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Introduction

We study the boundary-value problem

F (D 2 u, Du, u, x) + λu = f (x, u) in Ω, u = 0 on ∂Ω, (1.1) 
where the second order differential operator F is of Hamilton-Jacobi-Bellman (HJB) type, that is, F is a supremum of linear elliptic operators, f is sublinear in u at infinity, and Ω ⊂ R N is a regular bounded domain. HJB operators have been the object of intensive study during the last thirty years -for a general review of their theory and applications we refer to [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF], [START_REF] Krylov | Fully nonlinear second order elliptic equations : recent development[END_REF], [START_REF] Soner | Stochastic representations for nonlinear parabolic PDEs[END_REF], [START_REF] Cabre | Elliptic PDEs in probability and geometry[END_REF]. Well-known examples include the Fucik operator ∆u + bu + + au -( [START_REF] Fucik | Solvability of Nonlinear Equation and Boundary Value Problems[END_REF]), the Barenblatt operator max{a∆u, b∆u} ( [START_REF] Barenblatt | Theory of fluid flows through natural rocks[END_REF], [START_REF] Kamin | On the Barenblatt equation of elastoplastic filtration[END_REF]), and the Pucci operator M + λ,Λ (D 2 u) ( [START_REF]Pucci Operatori ellittici estremanti (Italian. English summary)[END_REF], [START_REF] Cabré | Fully Nonlinear Elliptic Equations[END_REF]). To introduce the problem we are interested in, let us first recall some classical results in the case when F is the Laplacian and λ ∈ (-∞, λ 2 ), (we shall denote with λ i the i-th eigenvalue of the Laplacian). If f is independent of u the solvability of (1.1) is a consequence of the Fredholm alternative, namely, if λ = λ 1 , problem (1.1) has a solution for each f , while if λ = λ 1 (resonance) it has solutions if and only if f is orthogonal to ϕ 1 , the first eigenfunction of the Laplacian. The existence result in the non-resonant case extends to nonlinearities f (x, u) which grow sub-linearly in u at infinity, thanks to Krasnoselski-Leray-Schauder degree and fixed point theory, see [START_REF] Amann | Fixed point equations and elliptic eigenvalue problems in ordered Banach spaces[END_REF].

A fundamental result, obtained by Landesman and Lazer [START_REF] Landesman | Nonlinear perturbations of linear elliptic problems at resonance[END_REF] (see also [START_REF] Hess | On a Theorem by Landesman and Lazer[END_REF]), states that in the resonance case λ = λ 1 the problem ∆u + λ 1 u = f (x, u) in Ω, u = 0 on ∂Ω, is solvable provided f is bounded and, setting

f ± (x) := lim sup s→±∞ f (x, s), f ± (x) := lim inf s→±∞ f (x, s), (1.2) 
(this notation will be kept from now on) one of the following conditions is satisfied

Ω f -ϕ 1 < 0 < Ω f + ϕ 1 , Ω f -ϕ 1 > 0 > Ω f + ϕ 1 . (1.3) 1
This result initiated a huge amount of work on solvability of boundary value problems in which the elliptic operator is at, or more generally close to, resonance. Various extensions of the results in [START_REF] Landesman | Nonlinear perturbations of linear elliptic problems at resonance[END_REF] for resonant problems were obtained in [START_REF] Amann | Elliptic equations with noninvertible Fredholm linear part and bounded nonlinearities[END_REF], [START_REF] Ambrosetti | Existence and multiplicity results for nonlinear elliptic problems with linear part at resonance. The case of the simple eigenvalue[END_REF] and [START_REF] Brezis | Characterizations of the ranges of some nonlinear operators and applications to boundary value problems[END_REF]. Further, Mawhin-Schmidt [START_REF] Mawhin | Landesman-Lazer type problems at an eigenvalue of odd multiplicity[END_REF] -see also [START_REF] Chiappinelli | Bifurcation from infinity and multiple solutions for some Dirichlet problems with unbounded nonlinearities[END_REF], [START_REF] Chiappinelli | Bifurcation from infinity and multiple solutions for an elliptic system[END_REF] -considered (1.1) with F = ∆ for λ close to λ 1 , and showed that the first (resp. the second) condition in (1.3) implies that for some δ > 0 problem (1.1) has at least one solution for λ ∈ (λ 1 -δ, λ 1 ] and at least three solutions for λ ∈ (λ 1 , λ 1 + δ) (resp. at least one solution for λ ∈ [λ 1 , λ 1 + δ) and at least three solutions for λ ∈ (λ 1 , λ 1 + δ)). These results rely on degree theory and, more specifically, on the notion of bifurcation from infinity, studied by Rabinowitz in [START_REF] Rabinowitz | On bifurcation from infinity[END_REF].

The same results naturally hold if the Laplacian is replaced by any uniformly elliptic operator in divergence form. Further, they do remain true if a general linear operator in non-divergence form

L = a ij (x)∂ 2 x i x j + b i (x)∂ x i + c(x), (1.4) 
is considered, but we have to change ϕ 1 in (1.3) by the first eigenfunction of the adjoint operator of L. This fact is probably known to the experts, though we are not aware of a reference. Its proof -which will also easily follow from our arguments below -uses the Donsker-Varadhan ( [START_REF] Donsker | On the principal eigenvalue of secondorder elliptic differential operators[END_REF]) characterization of the first eigenvalue of L and the results in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF] which link the positivity of this eigenvalue to the validity of the maximum principle and to the Alexandrov-Bakelman-Pucci inequality (the degree theory argument remains the same as in the divergence case). The interest in this type of problems has remained high in the PDE community over the years. Recently a large number of works have considered the extensions of the above results to quasilinear equations (for instance, replacing the Laplacian by the p-Laplacian), where somewhat different phenomena take place, see [START_REF] Arcoya | LandesmanLazer conditions and quasilinear elliptic equations[END_REF], [START_REF] Del Pino | The Fredholm alternative at the first eigenvalue for the one dimensional p-Laplacian[END_REF], [START_REF] Drabek | The Fredholm alternative for the p-Laplacian: bifurcation from infinity, existence and multiplicity[END_REF], [START_REF] Drabek | Bounded perturbations of homogeneous quasilinear operators using bifurcations from infinity[END_REF]. There has also been a considerable interest in refining the Landesman-Lazer hypotheses (1.3) and finding general hypotheses on the nonlinearity which permit to determine on which side of the first eigenvalue the bifurcation from infinity takes place, see [START_REF] Ambrosetti | On a quasilinear problem at strong resonance[END_REF], [START_REF] Arcoya | Bifurcation theory and related problems: antimaximum principle and resonance[END_REF], [START_REF] Gamez | A detailed analysis on local bifurcation from infinity for nonlinear elliptic problems[END_REF].

It is our goal here to study the boundary value problem (1.1) under Landesman-Lazer conditions on f , when F is a Hamilton-Jacobi-Bellman (HJB) operator, that is, the supremum of linear operators as in (1.4):

F [u] := F (D 2 u, Du, u, x) = sup α∈A {tr(A α (x)D 2 u) + b α (x).Du + c α (x)u}, (1.5)
where A is an arbitrary index set. The following hypotheses on F will be kept throughout the paper:

A α ∈ C(Ω), b α , c α ∈ L ∞ (Ω)
for all α ∈ A and, for some constants 0 < λ ≤ Λ, we have λI ≤ A α (x) ≤ ΛI, for all x ∈ Ω and all α ∈ A. We stress however that all our results are new even for operators with smooth coefficients.

Let us now describe the most distinctive features of HJB operators -with respect to the operators considered in the previous papers on Landesman-Lazer type problems -which make our work and results different. The HJB operator F [u] defined in (1.5) is nonlinear, yet positively homogeneous, (that is F [tu] = tF [u] for t ≥ 0), thus one may expect it has eigenvalues and eigenfunctions on the cones of positive and negative functions, but they may be different to each other. This fact was established by Lions in 1981, in the case of operators with regular coefficients, see [START_REF] Lions | Bifurcation and optimal stochastic control[END_REF]. In that paper he proved F [u] has two real "demi"-or "half"-principal eigenvalues

λ + 1 , λ - 1 ∈ R (λ + 1 ≤ λ - 1 )
, which correspond to a positive and a negative eigenfunction, respectively, and showed that the positivity of these numbers is a sufficient condition for the solvability of the related Dirichlet problem. Recently in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] the second and the third author extended these results to arbitrary operators and studied the properties of the eigenvalues and the eigenfunctions, in particular the relation between the positivity of the eigenvalues and the validity of the comparison principle and the Alexandrov-Bakelman-Pucci estimate, thus obtaining extensions to nonlinear operators of the results of Berestycki-Nirenberg-Varadhan in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF]. In what follows we always assume that F is indeed nonlinear in the sense that λ + 1 < λ - 1 -note the results in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] easily imply that λ + 1 = λ - 1 can occur only if all linear operators which appear in (1.5) have the same principal eigenvalues and eigenfunctions.

In the subsequent works [START_REF] Sirakov | Non uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon[END_REF], [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF] we considered the Dirichlet problem (1.1) with f independent of u, and we obtained a number of results on the structure of its solution set, depending on the position of the parameter λ with respect to the eigenvalues λ + 1 and λ - 1 . In particular, we proved that for each λ in the closed interval [λ + 1 , λ - 1 ] and each h ∈ L p , p > N , which is not a multiple of the first eigenfunction ϕ + 1 , there exists a critical number t * λ,F (h) such that the equation

F [u] + λu = tϕ + 1 + h in Ω u = 0 on ∂Ω, (1.6) 
has solutions for t > t * λ,F (h) and has no solutions for t < t * λ,F (h). We remark this is in sharp contrast with the case of linear F , say F = ∆, when (1.6) has a solution if and only if t = t * λ,∆ (h) = -Ω (hϕ 1 ) (we shall assume all eigenfunctions are normalized so that their L 2 -norm is one). Much more information on the solutions of (1.6) can be found in [START_REF] Sirakov | Non uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon[END_REF] and [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF]. The value of t * λ +

We now turn to the statements of our main results. A standing assumption on the function f will be the following (F0) f : Ω × R → R is continuous and sub-linear in u at infinity :

lim |s|→∞ f (x, s) s = 0 uniformly in x ∈ Ω.
Remark 1.1 For continuous f it is known ( [START_REF] Caffarelli | Interior a priori estimates for solutions of fully non-linear equations[END_REF], [START_REF] Swiech | W 1,p -estimates for solutions of fully nonlinear uniformly elliptic equations[END_REF], [START_REF] Winter | W 2,p and W 1,p -estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations[END_REF]) that all viscosity solutions of (1.1) are actually strong, that is, in W 2,p (Ω), for all p < ∞.

