
HAL Id: hal-00426229
https://hal.science/hal-00426229v1

Submitted on 23 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Middleware Support for Ubiquitous Software
Components

Didier Hoareau, Yves Mahéo

To cite this version:
Didier Hoareau, Yves Mahéo. Middleware Support for Ubiquitous Software Components. Personal
and Ubiquitous Computing, 2008, 12 (2), pp.167-178. �10.1007/s00779-006-0110-7�. �hal-00426229�

https://hal.science/hal-00426229v1
https://hal.archives-ouvertes.fr

Middleware support for the deployment ofubiquitous software omponentsDidier Hoareau and Yves MahéoValoria, University of South BrittanyCampus de Tohanni, 56017 Vannes, Frane{Didier.HoareaujYves.Maheo}�univ-ubs.fr
Abstrat A number of emerging distributed plat-forms inlude �xed and robust workstations but,like dynami and pervasive networks, are often builtfrom mobile and resoure-onstrained devies. Thesenetworks are haraterized by the volatility of theirhosts and onnetions, whih may lead to networkfragmentation. Although inreasingly ommon, theyremain a hallenging target for distributed applia-tions. In this paper we fous on omponent-baseddistributed appliations by addressing the distributionand the deployment of software omponents on dy-nami pervasive networks. We present a distributionsheme and some assoiated middleware mehanismsthat allow a omponent to provide its servies in anubiquitous way. First, an arhiteture desriptionlanguage extension is proposed in order to speify adeployment driven by onstraints on the resouresneeded by omponents. Then, a propagative andautonomi deployment proess is explained, whih isbased on a onsensus algorithm adapted for dynaminetworks. Lastly, implementation details and experi-ment results are given.
1 Introdution1.1 Dynami pervasive platformsDuring the last years have emerge new distributed plat-forms, often quali�ed as pervasive, that are no longerrestrited to an interonnetion of workstations thatforms a stable network. These platforms may still in-lude powerful and robust mahines but they are ratheromposed of resoure-ontrained and mobile devies(laptops, personal digital assistants�or PDA�, smart-

phones, sensors, et.). Due to the mobility and thevolatility of the devies involved, dynamism is one oftheir major harateristis. A dynami network heneformed an be desribed as a partitioned network,viewed as a olletion of independent islands. An is-land is equivalent to a onneted graph of hosts thatan ommuniate together, while no ommuniation ispossible between two islands. In addition, the on�gu-ration of the islands may hange dynamially.In this paper, we are interested in medium-size dy-nami pervasive platforms. Figure 1 shows a simpleexample of suh a dynami network. It is omposed ofa number of hosts a user has aess to and on whih adistributed appliation is meant to be aessible. Thisset of hosts inludes �xed and mobile mahines. Con-netivity is not ensured between all the hosts. Indeed,at home, the user's onnetion to Internet is sporadiand some of the devies are mobile (as suh, they maybeome out of reah) and/or volatile (a PDA may forexample be swithed o� frequently).1.2 Ubiquitous appliationsAlthough this kind of distributed platform is inreas-ingly ommon, it remains a hallenging target for build-ing, deploying and maintaining distributed applia-tions. The pervasiveness of the equipment should be re-�eted on the distributed appliation, leading to someform of ubiquitous appliations. Many appliationsshould bene�t from ubiquity in this ontext: enhanedlassial appliations suh as PIM (Personal Informa-tion Management) or ollaborative appliations, butalso envisioned appliations in e-home or e-business.A ubiquitous appliation is supposed to render its ser-vies everywhere, or at least wherever it makes sense,aounting for the onstraints of the hosting devies.For example a PIM appliation is muh more usable if1

Fig. 1: Example of a dynami network, possibly parti-tioned in three islandsit o�ers its servies on all the mahines owned by a user,even if the entire appliation is not installed on eahmahine. It is not desirable however that the appli-ation be designed and administered as a olletion oftarget-spei� odes. Ubiquity must be made as trans-parent as possible. Of ourse, it may our that some ofthe servies are temporarily not available on a spei�host (eg aess to an up-to-date shared agenda from aPDA that is isolated from any network). In addition,some funtionality may not be aessible everywheredue to a lak of resoures (eg extended graphial viewon a devie with a small display). We believe thata minimal set of mehanisms should be provided toimplement this adaptation in order to redue the om-plexity of the design and the administration of ubiqui-tous appliations.1.3 Ubiquitous omponentsSoftware omponents have proved to be useful for de-veloping omplex distributed appliations, and manyomponent models and their assoiated tehnologiesare now available. In the omponent-based approah,the appliation is designed as an assembly of reusableomponents that an be bound in a versatile manner,possibly dynamially. Some of the proposed modelsare known as hierarhial models. They o�er the pos-sibility of reating high level omponents by ompos-ing omponents of lower abstration level, whih repre-sents a software onstrution priniple that is naturaland expressive. In suh models, a omponent�thatis then alled a omposite omponent�an itself bean assembly of omponents, reursive inlusion endingwith primitive omponents that enapsulate omput-ing ode.Using a hierarhial omponent-based approah forbuilding a ubiquitous appliation that targets a dy-nami network seems an attrative solution. Yet, sev-eral problems remain that are not treated by availableomponent models and omponent exeution supports.In partiular, the two following aspets have to be dealtwith: (1) how to deploy a hierarhial omponent in adynami network while ensuring that this deploymentrespets the arhiteture of the appliation and adapts

