
HAL Id: hal-00426291
https://hal.science/hal-00426291v1

Preprint submitted on 24 Oct 2009 (v1), last revised 29 Dec 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monte Carlo Study of the Spin Transport in Magnetic
Materials

Yann Magnin, K. Akabli, Hung The Diep, Isao Harada

To cite this version:
Yann Magnin, K. Akabli, Hung The Diep, Isao Harada. Monte Carlo Study of the Spin Transport in
Magnetic Materials. 2009. �hal-00426291v1�

https://hal.science/hal-00426291v1
https://hal.archives-ouvertes.fr


Monte Carlo Study of the Spin Transport in Magnetic Materials

Y. Magnina, K. Akablia,b, H. T. Diepa,∗, I. Haradab

aLaboratoire de Physique Théorique et Modélisation,
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Abstract

The resistivity in magnetic materials has been theoretically shown to depend on the spin-spin correlation function which
in turn depends on the magnetic-field, the density of conduction electron, the magnetic ordering stability, etc. However,
these theories involved a lot of approximations, so their validity remained to be confirmed. The purpose of this work
is to show by extensive Monte Carlo (MC) simulation the resistivity of the spin current from low-T ordered phase to
high-T paramagnetic phase in a ferromagnetic film. We take into account the interaction between the itinerant spins
and the localized lattice spins as well as the interaction between itinerant spins themselves. We show that the resistivity
undergoes an anomalous behavior at the magnetic phase transition in agreement with previous theories in spite of their
numerous approximations. The origin of the resistivity peak near the phase transition in ferromagnets is interpreted
here as stemming from the existence of magnetic domains in the critical region. This interpretation is shown to be in
consistence with previous theoretical pictures. Resistivity in a simple cubic antiferromagnet is also shown. The absence
of a peak in this case is explained.
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1. Introduction

The magnetic resistivity has been extensively studied
by both theories and experiments in the last fifty years.
Experiments have shown that the resistivity indeed de-
pends on the itinerant spin orientation and the lattice
spin ordering [1, 2, 3, 4, 5]. At low temperature (T ),
the main magnetic scattering is due to spin-wave excita-
tions [6, 7]. The resistivity is proportional to T 2. How-
ever at higher T the spin-wave theory is not valid, such
a calculation of the resistivity is not possible, in particu-
lar in the critical region around the Curie temperature Tc

in simple ferromagnets, let alone other complicated mag-
netic orderings. Experiments on various magnetic materi-
als have found in particular an anomalous behavior of the
resistivity at the critical temperature where the system
undergoes the ferromagnetic-paramagnetic phase transi-
tion [2, 3, 4, 5]. de Gennes and Friedel’s first explanation
in 1958[8] for the resistivity behavior near Tc was based
on the interaction between the spins of conduction elec-
trons and the lattice spins. Therefore, the resistivity was
expected to depend strongly on the spin ordering of the
system. Theoretically, in this pioneer work, de Gennes
and Friedel [8] have suggested that the magnetic resistiv-
ity is proportional to the spin-spin correlation. In other
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words, the spin resistivity should behave as the magnetic
susceptibility. This explained that the resistivity singu-
larity is due to ”long-range” fluctuations of the magneti-
zation observed in the critical region. Craig et al [9] in
1967 and Fisher and Langer [10] in 1968 suggested that
the shape of the singularity results mainly from ”short-
range” interaction at T ≥ Tc. Fisher and Langer have
shown in particular that the form of the resistivity cusp
depends on the correlation range. A summary was given
in 1975 by Alexander and coworkers [11] which highlighted
the controversial issue. To see more details on the mag-
netic resistivity, we quote an interesting recent publica-
tion from Kataoka [12]. He calculated the spin-spin cor-
relation function using the mean-field approximation and
analyzed the effects of magnetic-field, density of conduc-
tion electron, the correlation range, etc. Recently, Zarand
et al [14] have used the pictured that the itinerant spin
is mainly scattered by impurities which are characterized
by a ”localization length” in the sense of Anderson’s lo-
calization. They found that the peak’s height depends on
this localization length. Note that since the so-called giant
magnetoresistance (GMR) was discovered experimentally
twenty years ago in magnetic multilayers [15, 16], intensive
investigations, both experimentally and theoretically, have
been carried out [17, 18]. The so-called ”spintronics” was
born with spectacular rapid developments in relation with
industrial applications. For recent overviews, the reader is
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referred to Refs. [19] and [20].
Although many theoretical investigations have been

carried out, there has been no Monte Carlo (MC) sim-
ulations performed regarding the temperature dependence
of the dynamics of spins participating in the current. In
our recent works [21, 22], we have investigated by MC
simulations the effects of magnetic ordering on the spin
current in magnetic multilayers. Our results are in quali-
tative agreement with measurements [23].