Without serious additional complications we could assume that the dependence of f in x is only in L p , for some p > N .

Remark 1.2 Some of the statements below can be divided into subcases by supposing that f is sub-linear in u only as u → ∞ or as u → -∞ (such results for the Laplacian can be found in [START_REF] Chiappinelli | Bifurcation from infinity and multiple solutions for some Dirichlet problems with unbounded nonlinearities[END_REF], [START_REF] Chiappinelli | Bifurcation from infinity and multiple solutions for an elliptic system[END_REF]). We have chosen to keep our theorems as simple as possible. Now we introduce the hypotheses which extend the Landesman-Lazer assumptions (1.3) for the Laplacian to the case of general HJB operators. From now on we write the critical t-values at resonance as t *

+ = t * + (h) = t * λ + 1 ,F (h) and t * -= t * -(h) = t * λ - 1 ,F (h) 
, and p > N is a fixed number. We assume there are

(F + ) a function c + ∈ L p (Ω), such that c + (x) ≤ f + (x) in Ω and t * + (c + ) < 0. (F -) a function c -∈ L p (Ω), such that c -(x) ≥ f -(x) in Ω and t * -(c -) > 0. (F r + ) a function c + ∈ L p (Ω), such that c + (x) ≥ f + (x) in Ω and t * + (c + ) > 0. (F r -) a function c -∈ L p (Ω), such that c -(x) ≤ f -(x) in Ω and t * -(c -) < 0. Remark 1.3 Note that, decomposing h(x) = Ω hϕ + 1 ϕ + 1 (x)+h ⊥ (x)
, where ϕ + 1 is the eigenfunction associated to λ + 1 , we clearly have

t * λ (h) = t * λ (h ⊥ ) - Ω (hϕ + 1 ) for each λ ∈ [λ + 1 , λ - 1 ]. (1.7) 
So when F = ∆ hypotheses (F + )-(F -) and (F r + )-(F r -) reduce to the classical Landesman-Lazer conditions (1.3), since for the Laplacian the critical t-value of a function orthogonal to ϕ 1 is always zero, by the Fredholm alternative.

We further observe that whenever one of the limits f ± , f ± is infinite, a function c ± , c ± with the required in (F + )-(F -), (F r + )-(F r -) property always exists, while if any of f ± , f ± is in L p (Ω), we take the corresponding c to be equal to this limit. Note also that the strict inequalities in (F + )-(F -) and (F r + )-(F r -) are important, see Section 7.

Throughout the paper we denote by S the set of all pairs (u, λ) ∈ C( Ω)×R which satisfy equation (1.1). For any fixed λ we set S(λ) = {u | (u, λ) ∈ S} and if C ⊂ S we denote C(λ) = C ∩ S(λ).

Our first result gives a statement of existence of solutions for λ around λ + 1 and λ - 1 , under the above Landesman-Lazer type hypotheses. We recall that for some constant δ 0 > 0 (all constants in the paper will be allowed to depend on N, λ, Λ, γ, diam(Ω)), λ + 1 , λ - 1 are the only eigenvalues of F in the interval (-∞, λ - 1 + δ 0 ) -see Theorem 1.3 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF].

Theorem 1.1 Assume (F0) and (F + ). Then there exists δ > 0 and two disjoint closed connected sets of solutions of (1.1),

C 1 , C 2 ⊂ S such that 1. C 1 (λ) = ∅ for all λ ∈ (-∞, λ + 1 ], 2. C 1 (λ) = ∅ and C 2 (λ) = ∅ for all λ ∈ (λ + 1 , λ + 1 + δ).
The set C 2 is a branch of solutions "bifurcating from plus infinity to the right of λ

+ 1 ", that is, C 2 ⊂ C(Ω) × (λ + 1 , ∞) and there is a sequence {(u n , λ n )} ∈ C 2 such that λ n → λ + 1 and u n ∞ → ∞. Moreover, for every sequence {(u n , λ n )} ∈ C 2 such that λ n → λ + 1 and u n ∞ → ∞, u n is positive in Ω, for n large enough.
If we assume (F -) then there is a branch of solutions of (1.1) "bifurcating from minus infinity to the right of λ - 1 ", that is, a connected set

C 3 ⊂ S such that C 3 ⊂ C(Ω) × (λ - 1 , ∞) for which there is a sequence {(u n , λ n )} ∈ C 3 such that λ n → λ - 1 and u n ∞ → ∞. Moreover, for every sequence {(u n , λ n )} ∈ C 3 such that λ n → λ - 1 and u n ∞ → ∞, u n is negative in Ω for n large.
Under the sole hypothesis (F + ) it cannot be guaranteed that the sets of solutions C 1 and C 2 extend much beyond λ + 1 . This important fact will be proved in Section 7, where we find δ 0 > 0 such that for each δ ∈ (0, δ 0 ) we can construct a nonlinearity f (x, u) which satisfies (F0), (F + ) and (F -), but for which S(λ + 1 + δ) is empty. It is clearly important to give hypotheses on f under which we can get a global result, that is, existence of continua of solutions which extend over the gap between the two principal eigenvalues (this gap accounts for the nonlinear nature of the HJB operator !). The next theorems deal with that question, and use the following additional assumptions.

(F1) f (x, 0) ≥ 0 and f (x, 0) ≡ 0 in Ω;

(F2) f (x, •) is locally Lipschitz, that is, for each R ∈ R there is C R such that |f (x, s 1 ) -f (x, s 2 )| ≤ C R |s 1 -s 2 | for all s 1 , s 2 ∈ (-R, R) and x ∈ Ω.
A discussion on these hypotheses, together with examples and counterexamples, will be given in Section 7.

Theorem 1.2 Assume (F0), (F1), (F2), (F + ) and (F -) hold. Then there exist a constant δ > 0 and three disjoint closed connected sets of solutions

C 1 , C 2 , C 3 ⊂ S, such that 1. C 1 (λ) = ∅ for all λ ∈ (-∞, λ + 1 ], 2. C i (λ) = ∅ , i = 1, 2, for all λ ∈ (λ + 1 , λ - 1 ], 3. C i (λ) = ∅ , i = 1, 2, 3, for all λ ∈ (λ - 1 , λ - 1 + δ).
The sets C 2 end C 3 have the same "bifurcation from infinity" properties as in the previous theorem.

While Theorem 1.2 deals with bifurcation branches going to the right of the corresponding eigenvalues, the next theorem takes care of the case where the branches go to the left of the eigenvalues.

Theorem 1.3 Assume (F0), (F1), (F2), (F r + ) and (F r -) hold. Then there exist δ > 0 and disjoint closed connected sets of solutions

C 1 , C 2 ⊂ S such that 1. C 1 (λ) = ∅ for all λ ∈ (-∞, λ + 1 -δ],
2. C 1 (λ) = ∅, C 2 (λ) contains at least two elements for all λ ∈ (λ + 1 -δ, λ + 1 ), and C 2 is a branch "bifurcating from plus infinity to the left of λ + 1 ".

3. C 1 (λ) = ∅ and C 2 (λ) = ∅ for all λ ∈ [λ + 1 , λ - 1 )
, and either: (i) C 1 is the branch "bifurcating from minus infinity to the left of λ - 1 " (ii) There is a closed connected set of solutions C 3 ⊂ S, disjoint of C 1 and C 2 , "bifurcating from minus infinity to the left of λ - 1 " such that C 3 (λ) has at least two elements for all λ ∈ (λ - 1 -δ, λ - 1 ).

4. C 2 (λ) = ∅ for all λ ∈ [λ - 1 , λ - 1 + δ]. In case ii) in 3., C 2 (λ) = ∅ and C 3 (λ) = ∅ for all λ ∈ [λ - 1 , λ - 1 + δ].
Note alternative 3. (ii) in this theorem is somewhat anomalous. While we are able to exclude it in a number of particular cases (in particular for the model nonlinearities which satisfy the hypotheses of the theorem), we do not believe it can be ruled out in general. See Proposition 6.1 in Section 6.

Going back to the case when F is linear, a well-known "rule of thumb" states that the number of expected solutions of (1.1) changes by two when the parameter λ crosses the first eigenvalue of F . An heuristic way of interpreting our theorems is that, when F is a supremum of linear operators, crossing a "half"-eigenvalue leads to a change of the number of solutions by one.

The following graphs illustrate our theorems.
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The paper is organized as follows. The next section contains some definitions, known results, and continuity properties of the critical values t * . In Section 3 we obtain a priori bounds for the solutions of (1.1), and construct super-solutions or sub-solutions in the different cases. In Section 4 bifurcation from infinity for HJB operators is established through the classical method of Rabinowitz, while in Section 5 we construct and study a bounded branch of solutions of (1.1). These results are put together in Section 6, where we prove our main theorems. Finally, a discussion on our hypotheses and some examples which highlight their role are given in Section 7.