itself to the resoure onstraints imposed by the targetplatform? (2) how to allow a distributed exeution ofthe omponents, ie to allow interations between om-ponents in a not-always-onneted environment?1.4 Outline of our approahThis paper desribes a distribution sheme for hierar-hial omponents and its assoiated deployment pro-ess that target dynami pervasive networks. Beauseof the very onstrained environment in whih the ap-pliation is to be deployed, we an hardly envisage apermanent aess to the servies o�ered by the appli-ation or an optimal utilization of the resoures. Theemphasis is put on �nding a distribution sheme andsome deployment mehanisms that ahieve a minimalavailability while taking aount of the environment.The distribution sheme we propose is related to thehierarhial struture of the appliation. This shemeis based on the repliation of omposite omponents.Indeed, we allow a omposite to be aessible on a set ofhosts, although eah primitive omponent is loalizedon a single host. Besides, we also allow a omponentto operate in a degraded mode in order to aount fornetwork disonnetions without making the entire ap-pliation unusable. The notion of ative interfae isadded to the omponent model. Our runtime supportdetets network disonnetions and deativates someomponents' interfaes aordingly. Introspetion onthe state (ative or inative) of an interfae is possibleso as to allow the development of adaptive omponents.The deployment of a omponent overs several partsof the life-yle of a omponent. In this paper wefous on the last phases of the deployment, overingthe instantiation of the omponent (that reates anexeutable instane from a omponent ode), its on-�guration (that establishes the bindings to its inter-faes) and its ativation (that allows the other om-ponents to invoke its interfaes). The presented teh-niques should be omplemented with omponent deliv-ery mehanisms suh as those desribed in [1℄.The deployment of the hierarhy of omponents isspei�ed in a onstraint-based delarative way. Thearhiteture desriptors of the omponents are aug-mented with deployment desriptors in whih on-straints on the resoures required by omponents andon their possible loation an be spei�ed.When the deployment is triggered, all the onstraintslisted in the deployment desriptor may not be satis-�ed immediately. The dynamism of the network makesthe situation even more di�ult as it may our thatthe set of hosts that would satisfy globally the deploy-ment onstraints are never onneted together at thesame time, preluding any deployment. Instantiationof some omponents and their ativation is however2

possible as we allow the omponents to operate in a de-graded mode through the dynami management of in-terfaes' ativation. The deployment proess we imple-ment is thus a propagative proess: the instantiationand the ativation of a omponent are performed assoon as some resoures that meet its needs are disov-ered. Moreover, as it may our that resoures neededby an already deployed omponent beome not su�-ient, the plaement hoie for a omponent an bealled in question dynamially. The deployment pro-ess an thus be onsidered as autonomi. We proposean algorithm that supports this propagative and auto-nomi deployment. The salability of the proess is en-sured by the distributed and hierarhial organisationof the ontrol. Moreover, we implement a distributedonsensus that guarantees that the loation onstraintsare satis�ed even in the ontext of a partitioned net-work.The paper is organised as follows. In setion 2, themodel of hierarhial omponent we work on is pre-sented and we explain how a hierarhy of omponents isdistributed over a network. The onept of ativationat the interfae level is brie�y exposed. In setion 3we give some details on the form of the deploymentdesriptor that omplements the arhiteture desrip-tion, we present the overall propagative and autonomideployment proess, and we detail the distributed in-stantiation algorithm that forms the basis of the dis-tributed deployment. Setion 4 brie�y desribes thestatus of the development of our prototype. After dis-ussing related work in setion 5 we onlude the paperin setion 6.2 Distributed Hierarhial ComponentsWe desribe in this setion what we understand by dis-tributed hierarhial omponents. The basi featuresof our omponent model are explained and we detailhow the omponents are distributed over a network ofhosts. Further details an be found in [2℄.2.1 Hierarhial Component ModelIn this paper, we onsider a widely appliable hierarhi-al omponent model in whih a omposite omponentrepresents a more or less omplex struture of inter-onneted omponents that an be used as a simpleomponent with well-de�ned required and provided in-terfaes. Reursion stops with primitive omponentsthat orrespond to omputing units. Components areinteronneted through bindings that eah representsa link between a required interfae and a provided in-terfae. For pratial reasons, we have hosen to baseour development on the Fratal omponent model [3℄