In this paper we improve our previous MC simulations
to study the transport of itinerant electrons in ferromag-
netic and antiferromagnetic crystals. We use the Ising
model and take into account interactions between lattice
spins and itinerant spins. We show that in ferromagnets
the magnetic resistivity shows a huge peak at the transi-
tion temperature of the lattice spins while in simple cu-
bic antiferromagnets, the resistivity does not show such a
peak.

The paper is organized as follows. Section 2 is de-
voted to the description of our model and the rules that
govern its dynamics. In section 3, we describe our MC
method and discuss the results we obtained for ferromag-
nets. Results on antiferromagnets are shown in Section 4.
Concluding remarks are given in Section 5.

2. Model

2.1. Interactions

We consider in this section a magnetic thin film. Peri-
odic boundary conditions (PBC) are used in the xy planes.
Spins localized at FCC lattice sites are called ”lattice spins”
hereafter. They interact with each other through the fol-
lowing Hamiltonian

Hl = −J
∑

〈i,j〉

Si · Sj , (1)

where Si is the Ising spin at lattice site i,
∑

〈i,j〉 indi-

cates the sum over every nearest-neighbor (NN) spin pair
(Si,Sj), J being the NN interaction. We consider in this
paper both J > 0 (ferromagnets) and J < 0 (antiferro-
magnets).

In order to study the spin transport in the above sys-
tem, we consider a flow of itinerant spins interacting with
each other and with the lattice spins. The interaction be-
tween itinerant spins is defined as follows,

Hm = −
∑

〈i,j〉

Ki,jsi · sj, (2)

where si is the itinerant Ising spin at position ~ri, and
∑

〈i,j〉

denotes a sum over every spin pair (si, sj). The interaction
Ki,j depends on the distance between the two spins, i.e.
rij = |ri−rj |. A specific form of Ki,j will be chosen below.
The interaction between itinerant spins and lattice spins
is given by

Hr = −
∑

〈i,j〉

Ii,jsi · Sj , (3)

where the interaction Ii,j depends on the distance between
the itinerant spin si and the lattice spin Si. For the sake
of simplicity, we assume the same form for Ki,j and Ii,j ,
namely,

Ki,j = K0 exp(−rij) (4)

Ii,j = I0 exp(−rij) (5)

where K0 and I0 are constants.

2.2. Monte Carlo Method

The procedure used in our simulation is described as
follows. First we study the thermodynamic properties of
the film alone, i.e. without itinerant spins, using Eq. (1).
We perform MC simulations to determine quantities as
the internal energy, the specific heat, layer magnetizations,
the susceptibility, ... as functions of temperature T [24].
From these physical quantities we determine the critical
temperature Tc below which the system is in the ordered
phase.

Once the lattice has been equilibrated at T , we inject
N0 itinerant spins into the system. The itinerant spins
move into the system at one end, travel in the x direction,
escape the system at the other end to reenter again at the
first end under the PBC. Note that the PBC are used to
ensure that the average density of itinerant spins remains
constant with evolving time (stationary regime).

Note that unlike in the previous works[21, 22] where
the lattice spin configuration is frozen while calculating
the resistivity, we use here several thousands of configu-
rations in each of which the resistivity is averaged with
many thousands passages. As will be shown below, this
extensive configuration average improves the results with
respect to those in previous works. The dynamics of itin-
erant spins is governed by the following interactions:

i) an electric field E is applied in the x direction. Its
energy is given by

HE = −eE · v, (6)

where v is the velocity of the itinerant spin, e its charge;
ii) a chemical potential term which depends on the con-

centration of itinerant spins (”concentration gradient” ef-
fect). Its form is given by