2 Preliminaries and continuity of t * First, we list the properties shared by HJB operators of our type. The function

F : S N × R N × R × Ω → R satisfies (with S, T ∈ S N × R N × R) (H0) F is positively homogeneous of order 1 : F (tS, x) = tF (S, x) for t ≥ 0.
(H1) There exist λ, Λ, γ > 0 such that for S = (M, p, u), T = (N, q, v)

M - λ,Λ (M -N ) -γ(|p -q| + |u -v|) ≤ F (S, x) -F (T, x) ≤ M + λ,Λ (M -N ) + γ(|p -q| + |u -v|). (H2) The function F (M, 0, 0, x) is continuous in S N × Ω. (DF) We have -F (T -S, x) ≤ F (S, x) -F (T, x) ≤ F (S -T, x
) for all S, T .

In (H1) M - λ,Λ and M + λ,Λ denote the Pucci extremal operators, defined as

M + λ,Λ (M ) = sup A∈A tr(AM ), M - λ,Λ (M ) = inf A∈A tr(AM )
, where A ⊂ S N denotes the set of matrices whose eigenvalues lie in the interval [λ, Λ], see for instance [START_REF] Cabré | Fully Nonlinear Elliptic Equations[END_REF]. Note under (H0) assumption (DF) is equivalent to the convexity of F in S -see Lemma 1.1 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF]. Hence for each φ, ψ ∈ W 2,p (Ω) we have the inequalities

F [φ + ψ] ≤ F [φ] + F [ψ] and F [φ -ψ] ≥ F [φ] -F [ψ].
We recall the definition of the principal eigenvalues of F from [39]

λ + 1 (F, Ω) = sup{λ | Ψ + (F, Ω, λ) = ∅}, λ - 1 (F, Ω) = sup{λ | Ψ -(F, Ω, λ) = ∅}, where Ψ ± (F, Ω, λ) = {ψ ∈ C(Ω) | ± (F [ψ] + λψ) ≤ 0, ±ψ > 0 in Ω}.
Many properties of the eigenvalues (simplicity, isolation, monotonicity and continuity with respect to the domain, relation with the maximum principle) are established in Theorems 1.1 -1.9 of [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF]. We shall repeatedly use these results. We shall also often refer to the statements on the solvability of the Dirichlet problem, given in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] and [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF].

We recall the following Alexandrov-Bakelman-Pucci (ABP) and C 1,α estimates, see [START_REF] Gilbarg | Elliptic partial differential equation of second order[END_REF], [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF], [START_REF] Winter | W 2,p and W 1,p -estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations[END_REF].

Theorem 2.1 Suppose F satisfies (H0), (H1), (H2), and u is a solution of

F [u] + cu = f (x)
in Ω, with u = 0 on ∂Ω. Then there exists α ∈ (0, 1) and C 0 > 0 depending on N, λ, Λ, γ, c and Ω such that u ∈ C 1,α ( Ω), and

u C 1,α ( Ω) ≤ C 0 ( u L ∞ (Ω) + f L p (Ω) ).
Moreover, if one chooses c = -γ (so that by (H1) F -γ is proper) then this equation has a unique solution which satisfies

u C 1,α ( Ω) ≤ C 0 f L ∞ (Ω) . More precisely, any solution of F [u] -γu ≥ f (x) satisfies sup Ω u ≤ sup ∂Ω u + C f L N .
For readers' convenience we state a version of Hopf's Lemma (for viscosity solutions it was proved in [START_REF] Bardi | On the strong maximum principle for fully nonlinear degenerate elliptic equations[END_REF]). Theorem 2.2 Let Ω ⊂ R N be a regular domain and let γ > 0, δ > 0. Assume w ∈ C(Ω) is a viscosity solution of M - λ,Λ (D 2 w) -γ|Dw| -δw ≤ 0 in Ω, and w ≥ 0 in Ω. Then either w ≡ 0 in Ω or w > 0 in Ω and at any point x 0 ∈ ∂Ω at which w(x 0 ) = 0 we have lim sup t 0 w(x 0 +tν)-w(x 0 ) t < 0, where ν is the interior normal to ∂Ω at x 0 .

The next theorem is a consequence of the compact embedding C 1,α (Ω) → C 1 (Ω), Theorem 2.1, and the convergence properties of viscosity solutions (see Theorem 3.8 in [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF]).

Theorem 2.3 Let λ n → λ in R and f n → f in L p (Ω). Suppose F satisfies (H1) and u n is a viscosity solution of F [u n ] + λ n u n = f n in Ω, u n = 0 on ∂Ω. If {u n } is bounded in L ∞ (Ω) then a subsequence of {u n } converges in C 1 (Ω) to a function u, which solves F [u] + λu = f in Ω, u = 0 on ∂Ω.
As a simple consequence of this theorem, the homogeneity of F and the simplicity of the eigenvalues we obtain the following proposition.

Proposition 2.1 Let λ n → λ ±
1 in R and f n be bounded in L p (Ω). Suppose F satisfies (H1) and u n is a viscosity solution of

F [u n ] + λ n u n = f n in Ω, u n = 0 on ∂Ω. If {u n } is unbounded in L ∞ (Ω) then a subsequence of un un converges in C 1 (Ω) to ϕ ± 1 .
In particular, u n is positive (negative) for large n, and for each K > 0 there is N such that |u n | ≥ Kϕ + 1 for n ≥ N . For shortness, from now on the zero boundary condition on ∂Ω will be understood in all differential (in)equalities we write, and • will refer to the L ∞ (Ω)-norm.

We devote the remainder of this section to the definition and some basic continuity properties of the critical t-values for (1.6). These numbers are crucial in the study of existence of solutions at resonance and in the gap between the eigenvalues. For each λ ∈ [λ + 1 , λ - 1 ] and each d ∈ L p , which is not a multiple of the first eigenfunction ϕ + 1 , the number

t * λ (d) = inf{t ∈ R | F [u] + λu = sϕ + 1 + d has solutions for s ≥ t}
is well-defined and finite. The non-resonant case λ ∈ (λ + 1 , λ - 1 ) was considered in [START_REF] Sirakov | Non uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon[END_REF], while the resonant case λ = λ + 1 and λ = λ - 1 was studied in [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF]. In what follows we prove the continuity of t * λ :

L p (Ω) → R for any fixed λ ∈ [λ + 1 , λ - 1 ]
. Actually, in [START_REF] Sirakov | Non uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon[END_REF] the continuity of this function is proved for all λ ∈ (λ + 1 , λ - 1 ), so we only need to take care of the resonant cases λ = λ + 1 and λ = λ - 1 , that is, to study t * + and t * -. In doing so, it is convenient to use the following equivalent definitions of t * + and t * -(see [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF])

t * + (d) = inf{t ∈ R | for each s > t and λ n λ + 1 there exists u n such that F [u n ] + λ n u n = sϕ + 1 + d and u n is bounded } (2.1) and t * -(d) = inf{t ∈ R | for each s > t and λ n λ - 1 there exists u n such that F [u n ] + λ n u n = sϕ + 1 + d and u n is bounded }. (2.2) Proposition 2.1 The functions t * + , t * -: L p (Ω) → R are continuous. Proof. If we assume t * + is not continuous, then there is d ∈ L p (Ω), ε > 0 and a sequence d n → d in L p (Ω) such that either t * + (d n ) ≥ t * + (d) + 3ε for all n ∈ N or t * + (d n ) ≤ t * + (d) -3ε for all n ∈ N. First we suppose that t * + (d n ) ≥ t * + (d) + 3ε for all n ∈ N.
Then, for any sequence λ m λ + 1 we find solutions u m n of the equation

F [u m n ] + λ m u m n = (t * + (d n ) -2ε)ϕ + 1 + d in Ω,
and the sequence { u m n } is bounded as m → ∞, for each fixed n -see (2.1). We also consider the solutions w n of F [w n ] -γw n = d n -d. By Theorem 2.1 we know that w n → 0 in C 1 ( Ω). Then by the structural hypotheses on F (recall

F [u + v] ≤ F [u] + F [v]) we have F [u m n + w n ] + λ m (u m n + w n ) ≤ (t * + (d n ) -2ε)ϕ + 1 + d n + (γ + λ m )w n ≤ (t * + (d n ) -ε)ϕ + 1 + d n ,
where the last inequality holds if n is large, independently of m. Fix one such n. On the other hand we can take solutions z m n of

F [z m n ] + λ m z m n = (t * + (d n ) -ε)ϕ + 1 + d n (≥ F [u m n + w n ] + λ m (u m n + w n )).
By (2.1) for any n we have z m n → ∞ as m → ∞. By the comparison principle (valid by λ m < λ + 1 and Theorem 1.5 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF]) we obtain z m n ≤ u m n +w n in Ω, hence z m n is bounded above as m → ∞. Since z m n is bounded below, by Theorem 1.7 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] and [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF]. Let w n be the solution of F [w n ] + cw n = d -d n in Ω, with w n → 0 in C 1 (Ω). Then there exists n 0 large enough so that (λ + 1 + γ)w n 0 < εϕ + 1 , and consequently u n 0 + w n 0 is a super-solution of

λ m ≤ λ + 1 < λ - 1 , we obtain a contradiction. Assume now that t * + (d n ) ≤ t * + (d) -3ε. Let u n be a solution of F [u n ] + λ + 1 u n = (t * + (d) -2ε)ϕ + 1 + d n in Ω, which exists since t * + (d n ) < t * + (d) -2ε -Theorem 1.2 in
F [u] + λ + 1 u = (t * + (d) -ε)ϕ + 1 + d in Ω. (2.3) Now, if w is the solution of F [w] -γw = -d in Ω, by defining v k = kϕ - 1 -w we obtain F [v k ] + λ + 1 v k ≥ k(λ + 1 -λ - 1 )ϕ - 1 + d -(λ + 1 + γ)w > (t * + (d) -ε)ϕ + 1 + d,
for k large enough. By taking k large we also have 

v k < u n 0 -w n 0 in Ω,
F [v m ] + λ m v m = (t * -(d) + ε)ϕ + 1 + d in Ω,
We recall v m exists, by the results in [START_REF] Armstrong | The Dirichlet problem for the Bellman equation at resonance[END_REF] and [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF]. We have shown in [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF] that

t * -(d n ) ≥ t * -(d) + 3ε > t * -(d) + ε implies that v m can be chosen to be bounded as m → ∞ (see (2.2)). Let w n be the solution to F [w n ] -γw n = d n -d in Ω, as above. Then z m n 0 = v m + w n 0 satisfies for some large n 0 F [z m n 0 ] + λ m z m n 0 ≤ (t * -(d) + ε)ϕ + 1 + (λ m + γ)w n + d n ≤ (t * -(d) + 2ε)ϕ + 1 + d n ,
since again w n → 0 in C 1 (Ω). On the other hand, we consider a solution of