and more preisely on its referene Java implementa-tion Julia. However, the onepts developed in thispaper ould easily be applied to other hierarhial om-ponent models suh as Koala [4℄, Darwin [5℄ or Sofa [6℄.The notion of omposite omponent is often usedat design time and is found in so-alled arhiteturedesription languages (ADL) [7℄. In the appliativeframework we have hosen, it is however interesting toalso be able to manipulate a omposite at exeutiontime in order to ease dynami adaptation. Thereforethe omposite is rei�ed at runtime namely by a mem-brane objet that stores the interfaes of the ompo-nent and its on�guration (ie the list of its subompo-nents and the bindings between these subomponents).2.2 Distribution ModelAs mentioned in the introdution, we wish to deploya hierarhy of omponents on a distributed platformthat is haraterized namely by its heterogeneity andthe volatility of its hosts. The appliation omponentsare distributed on a set of hosts. The way this plae-ment is performed is detailed in setion 3.2. We foushere on the desription of the mehanisms allowing adistributed exeution of hierarhial omponents.In our approah, the arhiteture of a omponentis oupled to its plaement and this relationship isdealt with di�erently for omposite omponents thanfor primitive omponents. As far as distribution is on-erned, a primitive omponent exeutes on one hostwhereas a omposite an be physially repliated ona set of di�erent hosts. The main goal of ompositerepliation is that the omponent's interfaes beomediretly aessible on several hosts. A omposite om-ponent an then be seen as providing a ubiquitous ser-vie.A single host is assoiated with a primitive ompo-nent whereas a set of hosts is assoiated with a om-posite omponent. This set must be a subset of the setof hosts assoiated with the inluding omponent. Bydefault, the plaement set of a omposite omponentis inherited from the inluding omponent.At exeution time, eah instane of a ompositeomponent maintains loally some information aboutthe on�guration of its subomponents. Hene, a dis-tributed omposite omponent distributed over a setof hosts H respets the following properties:� The provided and required interfaes of are a-essible on all the hosts hi of H .� Let be a omposite omponent that ontains aprimitive subomponent p. There exists a singlehost hi on whih p exeutes. For every host hj 2 H(j 6= i), there exits j , an instane of on hj . Eahj holds a remote referene to p (in a proxy).3

2.3 ExampleWe give in this setion an example of an appliationmade of hierarhial omponents and we detail how itan be distributed on a given set of hosts.Figure 2 depits the arhiteture of a photo appli-ation that allows the user to searh for a number ofphotos in a repository and to build a diaporama withthe seleted photos. The top-level omposite ompo-nent (PhotoApp) inludes a generi omponent devotedto doument searhing (DoumentSearh). This om-ponent is also a omposite omponent (taken o� theshelf); it is omposed of a DoumentFinder and a Do-umentBu�er. The primitive DoumentFinder ompo-nent provides an interfae for issuing more or less om-plex requests based on the names of the douments, ontheir subjets or some other meta-information, and forseleting the orresponding douments from a givenset of douments (a repository). The seleted dou-ments are passed to a DoumentBu�er. Apart froman interfae for adding new douments, the primitiveDoumentBu�er omponent provides an interfae forsorting and extrating douments. This provided inter-fae and the one of DoumentFinder are aessible asprovided interfaes of the DoumentSearh omponent.Finally, the DoumentSearh omponent is bound to aPhotoRepository omponent that onstitutes the spe-ialized doument repository and a DiapoMaker om-ponent whih allows the seleted photos to be assem-bled in a parameterizable diaporama.Consider that the photo appliation is meant to beusable from any of the �ve mahines owned by the user(hosts h1 to h5), in a dynami network similar to theone depited in �gure 1. Hene, the target set of hostsassoiated with the PhotoApp omponent is {h1, h2,h3, h4, h5}. A subset of these hosts is dediated tothe distributed exeution of the omposite omponentDoumentSearh, say {h1, h2, h3}, h4 and h5 beingexluded for liene reasons for example. Moreover,some onstraints on the required resoures result in thefollowing plaement of the primitive omponents (seesetion 3.2 for details): DoumentFinder on h1, Dou-mentBu�er on h2, PhotoRepository on h4 and Diapo-Maker on h5.At runtime the membranes of the omposite om-ponents are maintained on eah of their target hosts.A membrane ontains the interfaes of the omponentas well as the desription of its arhiteture (subom-ponents and bindings). The instanes of omponents(primitive or omposite) that are not present are rep-resented by proxies. Note that for a primitive ompo-nent, the proxy is linked to the distant (single) instaneof this primitive whereas for a omposite omponent,the proxy is linked to one distant instane of the (par-tially repliated) membrane.