Hc = Dn(r), (7)

where n(r) is the concentration of itinerant spins in a
sphere of radius D2 centered at r. D is a constant taken
equal to K0 for simplicity;

iii) interactions between a given itinerant spin and lat-
tice spins inside a sphere of radius D1 (Eq. 3);

iv) interactions between a given itinerant spin and other
itinerant spins inside a sphere of radius D2 (Eq. 2).
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Let us consider the case without an applied magnetic
field. The simulation is carried out as follows: at a given
T we calculate the energy of an itinerant spin by taking
into account all the interactions described above. Then
we tentatively move the spin under consideration to a new
position with a step of length v0 in an arbitrary direction.
Note that this move is immediately rejected if the new po-
sition is inside a sphere of radius r0 centered at a lattice
spin or an itinerant spin. This excluded space emulates
the Pauli exclusion principle in the one hand, and the in-
teraction with lattice phonons on the other hand. If the
new position does not lie in a forbidden region of space,
then the move is accepted with a probability given by the
standard Metropolis algorithm.[24]

3. Results on Ferromagnetic Thin Films

We use here the Ising model and the face-centered cubic
(FCC) lattice with size 4Nx × Ny × Nz.

We show in Fig. 1 the lattice magnetization versus T
for Nz = 8, Nx = Ny = 20.
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Figure 1: Lattice magnetization versus temperature T for Nz = 8.
Tc is ≃ 9.58 in unit of J = 1.

We let N0 itinerant spins travel through the system
several thousands times until a steady state is reached.
The parameters we use in most calculations, except oth-
erwise stated are s = S = 1 and Nx = Ny = 20 and
Nz = 8. Other parameters are D1 = D2 = 1 (in unit of
the FCC cell length), K0 = I0 = 2, L0 = 17, N0 = 8× 202

(namely one itinerant spin per FCC unit cell), v0 = 1,

kF = (
π

a
)(

n0

2
)1/3, r0 = 0.05. At each T the equilibration

time for the lattice spins lies around 106 MC steps per spin
and we compute statistical averages over 106 MC steps per
spin. Taking J = 1, we find that Tc ≃ 9.58 for the critical
temperature of the lattice spins (see Fig. 1).

We define the resistivity R as

R =
1

n
, (8)

where n is the number of itinerant spins crossing a unit
area perpendicular to the x direction per unit of time.

We show in Fig. 2 the resistivity versus T without
magnetic field.

Below the transition temperature, there exists a single
large cluster of lattice spins with some isolated ”defects”

Figure 2: Resistivity R in arbitrary unit versus temperature T for
Nx = Ny = 20, Nz=8, E = 1, I0 = K0 = 2.

(i. e. clusters of antiparallel spins), so that any itinerant
spin having the parallel orientation goes through the lat-
tice without hindrance. The resistance is thus very small
but it increases as the number and the size of ”defect”
clusters increase with increasing temperature. The fact
that it increases with decreasing T at very low T comes
from the freezing of the itinerant spins due to their in-
teraction with lattice spins and with themselves. This is
very similar to the crystallization of interacting particles
at low T . We have tested this interpretation by reducing
the strength of the interactions. As a matter of fact, R
reduces its augmentation with decreasing T as T → 0.

At Tc R exhibits a cusp at the transition temperature.
We can explain this by the following argument: the cusp is
due to the critical fluctuations in the phase transition re-
gion. We know from the theory of critical phenomena that
there is a critical region around the transition temperature
Tc. Fisher-Langer [10] and Kataoka [12] suggested that the
form of peak is due mainly to short-range spin-spin corre-
lation. These short-range fluctuations are known to exist
in the critical region around the critical point. In a recent
work, we found from our MC simulation [22] that the re-
sistivity’s peak is due to the formation of antiparallel-spin
clusters of sizes of a few lattice cells which are known to
exist when one enters the critical region. We have checked
this interpretation by first creating an artificial structure
of alternate clusters of opposite spins and then injecting
itinerant spins into the system. We observed that itiner-
ant spins do advance indeed more slowly than in the com-
pletely disordered phase (high-T paramagnetic phase). We
have also calculated directly the cluster-size distribution as
a function of T using the Hoshen-Kopelman’s algorithm
[25]. The result confirms the effect of clusters on the spin
conductivity. The reader is referred to our previous work
[22] for those results.

In the paramagnetic phase, R is large and decreases
with increasing T . As T increases, small clusters will be
broken into single disordered spins, so that there is no
more energy barrier between successive positions of itiner-
ant spins on their trajectory. The resistance, though high,
is decreasing with increasing T and saturated as T → ∞.
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Figure 3: Resistivity R in arbitrary unit versus temperature T , for
different magnetic fields B: 0 (circles), 0.5 (triangles), 0.75 (dia-
monds). Other parameters are the same as in Fig. 2.