F [u m n ] + λ m u m n = (t * -(d) + 2ε)ϕ + 1 + d n in Ω. As t * -(d n ) ≥ t * -(d) + 3ε > t * -(d)
+ 2ε for all n, the sequence u m n is not bounded (again by (2.2) and [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF]) and

u m n / u m n ∞ → ϕ - 1 as m → ∞, for each fixed n. Therefore for large m the function Ψ = u m n 0 -(v m + w n 0 ) < 0 and F [Ψ] + λ m Ψ ≥ 0, which is a contradiction with the definition of λ - 1 , since λ m > λ - 1 .
Let us assume now that for ε > 0 and the sequence

d n → d in L p (Ω) we have t * -(d n ) ≤ t * -(d) -3ε, for all n. Let λ m λ - 1 and v m be a solution of the equation F [v m ] + λ m v m = (t * -(d) -ε)ϕ + 1 + d in Ω (by (2.
2) v m is unbounded), and let w n be the solution to

F [w n ] -γw n = d -d n in Ω. Then, v m / v m ∞ → ϕ - 1 and w n → 0 in C 1 (Ω).
We take a solution u m n to

F [u m n ] + λ m u m n = (t * -(d) -2ε)ϕ + 1 + d n in Ω,
and note that, since

t * -(d n ) ≤ t * -(d) -3ε < t * -(d) -2ε
, for any given n there exists a constant c n such that u m n ∞ ≤ c n , for all m. Now, as above, we define Ψ = v m -(u m n + w n ), and see that

F [Ψ] + λ m Ψ ≥ (t * -(d) -ε)ϕ + 1 + d -(t * -(d) -2ε)ϕ + 1 -d n -F [w n ] -λ m w n ≥ εϕ + 1 -(λ m + γ)w n .
We choose n large enough to have (λ m + γ)w n < εϕ + 1 in Ω. Then, keeping n fixed, we can choose m large enough to have Ψ < 0 in Ω, a contradiction with the definition of λ - 1 , since λ m > λ - 1 . Finally we prove that the function t * λ (d) is also continuous in λ at the end points of the interval [λ + 1 , λ - 1 ], when d is kept fixed. This fact will be needed in Section 7.

Proposition 2.2 For every

d ∈ L p (Ω) lim λ λ + 1 t * λ (d) = t * + (d) and lim λ λ - 1 t * λ (d) = t * -(d).
Proof. Let us assume that there is ε > 0 and a sequence λ n λ + 1 such that t * λn < t * + -ε (since d is fixed, we do not write it explicitly). Then by the definition of t * λn there is a function u n satisfying

F [u n ] + λ n u n = (t * + -ε)ϕ + 1 + d in Ω.
Since λ n λ + 1 , u n cannot be bounded, for otherwise we get a contradiction with the definition of t * + by finding a solution with t < t * + -from Theorem 2.3. Then by Proposition 2.1 u n / u n ∞ → ϕ + 1 , u n is positive for large n, and

F [u n ] + λ + 1 u n = (t * + -ε)ϕ + 1 + d + (λ + 1 -λ n )u n < (t * + -ε)ϕ + 1 + d,
that is u n is a super-solution. On the other hand, for t > t * + , let u be a solution of F [u] + λ + 1 u = tϕ + 1 + d, in Ω, then u is a sub-solution for this equation with (t * + -ε)ϕ + 1 + d as a right hand side. By taking n large enough, we have u n ≥ u, so that the equation

F [u] + λ + 1 u = (t * + -ε)ϕ + 1 + d in Ω
has a solution, a contradiction with the definition of t * + . Now we assume that there is ε > 0 and a sequence λ n λ + 1 such that t n = t * λn > t * + + 2ε. Let v be a solution to

F [v] + λ + 1 v = (t * + + ε/2)ϕ + 1 + d in Ω, then F [v]+λ n v = (t * + +ε)ϕ + 1 +d-ε/2ϕ + 1 +(λ n -λ + 1 )v. Since t * + +ε < t * λn -ε/2, by choosing n large we find F [v] + λ n v < (t * λn -ε/2)ϕ + 1 + d, so that v is a super-solution of F [u] + λ n u = (t * λn -ε/2)ϕ + 1 + d. (2.4) 
Next we consider a solution u K of F [u] + (λ + 1 + ν)u = K (where we have set ν = (λ - 1 -λ + 1 )/2 > 0), for each K > 0. Such a solution exists by Theorem 1.9 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF], and it further satisfies

u K < 0 in Ω and u K ∞ → ∞ as K → ∞, so |u K | ≥ C(K)ϕ + 1 , where C(K) → ∞ as K → ∞. Let w be the (unique) solution of F [w] -γw = -d in Ω. Since F [u K -w] ≥ F [u K ] -F [w],
we easily see that the function u K -w is a sub-solution of (2.4) and u K -w < v, for large K. Then Perron's method leads again to a contradiction with the definition of t λn . This shows t * λ is right-continuous at λ + 1 . Now we prove the second statement of Lemma 2.2. Assume there is ε > 0 and a sequence λ n λ - 1 such that t * λn < t * --ε. Let u n be a solution to

F [u n ] + λ n u n = (t * --ε)ϕ + 1 + d in Ω,
Since λ n → λ - 1 , u n cannot be bounded (as before) and then u n / u n ∞ → ϕ - 1 . Thus, for large n we have u n < 0 and

F [u n ] + λ - 1 u n = (t * --ε)ϕ + 1 + d + (λ - 1 -λ n )u n < (t * --ε)ϕ + 1 + d,
so that u k is a super-solution for some large (fixed) k. Consider now a sequence λ n λ - 1 and let v n be the solution to

F [v n ] + λ n v n = (t * --ε)ϕ + 1 + d in Ω
, whose existence was proved in [START_REF] Armstrong | The Dirichlet problem for the Bellman equation at resonance[END_REF] and [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF]. Then v n cannot be bounded, so

v n / v n ∞ → ϕ -
1 , and for large n we have

F [v n ] + λ - 1 v n = (t * --ε)ϕ + 1 + d + (λ - 1 -λn )v n > (t * --ε)ϕ + 1 + d, that is v n is a sub-solution.
For the already fixed u k , we can find n sufficiently large so that u k > v n , which implies that the equation

F [u] + λ - 1 u = (t * --ε)ϕ + 1 + d in Ω
, has a solution, a contradiction with the definition of t * -. Finally, assume that there is ε > 0 and a sequence λ n λ - 1 such that t * λn > t * λn -2ε > t * -+ ε. By Theorem 1.4 in [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF] we can find a function u which solves the equation

F [u] + λ - 1 u = (t * -+ ε)ϕ + 1 + d in Ω. Then F [u] + λ n u < (t * λn -ε)ϕ + 1 + d -εϕ + 1 + (λ n -λ - 1 )ϕ + 1 < (t * λn -ε)ϕ + 1 + d, so that u is a super-solution of F [u] + λ n u = (t * λn -ε)ϕ + 1 + d,
for some large fixed n. As we explained above, since λ n < λ - 1 , by Theorem 1.9 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] we can construct an arbitrarily negative sub-solution of this problem, hence a solution as well, contradicting the definition of t * λn .

Resonance and a priori bounds

In this section we assume that the nonlinearity f (x, s) satisfies the one-sided Landesman-Lazer conditions at resonance, that is, one of (F + ), (F -), (F r + ) and (F r -). Under each of these conditions we analyze the existence of supersolutions, sub-solutions and a priori bounds when λ is close to the eigenvalues λ + 1 and λ - 1 . This information will allow us to obtain existence of solutions by using degree theory and bifurcation arguments. In particular we will get branches bifurcating from infinity which curve right or left depending on the a priori bounds obtained here.

We start with the existence of a super-solution and a priori bounds at λ + 1 , under hypothesis (F + ).

Proposition 3.1 Assume f satisfies (F0) and (F + ). Then there exists a super-solution z such that

F [z] + λz < f (x, z) in Ω, for all λ ∈ (-∞, λ + 1 ]
. Moreover, for each λ 0 < λ + 1 there exist R > 0 and a super-solution z 0 such that if u is a solution of (1.1) with λ ∈ [λ 0 , λ + 1 ], then u ≤ R and u ≤ z 0 in Ω.

Proof. We first replace c + by a more appropriate function: we claim that for each ε > 0 there exist R > 0 and a function d ∈ L p (Ω) such that

d -c + L p (Ω) ≤ ε and u ≥ Rϕ + 1 implies f (x, u(x)) ≥ d(x) in Ω.
In fact, setting σ = ε 2|Ω| 1/p , we can find s 0 such that f (x, s)

≥ c + (x) -σ in Ω, for all s ≥ s 0 . Let Ω R = {x ∈ Ω | Rϕ + 1 (x) > s 0 } and define the function d R as d R (x) = c + (x) -σ if x ∈ Ω R , and d R (x) = -M for x ∈ Ω \ Ω R , where M is such that f (x, s) ≥ -M, for all s ∈ [0, s 0 ]. It is then trivial to check that the claim holds for d = d R , if R is taken such that |Ω \ Ω R | < (ε/2M ) p .
Now, by (F + ) and the continuity of t * + (Proposition 2.1) we can fix ε so small that the function d chosen above satisfies

t * + (d) < 0. (3.1)
Let z n be a solution to

F [z n ] + λ + 1 z n = t n ϕ + 1 + d in Ω,
where

t n → t * + (d) < 0, t n ≥ t * + (d)
, is a sequence such that z n can be chosen to be unbounded -such a choice of t n and z n is possible thanks to Theorem 1.2 in [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF]. Then z n / z n → ϕ + 1 , which implies that for large n

F [z n ] + λ + 1 z n < d and z n ≥ Rϕ + 1 ,
by (3.1), where R is as in the claim above. Thus z n is a strict super-solution and, since z n is positive,

F [z n ] + λz n < f (x, z n ), for all λ ∈ (-∞, λ + 1 ]
. From now on we fix one such n 0 and drop the index, calling the super-solution z.

