset k$ is the field extension. The practical behavior of our algorithm is strongly depending on the size of k^{\prime}; hence, since k is fixed, the practical depends strongly on the degree of the field extension $\left[k^{\prime}: k\right]$. In order to obtain consistent data in the following tables we keep only the case $\left[k^{\prime}: k\right]=2$.
- T is the total CPU time (in seconds) for the whole algorithm.
- $T_{\text {Gen }}$ is the time for generating the Riemann equations and computing a valid level 2 theta null point (Magma).
- $T_{\text {Grob }}$ is the sum of the Gröbner bases computations (FGb and Magma).
- $T_{\text {Fact }}$ is the sum of the Factorization steps (Magma).
- T_{1} is the total time of the algorithm excluding generating the equations: $T_{1}=T-T_{\text {Gen }}$.

k	k	$T_{\text {Gen }}$	$T_{\text {Grob }}$	$T_{\text {Fact }}$	T_{1}	T
5^{50}	5^{100}	1.9	2.7	9.3	12	14
5^{70}	5^{140}	3.4	3.3	16.0	19	23
5^{100}	5^{200}	19.5	15.9	116.7	133	152
5^{150}	5^{300}	27.9	16.8	159.7	177	205
5^{200}	5^{400}	141.3	57.3	401.0	459	600
5^{250}	5^{500}	178.4	62.1	651.8	715	893
5^{300}	5^{600}	227.8	86.7	935.3	1023	1251
5^{350}	5^{700}	674.8	108.5	1306.11416	2091	
5^{400}	5^{800}	764.1	100.5	2411.3	2513	3277
5^{450}	5^{900}	1144.0	165.3	2451.3	2619	3763
5^{500}	5^{1000}	1070.1	185.4	2990.0	3177	4247
5^{600}	5^{1200}	1979.5	273.5	4888.6	5164	7144
5^{700}	5^{1400}	3278.0	422.5	6872.27297	10575	

Fig 1: Algorithm $\ell=3$, characteristic of k is 5 .

k	k^{\prime}	$T_{\text {Gen }}$	$T_{\text {Grob }}$	$T_{\text {Fact }}$	T_{1}	T
3^{80}	3^{160}	3.6	2.0	0.4	3	7
3^{80}	3^{160}	3.6	2.0	0.2	3	6
3^{200}	3^{400}	29.0	11.1	6.9	20	49
3^{600}	3^{1200}	239.2	36.2	44.5	88	327
3^{800}	3^{1600}	403.7	50.6	89.6	150	554
3^{1000}	3^{2000}	591.8	61.8	151.0	225	816
3^{1500}	3^{3000}	2122.0	137.7	474.5	666	2788
3^{3000}	3^{6000}	11219.9	396.3	3229.6	3704	14923
Fig	Al					

Interpretation of the results

- In characteristic 3, the hardest part is the generation of the equations and the computation of a valid level 2 theta null point: $T_{\mathrm{Gen}} \approx T$. In characteristic, 5 we have $T \approx 3 T_{\text {Gen }}$.
- The most consuming part in algorithm described in 6.3 is the univariate factorization. Moreover due to the implementation in Magma $T_{\text {Fact }}$ is not really linear in the size of k.
- The algorithm is much more efficient in characteristic 3 since:
- All the solutions occur with some multiplicity, hence we have to deal with non-square-free polynomials. As a consequence, the degree of the univariate polynomials can be decreased by taking the square-free part of the polynomials.
- The corresponding Gröbner bases are in not in shape-position: as explain in section 6.4 we can split the univariate polynomial by taking a gcd.
- The algorithm is very efficient since we can completely find the solutions of the ideal J for sizes of the base field $k=3^{1500}$ or $k=5^{700}$ which are interesting for point counting application.