3.1. Effect of magnetic field.

As it is well known, when a magnetic field is applied on
a ferromagnet, the phase transition is suppressed because
the magnetization will never tend to zero. Critical fluctu-
ations are reduced, the number of clusters of antiparallel
spins diminishes. As a consequence, we expect that the
peak of the resistivity will be reduced and disappears at
high fields. This is what we observed in simulations. We
show results of R for several fields in Fig. 3.

3.2. Discussion

De Gennes and Friedel [8] have shown that the resis-
tivity R is related to the spin correlation < Si ·Sj >. They
have suggested therefore that R behaves as the magnetic
susceptibility χ. However, unlike the susceptibility which
diverges at the transition, the resistivity observed in many
experiments goes through a finite maximum, i. e. a cusp,
without divergence. To explain this, Fisher and Langer[10]
and then Kataoka [12] have shown that the cusp is due to
short-range correlation. This explanation is in agreement
with many experimental data but not all (see Ref. [11] for
review on early experiments).

Let us recall that < E >∝
∑

i,j < Si · Sj > where
the sum is taken over NN (or short-range) spin pairs while
Tχ ∝< (

∑
i Si)

2 >=
∑

i,j < Si · Sj > where the sum is
performed over all spin pairs. This is the reason why short-
range correlation yields internal energy and long-range cor-
relation yields susceptibility.

Roughly speaking, if < Si · Sj > is short-ranged, then
R behaves as < E > so that the temperature derivative
of the resistivity, namely dR/dT , should behave as the
specific heat with varying T . Recent experiments have
found this behavior(see for example Ref. [4]).

Now, if < Si · Sj > is long-ranged, then R behaves as
the magnetic susceptibility as suggested by de Gennes and
Friedel [8]. In this case, R undergoes a divergence at Tc as
χ. One should have therefore dR/dT > 0 at T < Tc and
dR/dT < 0 at T > Tc. In some experiments, this has been
found for example in magnetic semiconductors (Ga,Mn)As
[5] (see also Ref. [11] for review on older experiments).
We think that all systems are not the same because of

the difference in interactions, so one should not discard a
priori one of these two scenarios.

Here, we suggest another picture to explain the cusp:
when Tc is approached, large clusters of up (resp. down)
spins are formed in the critical region above Tc. As a
result, the resistance is much larger than in the ordered
phase: itinerant electrons have to steer around large clus-
ters of opposite spins in order to go through the entire lat-
tice. Thermal fluctuations are not large enough to allow
the itinerant spin to overcome the energy barrier created
by the opposite orientation of the clusters in this temper-
ature region. Of course, far above Tc, most clusters have a
small size, the resistivity is still quite large with respect to
the low-T phase. However, R decreases as T is increased
because thermal fluctuations are more and more stronger
to help the itinerant spin to overcome energy barriers.

In ferromagnets, what we have found here is a peak of
R, not a peak of dR/dT . So, our resistivity behaves as
the susceptibility although the peak observed here is not
sharp and no divergence is observed.

4. Results on Antiferromagnetic Thin Films

In the case of antiferromagnets, we use a film with
simple cubic (SC) lattice structure. This is because the
FCC lattice used in the ferromagnetic case shown above
becomes fully frustrated if we use an antiferromagnetic
interaction. The frustrated case is very particular [26], it
cannot be treated on the same footing as the non frustrated
case.

We show first in Fig. 4 the sublattice magnetization
versus T in a simple cubic antiferromagnet with Ising spins.
Note that the Neel transition temperature is TN ≃ 4.51 in
the bulk.

Figure 4: Sublattice magnetization versus temperature T for Nx =
Ny = 20, Nz = 8. Tc is ≃ 4.2 in unit of |J | = 1.

Before showing the results on a SC antiferromagnet,
let us emphasize the following point. The picture of de-
fect clusters of down spins embedded in a up-spin sea that
we used above to explain the behavior of the resistivity
in ferromagnets should be modified in the case of antifer-
romagnets: in antiferromagnets defects are domain walls,
clusters on the two sides of a wall both have antiferro-
magnetic ordering with opposite parity. An itinerant spin
crossing a domain wall does not have the same scattering
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Figure 5: SC AF case. Resistivity R in arbitrary unit versus
temperature T , in zero magnetic field, with electric field E = 1,
I0 = K0 = 0.5.

Figure 6: SC AF case. Internal energy E in unit |J | = 1 versus
temperature T , in zero magnetic field, with electric field E = 1,
I0 = K0 = 0.5.

as in a ferromagnet. Its scattering depends on the num-
bers of up spins and down spins in the sphere of radius D1.
In other words, the scattering depends on the energy land-
scape in the crystal: the itinerant spin will stay a longer
time where its energy is low, and a shorter time where its
energy is high.