Suppose there exists an unbounded sequence u n of solutions to

F [u n ] + λ n u n = f (x, u n ) in Ω, with λ n ∈ [λ 0 , λ + 1 ] and λ n → λ. If λ < λ + 1 then a contradiction follows since λ +
1 is the first eigenvalue (divide the equation by u n and let n → ∞). If λ = λ + 1 then u n / u n → ϕ + 1 , so that for n large we have u n > z and

u n ≥ Rϕ + 1 , consequently f (x, u n ) ≥ d(x) in Ω. Thus, setting w = u n -z we get, by λ n ≤ λ + 1 , w > 0, F [w] + λ + 1 w ≥ F [u n ] -F [z] + λ + 1 (u n -z) > f (x, u n ) -d ≥ 0.
Since w > 0, Theorem 1.2 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] implies the existence of a constant k > 0 such that w = kϕ + 1 , a contradiction with the last strict inequality. Now that we have an a priori bound for the solutions, we may choose an appropriate n 0 for the definition of z 0 = z n 0 , which makes it larger than all solutions.

Next we state an analogous proposition on the existence of a sub-solution to our problem at λ - 1 under hypothesis (F -).

Proposition 3.2 Assuming that f satisfies (F0) and (F -), there exist a strict sub-solution z such that

F [z] + λz > f (x, z) in Ω for all λ ∈ (-∞, λ - 1 ]
. Moreover, for each δ > 0 there exist R > 0 and a sub-solution z such that if u solves (1.1) with λ

∈ [λ + 1 + δ, λ - 1 ] then u ∞ ≤ R and u ≥ z in Ω.
Proof. By using essentially the same proof as in Proposition 3. 

F [z n ] + λ - 1 z n = t n ϕ + 1 + d in Ω, (3.2) 
chosen so that z n is unbounded and [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF] . Hence for n large enough

z n / z n ∞ → ϕ - 1 -see Theorem 1.4 in
F [z n ] + λ - 1 z n > d and z n ≤ -Rϕ + 1 . (3.3) 
Thus z n is a strict sub-solution and, since z n is negative for sufficiently large n,

F [z n ]+λz n > f (x, z n ), for all λ ∈ (-∞, λ - 1 ]
. Fix one such n 0 and set z = z n 0 . If u n is an unbounded sequence of solutions to

F [u n ] + λ n u n = f (x, u n ), in Ω, with λ n ∈ [λ + 1 + δ, λ - 1 ]
and λ n → λ we obtain a contradiction like in the previous proposition. Namely, if λ ∈ [λ + 1 + δ, λ - 1 ) then the conclusion follows since there are no eigenvalues in this interval. If λ = λ - 1 then u n / u n → ϕ - 1 , so that for n large u n < z and

u n ≤ -Rϕ + 1 , hence f (x, u n ) ≤ d(x), which leads to the contradiction F [z -u n ] + λ - 1 (z -u n ) ≥ 0 and z -u n > 0.
Then, given the a priori bound, we can choose n 0 such that z n 0 is smaller than all solutions.

The next two propositions are devoted to proving a priori bounds under hypotheses (F r + ) and (F r -). Proposition 3.3 Under assumption (F0) and (F r + ) for each δ > 0 the solutions to (1.1) with λ ∈ [λ + 1 , λ - 1 -δ] are a priori bounded.

Proof. As in the proof of Proposition 3.1, we may choose R > 0 and a function d so that

t * + (d) > 0, that is, Ω dϕ + 1 < t * + (d ⊥ ) (recall (1. 7 
)), and whenever u ≥ Rϕ + 1 then f (x, u) ≤ d. Let t be fixed such that Ω dϕ + 1 < t < t * + (d ⊥ ). If the proposition were not true, then there would be sequences see Theorem 2.1. We define the operator K : R × C 1 ( Ω) → C 1 ( Ω) as follows: K(λ, v) is the unique solution u ∈ C 1,α ( Ω) of (4.1). The operator K is compact in view of Theorem 2.1 and the compact embedding C 1,α ( Ω) → C 1 ( Ω). With these definitions, our equation (1.1) is transformed into the fixed point problem u = K(λ, u), u ∈ C 1 ( Ω), with λ ∈ R as a parameter.

We are going to show that the sub-linearity of the function f (x, •), given by assumption (F0), implies bifurcation at infinity at the eigenvalues of F . The proof follows the standard procedure for the linear case, see for example [START_REF] Rabinowitz | Theorie du degre topologique et applications a des problems aux limites non lineaires[END_REF] or [START_REF] Bandle | Solutions of Quasilinear Second-Order Elliptic Boundary Value Problems via Degree Theory[END_REF], so we shall be sketchy, discussing only the main differences. We define

G(λ, v) = v 2 C 1 K(λ, v v 2 C 1
),

for v = 0, and G(λ, 0) = 0. Finding u = 0 such that u = K(λ, u) is equivalent to solving the fixed point problem v = G(λ, v), v C 1 ( Ω), for v = u/ u 2 C 1 .
The important observation is that bifurcation from zero in v is equivalent to bifurcation from infinity for u.

Let u = G 0 (λ, v) be the solution of the problem

F [u] + cu = (c -λ)v in Ω, u = 0 on ∂Ω, (4.2) 
and set

G 1 = G -G 0 , so that G(λ, v) = G 0 (λ, v) + G 1 (λ, v).
Lemma 4.1 Under hypothesis (F0) we have lim

v C 1 →0 G 1 (λ, v) v C 1 = 0.
Proof. Let g = G(λ, v) and g 0 = G 0 (λ, v). Then we have

1 v C 1 (F [g] -F [g 0 ] + c(g -g 0 )) = v C 1 f (x, v v 2 C 1
).

The right hand side here goes to zero as v C 1 → 0, by (F0). Then by (DF)

1 v C 1 (F [|g -g 0 | + c|g -g 0 |]) ≥ -v C 1 f (x, v v 2 C 1
) , so the ABP inequality (Theorem 2.1) implies sup

Ω { 1 v C 1 |g -g 0 |} ≤ C v C 1 f (x, v v 2 C 1 ) L p ,
and the result follows.

The next proposition deals with the equation

v = G 0 (λ, v), v ∈ C 1 ( Ω) (recall we want to solve v = G 0 (λ, v) + G 1 (λ, v)), which is equivalent to F (D 2 v, Dv, v, x) = -λv in Ω, v = 0 on ∂Ω. (4.3) 
Theorem 4.1 Under the hypotheses of Theorem 1.1 there are two connected sets C 2 , C 3 ⊂ S such that 1) There is a sequence

(λ n , u n ) with u n ∈ C 2 (λ n ) (u n ∈ C 3 (λ n )), and u n ∞ → ∞, λ n → λ + 1 (λ - 1 ). 2) If (λ n , u n ) is a sequence such that u n ∈ C 2 (λ n ) (C 3 (λ n )), u n ∞ → ∞ and λ n → λ + 1 (λ - 1 )
, then u n is positive (negative) for large n.

3) The branch C 2 satisfies one of the following alternatives, for some δ > 0:

(i) C 2 (λ) = ∅ for all λ ∈ (λ + 1 , λ - 1 + δ) ; (ii) There is λ ∈ (-∞, λ - 1 + δ] such that 0 ∈ C 2 (λ) ; (iii) C 2 (λ) = ∅ for all λ ∈ (-∞, λ + 1 ) ; (iv) There is a sequence (λ n , u n ) such that u n ∈ C 2 (λ n ), u n ∞ → ∞, λ n → λ - 1 , and λ n ≤ λ - 1 .
4) The branch C 3 satisfies one of the following alternatives, for some δ > 0:

(i) C 3 (λ) = ∅ for all λ ∈ (λ - 1 , λ - 1 + δ) ; (ii) There is λ ∈ (-∞, λ - 1 + δ] such that 0 ∈ C 3 (λ) ; (iii) C 3 (λ) = ∅ for all λ ∈ (-∞, λ - 1 ) ; (iv) There is a sequence (λ n , u n ) such that u n ∈ C 3 (λ n ), u n ∞ → ∞, and λ n → λ + 1 .
We remark that (F1) excludes alternatives 3) (ii) and 4) (ii) in this theorem.

A bounded branch of solutions

In this section we prepare for the proof of our main theorems by establishing the existence of a continuum of solutions of (1.1) which is not empty for all λ ∈ (-∞, λ + 1 + δ), for some δ > 0. Our first proposition concerns the behavior of solutions of (1.1) when λ → -∞. Proposition 5.1 1. Assume f satisfies (F0). Then there exists a constant C 0 > 0, depending only on F, f , and Ω, such that any solution of (1.1) satisfies u ∞ ≤ C 0 λ -1 as λ → -∞.

2. If in addition f is Lipschitz at zero, that is, for some ε > 0 and some

C > 0 we have |f (x, s 1 ) -f (x, s 2 )| ≤ C|s 1 -s 2 | for s 1 , s 2 ∈ (-ε, ε), then (1.
1) has at most one solution when λ is sufficiently large and negative.