7 Conclusion

In this paper, we have described an algorithm to compute modular correspondences in the coordinate system provided by the theta null points of abelian varieties together with a theta structure. As an application, this algorithm can be used to speed up the initialisation phase of a point counting algorithm [CL08]. The main part of the algorithm is the resolution of an algebraic system for which we have designed a specific Gröbner basis algorithm. Our algorithm takes advantage of the structure of the algebraic system in order to speed up the resolution. We remark that this special structure comes from the action of the automorphisms of the theta group on the solutions of the system which has a nice geometric interpretation. In particular we were able count the solutions of the system and to identify which one correspond to valid theta null points.

References

AL94. William W. Adams and Philippe Loustaunau. An introduction to Gröbner bases, volume 3 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1994.
BCP97. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma Algebra System I: The User Language. J. Symbolic Comp., 24(3):235-265, 1997.
Bec93. Becker T. and Weispfenning V. Groebner Bases, a Computationnal Approach to Commutative Algebra. Graduate Texts in Mathematics. SpringerVerlag, 1993.
BL04. Christina Birkenhake and Herbert Lange. Complex abelian varieties, volume 302 of Grundlehren der Mathematischen Wissenschaften [Fundament al Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2004.
BW93. Thomas Becker and Volker Weispfenning. Gröbner bases, volume 141 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1993. A computational approach to commutative algebra, In cooperation with Heinz Kredel.
CL08. D. Carls, R. and Lubicz. A p-adic quasi-quadratic time and quadratic space point counting algorithm. 2008. preprint.
CLO92. D. Cox, J. Little, and D. O'Shea. Ideals, Varieties and Algorithms. Springer Verlag, New York, 1992.
Elk98. Noam D. Elkies. Elliptic and modular curves over finite fields and related computational issues. In Computational perspectives on number theory (Chicago, IL, 1995), volume 7 of AMS/IP Stud. Adv. Math., pages 21-76. Amer. Math. Soc., Providence, RI, 1998.
Fau99. Jean-Charles Faugére. A new efficient algorithm for computing Gröbner bases (F_{4}). J. Pure Appl. Algebra, 139(1-3):61-88, 1999. Effective methods in algebraic geometry (Saint-Malo, 1998).
Fau02. Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero $\left(F_{5}\right)$. In Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pages 75-83 (electronic), New York, 2002. ACM.
FGLM93. J. C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symbolic Comput., 16(4):329-344, 1993.
Koh03. David R. Kohel. The AGM- $X_{0}(N)$ Heegner point lifting algorithm and elliptic curve point counting. In Advances in cryptology-ASIACRYPT 2003, volume 2894 of Lecture Notes in Comput. Sci., pages 124-136. Springer, Berlin, 2003.
Laz85. D. Lazard. Ideal Bases and Primary Primary Decomposition:Case of Two Variables. 1(3):261-270, September 1985.
Laz92. D. Lazard. Solving zero-dimensional algebraic systems. 13(2):117-132, February 1992.
LL06. Reynald Lercier and David Lubicz. A quasi quadratic time algorithm for hyperelliptic curve point counting. Ramanujan J., 12(3):399-423, 2006.
Mum66. D. Mumford. On the equations defining abelian varieties. I. Invent. Math., 1:287-354, 1966.
Mum67. D. Mumford. On the equations defining abelian varieties. II. Invent. Math., 3:75-135, 1967.

Mum70. David Mumford. Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, No. 5. Published for the Tata Institute of Fundamental Research, Bombay, 1970.
Sat00. Takakazu Satoh. The canonical lift of an ordinary elliptic curve over a finite field and its point counting. J. Ramanujan Math. Soc., 15(4):247-270, 2000.
Sch95. R. Schoof. Counting points on elliptic curves over finite fields. J. Théorie des nombres de Bordeaux, 7(1):219-254, 1995.
VPV01. Frederik Vercauteren, Bart Preneel, and Joos Vandewalle. A memory efficient version of Satoh's algorithm. In Advances in cryptologyEUROCRYPT 2001 (Innsbruck), volume 2045 of Lecture Notes in Comput. Sci., pages 1-13. Springer, Berlin, 2001.