The resistivity versus T in zero magnetic field is shown
in Fig. 7 with D1 = D2 = 1. Several remarks are in order:
i) the absence of a peak of R; ii) the variation of R with T
has the same shape as the internal energy versus T shown
in Fig. 6, therefore dR/dT shows a peak similar to the spe-
cific heat. This is the second scenario described in section
3.2 above. The peak of dR/dT has been experimentally
observed in many materials, in particular in MnSi [3, 4]
among others [2].

The absence of a peak at TN observed here is certainly
comes from the fact that the motion of an itinerant elec-
tron is not sharply slowed down at TN by numerous clus-
ters of opposite spins. Let us say it again in another man-
ner: the absence of a peak at the transition is due to the
fact that the motion of an itinerant spin depends on its
immediate environment: in ferromagnets, the variation of
its energy ∆E going from a ”parallel” cluster to a nearby
”defect” (or antiparallel) cluster is much larger than the
energy variation going from a cluster of antiferromagnetic
ordering to a cluster which is a defect but a defect with an
antiferromagnetic structure in the SC antiferromagnetic
case. The smaller ∆E gives rise to a larger spin mobility
i. e. a smaller R.

Figure 7: SC AF case. Resistivity R in arbitrary unit versus D1 at
T = 1, in zero magnetic field, with electric field E = 1, I0 = K0 =
0.5.

Figure 8: SC AF case. Resistivity R versus T for several values
of D1: 1 (circles), 1.2 (diamonds), 1.4 (triangles), 1.6 (pentagons),
E = 1, B = 0, I0 = K0 = 0.5.

We show now in Fig. 7 the effect of D1 on the resistiv-
ity at a given temperature. We observe here an oscillatory
behavior of R. By analyzing the ratio of numbers of up
spins and down spins in the sphere of radius D1, we found
that this ratio oscillates with varying D1: the maxima
(minima) of R correspond to the largest (smallest) num-
bers of spins antiparallel (parallel) to the itinerant spin.
This finding is coherent with what we said before, namely
R is large when the energy of itinerant spin is low (i. e.
large number of parallel spins).

We show in Fig. 7 the resistivity versus T for several
D1.

5. Conclusion

In this work, we have improved our MC simulations
by averaging the resistivity over a large number of lattice
spin configurations. The results shown above are much
better than those in our previous works [21, 22]. Though
the physics in the ferromagnetic case are not qualitatively
altered but the precision on the peak position of R is ex-
cellent and the statistical fluctuations in the paramagnetic
phase are reduced. The spin current is strongly dependent
on the lattice spin ordering: in ferromagnets, at low T itin-
erant spins whose direction is parallel to the lattice spins
yield a strong current, namely a small resistivity. At the
ferromagnetic transition, the resistivity undergoes a huge
peak. At higher temperatures, the lattice spins are dis-
ordered, the resistivity is still large but it decreases with
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increasing T . The existence of the peak in ferromagnets is
in agreement with theories, in particular those of Zarand
et al [14] and Haas [13] where interaction between itinerant
spins and lattice spins is dominant.

We note that early theories have related the origin of
the peak to the spin-spin correlation, while our interpreta-
tion here is based on the existence of defect clusters formed
in the critical region. This interpretation has been verified
by calculating the number and the size of clusters as a
function of T by the use of Hoshen-Kopelman’s algorithm.
We have formulated a theory based on the Boltzmann’s
equation which has been shown elsewhere [22]. We solved
this equation using numerical data obtained for the num-
ber and the size of average cluster at each T . The results
on the resistivity in ferromagnets are in a good agreement
with MC results [22].

We have also shown here some results of the SC anti-
ferromagnetic case. The absence of a peak of R confirmed
the prediction of Haas [13]. Note that the peak in dR/dT
is similar to that of the specific heat as experimentally
observed in MnSi [3, 4]. As a last remark, let us empha-
size that our results on FCC AF [26] and on BCC AF
[27] show that the shape of the resistivity in antiferro-
magnets depends on the lattice structure. This is not a
surprise when we examine closely the channels by which
the itinerant spins flow in the crystals. The extension of
the Boltzmann’s theory to the case of antiferromagnets is
under way [27].

KA acknowledges a financial support from the JSPS
for his stay at Okayama University. IH is grateful to the
University of Cergy-Pontoise for an invitation during the
course of the present work.
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