Proof. 1. Let u λ be a sequence of solutions of (1.1), with λ → -∞. We first claim that u λ ∞ is bounded. Suppose this is not so, and say u + λ ∞ → ∞ (with the usual notation for the positive part of u). Then, setting v λ = u λ / u + λ ∞ , on the set Ω + λ = {u λ > 0} we have the inequality

F [v λ ] -γv λ ≥ f (x, u λ ) u + λ ∞ → 0, as λ → -∞.
The ABP estimate (see Theorem 2.1) then implies sup Ω + λ v λ → 0, which is a contradiction with sup Ω + λ v λ = 1. In an analogous way we conclude that u - λ ∞ is bounded. Hence there exists a constant C such that |f (x, u λ (x))| ≤ C in Ω, so

F [u λ ] -γu λ ≥ -(λ + γ)u λ -C ≥ 0 on the set Ωλ ,
where Ωλ = {u λ > C/(|λ| + γ)}. Applying the maximum principle or the ABP inequality in this set implies it is empty, which means u λ ≤ C/(|λ| + γ) in Ω. By the same argument we show u λ is bounded below, and 1. follows.

2. From statement 1. we conclude that for λ small, all solutions of (1.1) are in (-ε, ε). If u 1 , u 2 are two solutions of (1.1) then for |λ| > γ + C we have

F [u 1 -u 2 ] -γ(u 1 -u 2 ) ≥ 0 on {u 1 > u 2 } which means this set is empty.
The next result is stated in the framework of Theorem 1.1 and gives a bounded family of solutions (u λ , λ), for λ ∈ (-∞, λ + 1 + δ).

No assumption of Lipschitz continuity on f is needed. Proposition 5.2 Assume f satisfies (F0) and (F + ). Then there is a connected subset C 1 of S such that C 1 (λ) = ∅, for all λ ∈ (-∞, λ + 1 + δ). Proof. According to Proposition 3.1, given λ 0 < λ + 1 , there is R > 0 so that all solutions of (1.1) with λ ∈ [λ 0 , λ + 1 ] belong to the ball B R . In particular, the equation does not have a solution (λ, u) ∈ [λ 0 , λ + 1 ] × ∂B R . Moreover, there is δ > 0 such that (1.1) does not have a solution in [λ + 1 , λ + 1 + δ] × ∂B R -otherwise we obtain a contradiction by a simple passage to the limit. Consequently the degree deg(I -K(λ, •), B R , 0) is well defined for all λ ∈ [λ 0 , λ + 1 + δ] (K(λ, •) is defined in the previous section). We claim that its value is 1.

To compute this degree, we fix λ < λ + 1 and analyze the equation

F [u] + λu = sf (x, u)
in Ω, for s ∈ [0, 1]. Since λ is not an eigenvalue of F in Ω, the solutions of this equation are a priori bounded, uniformly in s ∈ [0, 1], that is, there is R 1 ≥ R, such that no solution of the equation exists outside of the open ball B R 1 .

Given v ∈ C 1 (Ω) we denote by K s (λ, v) the unique solution of the equation

F [u] + λu = sf (x, v) in Ω. Then we have deg(I -K(λ, •), B R , 0) = deg(I -K 1 (λ, •), B R 1 , 0) = deg(I -K 0 (λ, •), B R 1 , 0) = 1,
where the last equality is given by Proposition 4.1. Hence, again by the homotopy invariance of the degree, we have deg(I -K(λ, •), B R , 0) = 1, for all λ ∈ (λ 0 , λ + 1 + δ).

The last fact together with standard degree theory implies that for every λ ∈ [λ 0 , λ + 1 + δ] there is at least one (λ, u), solution of (1.1), and, moreover, there is a connected subset C 1 of S such that C 1 (λ) = ∅ for all λ in the interval [λ 0 , λ + 1 + δ]. Since λ 0 is arbitrary, we can use the same argument for each element of a sequence {λ n 0 }, with λ n 0 → -∞. Then, by a limit argument (like the one in the proof of Theorem 1.5.1 in [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF]), we find a connected set C 1 with the desired properties.

Next we study a branch of solutions driven by a family of super-and subsolutions, assuming that f is locally Lipschitz continuous. In this case the statement of the previous proposition can be made more precise. Specifically, we assume that f satisfies (F2), and there exist u, u ∈ C 1 (Ω), such that u is a super-solution and u is a sub-solution of (1.1), for all λ ≤ λ, where λ is fixed. We further assume that u and u are not solutions of (1.1), and u < u in Ω, u = u = 0 and ∂u ∂ν < ∂u ∂ν on ∂Ω.

(5.1)

We define the set

O = {v ∈ C 1 (Ω) | u < v < u in Ω and ∂u ∂ν < ∂v ∂ν < ∂u ∂ν on ∂Ω}, (5.2) 
which is open in C 1 (Ω). Since O is bounded in C(Ω), we see that for every λ 0 < λ the set of solutions of (1.1) in [λ 0 , λ] × O is bounded in C 1 (Ω), that is, all solutions of (1.1) in [λ 0 , λ] × O are inside the ball B R , for some R > 0.

Lemma 5.1 With the definitions given above, we have

deg(I -K(λ, •), O ∩ B R , 0) = 1, for all λ ∈ [λ 0 , λ].
Proof. First we have to prove that the degree is well defined. We just need to show that there are no fixed points of K(λ, •) on the boundary of O ∩ B R . For this purpose it is enough to prove that, given

v ∈ C 1 (Ω) such that u ≤ v ≤ u in Ω, we have u < K(λ, v) < u in Ω.
In what follows we write u = K(λ, v). By (F2) we can assume that the negative number c, chosen in Section 4, is such that the function s

→ f (x, s) + (c -λ)s is decreasing, for s ∈ (-τ, τ ), where τ = max{ u ∞ , u ∞ }. Then F [u] = F [u] -f (x, u) -(c -λ)u + f (x, u) + (c -λ)u ≥ F [u] -f (x, v) -(c -λ)v + f (x, u) + (c -λ)u = -cu + f (x, u) + (c -λ)u = c(u -u) + f (x, u) -λu ≥ F [u] + c(u -u).
sequence (λ n , u n ) ∈ A such that λ n → λ, u n → u, and the limit function u satisfies u ≤ 0 in Ω, u vanishes somewhere in Ω, and solves the equation

F [u] + (λ -c)u = f (x, u) -cu ≥ 0
in Ω, for some large c. Hence by Hopf's lemma u ≡ 0, a contradiction with (F1). Therefore C 3 cannot connect with the branch bifurcating from plus infinity at λ + 1 . It is not connected to C 1 either -by the isolation property of C 1 (λ), see Remark 5.2. Further, C 3 cannot contain solutions for arbitrarily small λ, since C 1 does, and we know solutions are unique for sufficiently small λ. Hence C 3 must eventually curve to the right, so extra solutions appear, proving 3. (ii) and 4.

Finally, a branch C 2 bifurcating from plus infinity towards the left of λ + 1 exists thanks to Theorem 4.1. This branch is kept away from C 1 and C 3 , as we already saw, and, again by the uniqueness of solutions for sufficiently small λ, C 2 has to curve to the right. This completes the proof.

The occurrence of alternative 3. (ii) in Theorem 1.3 can be avoided if f satisfies some further hypotheses. Proposition 6.1 Under the hypotheses of Theorem 1.3, if in addition we make one of the following assumptions 1. f (x, s) is concave in s for s < 0, 2. for each a 0 > 0 there exists k 0 > 0 such that f (x, -kϕ + 1 ) k < f (x, -aϕ + 1 ), for all a ∈ (0, a 0 ), k > k 0 , (6.1) then alternative 3. (ii) in Theorem 1.3 does not occur.

Remark. Note the model example of a sub-linear nonlinearity which satisfies the hypotheses of Theorem 1.3 f (x, s) = -s|s| α-1 + h(x), α ∈ (0, 1), h 0 satisfies both hypotheses in the above proposition.

Proof of Proposition 6.1. We are going to prove the following stronger claim : under the hypotheses of the proposition, there cannot exist sequences

λ n , u n , v n , such that λ n < λ n+1 , λ n → λ - 1 , u n , v n < 0 in Ω, u n is bounded, v n → ∞ and u n and v n are solutions of (1.1) with λ = λ n .
Assume this is false and 1. holds. Then (passing to subsequences if necessary) u n is convergent in C 1 (Ω), and v n / v n → ϕ - 1 in C 1 (Ω), so there is n 0 such that for all n ≥ n 0 we have v n < u n+1 in Ω. The negative function u n+1 is clearly a strict subsolution of F [u]+λ n u = f (x, u), and, since the zero function is a strict supersolution of this equation, it has a negative solution which is above u n+1 . We define

v n = inf{v | u n+1 < v < 0, v is a supersolution of F [u] + λ n u = f (x, u) }. Then v n is a solution of F [u] + λ n u = f (x, u
) such that between u n+1 and v n no other solution of this problem exists. Indeed, v n is a supersolution (as an infimum of supersolutions), so between u n+1 and v n there is a minimal solution, with which v n has to coincide, by its definition. Note Hopf's lemma trivially implies that for some ε > 0 we have v n < u n+1 -εϕ + 1 < v n -2εϕ + 1 . Next, by the convexity of F and the concavity of f we easily check that the function

u α = αv n + (1 -α)v n is a supersolution of F [u] + λ n u = f (x, u), for each α ∈ [0, 1]
. This gives a contradiction with the definition of v n , for α small enough but positive.

Assume now our claim is false and 2. holds. We again have -C 0 ϕ + 1 ≤ u n ≤ -c 0 ϕ + 1 < 0 and v n / v n → ϕ - 1 , so the numbers

ε n := sup{ε > 0 | u n ≤ εv n in Ω }
clearly satisfy ε n > 0 and ε n → 0. Hypothesis (6.1) implies that for sufficiently large n we have ε n f (x, v n ) < f (x, u n ), that is, F [ε n v n ] + λ n ε n v n < F [u n ] + λ n u n , and Hopf's lemma yields a contradiction with the definition of ε n .

Discussion and examples

The main point of this section is to provide some examples showing that when (F 1) or (F 2) fail, then the bifurcation diagram for (1.1) may look very differently from what is described in Theorems 1.2-1.3. However, we begin with some general comments on our hypotheses and their use. Hypothesis (F0) is classical sub-linearity for f , which guarantees bifurcation from infinity and also ensures the solutions of (1.1) tend to zero as λ → -∞. Condition (F1) guarantees the existence of a strict super-solution of (1.1) for all λ, while (F2) is used in some comparison statements and to prove uniqueness of solutions of (1.1) for sufficiently negative λ.

Further, conditions (F + )-(F -) and (F r + )-(F r -) are the Landesman-Lazer type hypotheses which give a priori bounds when λ stays on one side of the eigenvalues, and thus provide a solution at resonance and determine on which side of each eigenvalue the bifurcation from infinity takes place. The strict inequalities in (F + )-(F r -) are important and cannot be relaxed in general -for can choose t ∈ (t * + , t * λ ). We then define

f (x, u) =      tϕ + 1 + h if u ≥ -M t-t * + +ε M (u + M ) + t ϕ + 1 + h if -2M ≤ u ≤ -M (t * + -ε)ϕ + 1 + h if u ≤ -2M, (7.2) 
where ε and M are some positive constants. We readily see that f satisfies (F0) and (F + ), the hypotheses of Theorem 1.1, but S(λ) is empty. Indeed, if u ∈ S(λ), then u is a super-solution for (7.1). On the other hand, by Theorem 1.9 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF], the equation

F [u] + λu = K tϕ + 1 + h L ∞ (Ω) with λ < λ - 1
has a solution u K , for each K > 0. Moreover, for large K, u K is a subsolution of (7.1) and u K < u. Then by Perron's method (7.1) has a solution, a contradiction. Similarly, for λ < λ - 1 sufficiently close to λ - 1 we choose t ∈ (t * -, t * λ ) and define f (x, u) being equal to tϕ + 1 + h if u ≤ M and to (t * --ε)ϕ + 1 + h if u ≥ 2M . By the same reasoning we find that S(λ) is empty.

We summarize: with these choices of λ and f there is a region of nonexistence in the gap between λ + 1 and λ - 1 . In other words, the connected sets of solutions of (1.1) C 2 (resp. C 3 ), predicted in Theorem 1.1, do not extend to the right (resp. to the left) of λ. The first graph at the end of this section is an illustration of this situation.

We observe that if we take M sufficiently large then all solutions of (7.1) and (1.1), with f as given in (7.2), coincide. In fact, we can take -M to be a lower bound for all solutions of the inequality F [u] + λu ≤ c + h, where c is such that f (x, u) ≤ c + h in Ω. Such an M exists by the one-sided ABP inequality given in Theorem 1.7 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF]. Now we see that (1.1) with this f has a unique solution for λ < λ + 1 , as an application of Theorem 1.8 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF], and then the branch of solutions bifurcating from plus infinity must turn left and go towards infinity near the λ-axis, as drawn on the picture. Proof of Lemma 7.1. Given λ ∈ (λ + 1 , λ - 1 ), let v * λ be a solution of

F [u] + λu = t * λ ϕ + 1 + h in Ω, (7.3) 
whose existence is guaranteed by the results in [START_REF] Sirakov | Non uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon[END_REF]. We notice that v * λ is unbounded as λ λ + 1 , as otherwise v * λ a subsequence of v * λ would converge to a solution of (7.1) with λ = λ + 1 and t = t * + , which is excluded by assumption. 

  thus equation(2.3) possesses ordered super-and sub-solutions. Consequently it has a solution (by Perron's method -see for instance Lemma 4.3 in[START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF]), a contradiction with the definition of t * + (d). This completes the proof of the continuity of the function t * + . The rest of the proof is devoted to the analysis of continuity of t *

	-. As-
	suming t * -is not continuous, there is ε > 0 and a sequence d n → d in L p (Ω)
	such that either t * -(d n ) ≥ t * -(d) + 3ε or t * -(d n ) ≤ t * -(d) -3ε. In the first case, let us consider a sequence λ m λ -1 , and a solution v m of the equation

  That t * λ → t * + as λ → λ + 1 was proved in Proposition 2.2. Then, by the simplicity of λ + 1 , we find that v * λ/ v * λ ∞ → ϕ + 1 as λ → λ + 1 , in particular, v *

	λ 1 . Suppose becomes positive in Ω, for λ larger than and close enough to λ +
	for contradiction that t * + ≥ t * λ , then v * λ ≥ 0 satisfies
	F (v * λ ) + λ + 1 v *

λ ≤ F (v * λ ) + λv * λ = t * λ ϕ + 1 + h ≤ t * + ϕ + 1 + h,

,F (h) in terms of F and h was computed by Armstrong[START_REF] Armstrong | The Dirichlet problem for the Bellman equation at resonance[END_REF], where he obtained an extension to HJB operators of the Donsker-Varadhan minimax formula.
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1 and u n of solutions to F [u n ] + λ n u n = f (x, u n ), such that u n is unbounded. Then u n / u n → ϕ + 1 , in particular, u n is positive for large n. Then

Next, take the solution w of F [w] -γw = -d ⊥ in Ω, where, as before, γ is the constant from (H1), so that F -γ is proper. For α > 0 we define v = αϕ - 1 -w, then

exactly like in the proof of Proposition 2.1. If we choose α large enough, we see that v is a sub-solution for F [u n ] + λ + 1 u n = tϕ + 1 + d ⊥ , and v is smaller than the super-solution we constructed before. The existence of a solution to this equation contradicts the definition of t * + (d ⊥ ) and t < t * + (d ⊥ ). Proposition 3. [START_REF] Ambrosetti | Existence and multiplicity results for nonlinear elliptic problems with linear part at resonance. The case of the simple eigenvalue[END_REF] Under assumption (F0) and (F r -) there exists δ > 0 such that the solutions to (1.1) with λ ∈ [λ - 1 , λ - 1 + δ] are a priori bounded. Proof. We proceed like in the proof of the previous proposition. Now

, and whenever u ≤ -Rϕ + 1 then f (x, u) ≥ d. If t is such that Ω dϕ + 1 > t > t * + (d ⊥ ), and we assume there are sequences λ n λ - 1 and u n of solutions to F [u n ] + λ n u n = f (x, u n ) in Ω, such that u n is unbounded, we get u n / u n → ϕ - 1 , consequently

On the other hand if z solves F [z] + λ - 1 z = tϕ + 1 + d ⊥ in Ω (such z exists by Theorem 1.4 in [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF]), then F [u n -z] + λ - 1 (u n -z) > 0, and u n -z < 0 in Ω, for large n. Thus, we may apply Theorem 1.4 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] to obtain k > 0 so that u n -z = kϕ - 1 , a contradiction with the strict inequality.

4 Bifurcation from infinity at λ + 1 and λ - 1 .

In this section we prove the existence of unbounded branches of solutions of (1.1), bifurcating from infinity at the eigenvalues λ + 1 and λ - 1 . Then, thanks to the a priori bounds obtained in Section §4, for the two types of Landesman-Lazer conditions (see Propositions 3.1-3.4), we may determine to which side of the eigenvalues these branches curve.

We recall that F (M, q, u, x) + cu is decreasing in u for any c ≤ -γ, in other words, F + c is a proper operator. Given v ∈ C 1 ( Ω) we consider the problem

Proposition 4.1 There exists δ > 0 such that for all r > 0 and all λ ∈ (-∞, λ -

Proof. We recall it was proved in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] that problem (4.3) has only the zero solution in (-∞, λ -

The compactness of G 0 follows from Theorem 2.1, so the degree is well defined in the given ranges for λ.

Suppose λ < λ + 1 and consider the operator

The case λ + 1 < λ < λ - 1 was studied in [START_REF] Sirakov | Non uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon[END_REF]. Consider the problem

for t ∈ [0, ∞), whose unique solution is denoted by G0 (λ, v, t). It follows from the results in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF], [START_REF] Sirakov | Non uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon[END_REF] that for t > 0 the equation

does not have a solution. On the other hand, since λ is not an eigenvalue, there is R > 0 such that the solutions of (4.5), for t ∈ [0, t], are a priori bounded, consequently

δ we proceed as in [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF], where the computation of the degree was done by making a homotopy with the Laplacian (see the proof of Lemma 4.2 in that paper). Now we are in position to apply the general theory of bifurcation to v = G(λ, v), see for instance the surveys [START_REF] Rabinowitz | Theorie du degre topologique et applications a des problems aux limites non lineaires[END_REF] and [START_REF] Bandle | Solutions of Quasilinear Second-Order Elliptic Boundary Value Problems via Degree Theory[END_REF], and obtain bifurcation branches emanating from (λ + 1 , 0) and (λ - 1 , 0), exactly like in [START_REF] Busca | Nonlinear eigenvalues and bifurcation problems for Pucci's operator[END_REF]. In short, from (λ + 1 , 0) bifurcates a continuum of solutions of v = G(λ, v), which is either unbounded in λ, or unbounded in u, or connects to (λ, 0), where λ = λ + 1 is an eigenvalue (recall λ + 1 and λ - 1 are the only eigenvalues in (-∞, λ - 1 + δ), for some δ > 0). A similar situation occurs at (λ - 1 , 0). Inverting the variables we obtain bifurcation at infinity for our problem (1.1): By (H1) this implies M + (D 2 (u -u)) + γ|Du -Du| + (γ -c)(u -u) > 0 in Ω. It follows from Theorem 2.2 that u < u in Ω and ∂u ∂ν < ∂u ∂ν on ∂Ω. The other inequality is obtained similarly.

By using its homotopy invariance, the degree we want to compute is equal to the degree at λ 0 . But the latter was shown to be one in the proof of Proposition 5.2, which completes the proof of the lemma. Now we can state a proposition on the existence of a branch of solutions for λ ∈ (-∞, λ], whose proof is a direct consequence of Lemma 5.1 and general degree arguments.

Proposition 5.3 Assume f satisfies (F0) and (F2). Suppose there are functions u, u ∈ C 1 (Ω) such that u is a super-solution and u is a sub-solution of (1.1) for all λ ≤ λ, these functions are not solutions of (1.1) and satisfy (5.1). Then there is a connected subset 

Proof of the main theorems

In this section we put together the bifurcation branches emanating from infinity obtained in Theorem 4.1 with the bounded branches constructed in Section 5, and study their properties.

Proof of Theorem 1.1. This theorem is a consequence of Proposition 5.2, for the definition of C 1 , and of Theorem 4.1 1)-2), for the definition of C 2 and C 3 . Both C 2 and C 3 curve to the right of λ + 1 and λ - 1 , respectively -as a consequence of the a priori bounds obtained in Proposition 3.1 and 3.2.

Proof of Theorem 1.2. We first construct the branch C 1 , through Proposition 5.3. In view of (F1) we may take as super-solution the function u ≡ 0. In order to define the corresponding sub-solution we use Proposition 3.2, where a sub-solution is constructed for all λ ∈ (-∞, λ - 1 ]. We can rewrite inequality (3.2) in the following way

Consequently, once n is chosen so that (3.3) holds, we can fix δ > 0 such that tn (x) ≥ -δc + t * -(d) > 0, for all x ∈ Ω, which means that z n is a sub-solution also for

, as in the proof of Proposition 3.2. Now we define u = z n , chosen as above, and take λ = λ - 1 + δ in Proposition 5.3. Clearly u and u satisfy also ( ). Therefore the uniqueness statement of Proposition 5.1 excludes the alternatives in Theorem 4.1 3) (iii) and 4) (iii), since we already know that C 1 contains solutions for arbitrary small λ. We already noted cases 3) (ii) and 4) (ii) are excluded by (F1). Finally, case 3) (iv) in Theorem 4.1 is excluded by the a priori bound in Proposition 3.2, so only case 3) (i) remains.

Proof of Theorem 1.3. We fix a small number ε > 0 and for each K > 0 consider a solution u K of

We know such a function u K exists, by Theorem 1.9 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF]. By (F0) we can fix K 0 such that K 0 > f (x, K 0 ) in Ω, hence u = u K 0 is a subsolution of (1.1), for all λ ∈ (-∞, λ - 1 -ε). The super-solution to consider is u ≡ 0, as given by hypothesis (F1). Then Proposition 5.3 yields the existence of a branch C ε 1 such that C ε 1 (λ) = ∅ for all λ ∈ (-∞, λ - 1 -ε). Next we pass to the limit as ε → 0, like in the proofs of Proposition 5.2 and Theorem 1.5.1 in [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF], and obtain either a connected component of S which bifurcates from infinity to the left of λ - 1 , or a bounded branch of solutions which "survives" up to λ - 1 , and hence "continues" in some small right neighborhood of λ - 1 , again like in the proof of Proposition 5.2. The first of these alternatives is 3. (i). In case the second alternative is realized there is a connected set of solutions C 3 bifurcating from minus infinity towards the left of λ - 1 , as predicted in Theorem 4.1. We claim this branch contains only negative solutions. To prove this, we set

The set A is clearly open in C 3 , and A = C 3 . Hence if A is not empty, then A is not closed in C 3 , by the connectedness of C 3 . This means there is a instance the problem F [u] + λ + 1 u = -max{1 -u, 0} has no solutions (and hence Theorem 1.1 fails), as Theorems 1.6 and 1.4 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] show, even though the nonlinearity satisfies the hypotheses of Theorem 1.1, except for the strict inequality in (F + ). On the other hand, for F = ∆ it is known that in the case of equalities in (F + )-(F r -) one can give supplementary assumptions on f and the rate of convergence of f to its limits f ± , f ± , so that results like Theorem 1.1 still hold, see for instance Remark 21 in [START_REF] Arcoya | Bifurcation theory and related problems: antimaximum principle and resonance[END_REF]. Extensions of these ideas to HJB operators are out of the scope of this work and could be the basis of future research. Now we discuss examples where (F 1) or (F 2) fail.

Example 1. Our first example shows that for all sufficiently small δ > 0 we can construct a nonlinearity f which does not satisfy (F1) and for which the set S(λ + 1 + δ) is empty. This means that, in the framework of Theorems 1.1-1.2, the branch bifurcating from infinity to the right of λ + 1 "turns back" before it reaches λ + 1 + δ. A similar situation can be described for the branch bifurcating from minus infinity to the left of λ - 1 that "turns right", before reaching λ - 1 -δ. In particular there cannot be a continuum of solutions along the gap between λ + 1 and λ - 1 . Consider the Dirichlet problem

at resonance, that is, for λ = λ + 1 . When t = t * + (h) equation ( 7.1) may or may not have a solution, depending on F and h. An example of such a situation was given in [START_REF] Armstrong | The Dirichlet problem for the Bellman equation at resonance[END_REF] and we recall it here. Take F [u] = max{∆u, 2∆u}, and h ∈ C(Ω) such that Ω hϕ 1 = 0 and h changes sign on ∂Ω. Here λ 

Before proving the lemma, we use it to construct a nonlinearity with the desired properties. For λ sufficiently close to λ + 1 we have t * + < t * λ so that we so v * λ is a super-solution for (7.1) with λ = λ + 1 and t = t * + . As we already showed above, (7.1) has a sub-solution below v * λ , providing a contradiction. In the same way, we see that v * λ / v * λ ∞ → ϕ - 1 as λ λ - 1 and then v * λ becomes negative in Ω, for λ < λ - 1 and close enough to λ - 1 . Then t * -≥ t * λ would imply that v * λ ≤ 0 satisfies

λ is a super-solution for (7.1) with λ = λ - 1 and t = t * -. To construct a subsolution we consider v ε a solutions of

1 as ε → 0 (see also Theorem 1.4 in [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF]). Hence there exists ε For completeness we give a direct proof of the fact that in the above examples condition (F1) is not satisfied by nonlinearities like in (7.2). In this direction we have the following lemma, which is of independent interest. Lemma 7.2 For any h ∈ L p (Ω), p > N , which is not a multiple of ϕ + 1 , (a) if h ≥ 0 and h ≡ 0 then t * + (h) < 0 and t * -(h) < 0;

Proof. (a) If t * + (h) ≥ 0 then, as h ≥ 0, by Theorem 1.9 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] the problem

1 is a solution of the same problem, for all k > 0. Since u + kϕ + 1 is positive for sufficiently large k, by Theorem 1.2 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] we get that u is a multiple of ϕ + 1 , a contradiction, since h = 0. If t * -(h) ≥ 0, by Theorem 1.5 in [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF] either there exist sequences ε n → 0 and u n of solutions of the problem

1 +h for some u and all k > 0. In both cases we get a negative solution of F [u] + λ - 1 u 0, which by Theorem 1.4 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] is then a multiple of ϕ - 1 , a contradiction. 

1 + h has no solutions by the anti-maximum principle, see for instance Proposition 4.1 in [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF]. Hence by Theorems 1.2 and 1.4 in [START_REF] Felmer | Resonance phenomena for second-order stochastic control equations[END_REF] there exist sequences ε n → 0, u + n and u - n of solutions of

. Fix w to be the solution of the Dirichlet problem F (w)-γw = -h in Ω. This problem is uniquely solvable, with w < 0 in Ω, since by (H1) the operator F -γ is decreasing in u (see for instance [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF] and [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF]). Then by the maximum principle and Hopf's lemma

which is a contradiction with Theorem 1.4 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF]. Similarly, u - n + w is negative and satisfies F [u - n + w] + λ - 1 (u - n + w) < 0 in Ω, which is a contradiction with Theorem 1.2 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF]. (c) This is an immediate consequence of (a) and (b). Indeed, if (c) is false we just replace h by t * ± (h)ϕ + 1 + h in (a) or (b).

Remark 7.2

The statements on t * + in the preceding lemma also follow from Theorem 1.1 and formula (1.12) in [START_REF] Armstrong | The Dirichlet problem for the Bellman equation at resonance[END_REF].

The following example illustrate the role of hypothesis (F2), which allows the use of the method of sub-and super-solutions, and prevents the branches which bifurcate from infinity to survive for arbitrarily negative λ. This problem is variational and its associated functional is

which is even, bounded below, takes negative values and attains its minimum on H 1 0 (Ω), for each λ < λ 1 . The same is valid for J + (u) = J(u + ) and J -(u) = J(u -), whose minima are then a positive and a negative solution of (7.4).

In the context of nonlinear HJB operators we may consider max{∆u, 2∆u} + λu = -ω(u), in Ω u = 0 on ∂Ω. (7.5)

For this problem we have bifurcation from plus infinity to the left of λ 1 and from minus infinity to the left of 2λ 1 . These branches cannot reach the trivial solution set R × {0}, since bifurcation of positive or negative solutions from the trivial solution does not occur for (7.4). Exactly as in the proof of Theorem 1.3 (see the definition of the set A in the previous section) we can show that they contain only positive or negative solutions. Actually these branches are curves which can never turn, since positive and negative solutions of (7.5) are unique -this can be proved in the same way as Proposition 7.1 below. Example 3. Finally, let us look at an example of a sub-linear nonlinearity f which satisfies (F2) but f (x, 0) ≡ 0. For any HJB operator F satisfying our hypotheses consider

In this situation we have positive (resp. negative) bifurcation from zero at λ = λ + 1 -1 (resp. λ = λ - 1 -1), more precisely, (λ + 1 -1, kϕ + 1 ) and (λ - 1 -1, kϕ - 1 ) are solutions for k ∈ [0, 1] (for more general results on bifurcation from zero see [START_REF] Busca | Nonlinear eigenvalues and bifurcation problems for Pucci's operator[END_REF]). Further, note that there are only positive (resp. negative) solutions on these branches, as well on the branches which bifurcate from plus (resp. minus) infinity, given by Theorem 1.3. This is a simple consequence of the strong maximum principle and the fact that the right hand side of (7.6) is positive (resp. negative) if u is negative (resp. positive), so if u ≤ (≥)0 and u vanishes at one point then u is identically zero. The bifurcation branches connect, as shown by the following uniqueness result.