Figure 3 summarizes the plaement of the ompo-nents and shows the runtime entities (arhitetural in-formation and instanes) maintained on every host forour PhotoApp example.2.4 Support for disonnetionsThe repliation of a omposite omponent eases theaess to the servies it implements as it permits theuse of its provided interfaes on eah host. However,beause of network disonnetions, from a given site,aess to a remote omponent an be interrupted. Con-sequently, a method invoation in this ase may raisesome kind of a network exeption. This problem is notspei� to our approah but appears as soon as remotereferenes are used, that may point to unaessibleomponents at any time. In a ontext of hierarhialomponents, the tehnique that onsists in deativat-ing a omponent as soon as one of its required interfaeis unbound is very penalizing as a single disonnetionwill end up by riohet with the deativation of the top-level omponent, that is the deativation of the entireappliation. In the dynami environments we target,where disonnetions are frequent, the appliation islikely to be rarely usable.We address this problem in the following two ways:� We introdue the notions of ative and non ativeinterfaes. We maintain the state (ative or not)of an interfae aording to the aessibility of theomponent's instane it is bound to. Moreover,we add a ontrol interfae to omponents to al-low introspetion on the state of its provided andrequired interfaes.� We allow the exeution of a omponent even ifsome of its interfaes are not ative.On the PhotoApp example, if a disonnetion oursbetween h1 and h4, the PhotoRepository omponent isno longer aessible from h1. The disonnetion is de-teted by a dediated monitor, and onsequently, therequired interfae of the DoumentSearh omponent isdeativated. This triggers the deativation of the or-responding required interfae of the DoumentFinderand then of its provided interfae. However, the se-ond interfae of DoumentSearh (the one bound to Di-apoMaker) an remain ative as the DoumentSearhomponent is still aessible. Globally the appliationis still usable, although in a degraded mode, as diapo-ramas an still be built from the doument bu�er.Notie that this approah has an obvious impat onthe programming style required when developing om-ponents, as the state of an interfae should be testedbefore invoking methods on this interfae. Indeed, the4

Fig. 2: Arhiteture of the photo appliation (in UML 2.0)

Fig. 3: Plaement of omponents and entities maintained on hosts h1 to h5
5

unertainty of the aesses to needed (or required) ser-vies �inherent to the targeted dynami platforms�enfores adaptable ode. The provision for tools tointrospet on the availability of the interfaes is a min-imal answer that should be omplemented by other fa-ilities for desribing or applying, for example, adap-tation strategies. This involves researh at languagelevel and middleware level that is out the sope of thepresented work.3 Deployment3.1 Deployment spei�ationWhen onsidering the deployment of distributed om-ponents, the key issue is to build a mapping betweenthe omponent instanes and the hosts of the targetplatform. This task implies to have some knowledgenot only about the identity of the hosts involved in thedeployment phase, but also about the harateristis ofeah of them. Moreover, for a hierarhial omponent-based appliation, every omponent instane at eahlevel of the hierarhy has to be handled.At design-time, it is unlikely that the designer knowswhere to deploy eah omponent regarding resoureavailability. This motivates the need to di�er this taskat runtime. We propose to add a deployment aspet toan existing arhiteture desription language (suh asxAme1 or [8℄). This will allow the desription of theresoure properties that must be satis�ed by a mahinefor hosting a spei� omponent.We propose an extension to ADLs that makes possi-ble the desription of the target platform in a delara-tive way. The language we propose is purely delarativeand desriptive and has a similar objetive to the lan-guage desribed in [9℄. It is not mandatory to give anexpliit name or address of a target mahine: the plae-ment of omponents are mainly driven by onstraintson the resoures the target host(s) should satisfy. Thehoie of the mahine that will host a omponent willbe made automatially at runtime (during the deploy-ment).The desription of the resoures that the target plat-form must satisfy is de�ned in a deployment desriptorin whih referenes to omponent instanes (de�ned inthe arhiteture desriptor) an be made. For eahomponent, a deployment ontext is de�ned. Suh aontext lists all the onstraints that a hosting mahinehas to satisfy. If these onstraints are assoiated witha primitive omponent, one host will be authorized toinstantiate this omponent whereas several hosts maybe seleted for hosting the membrane of a ompositeomponent, in aordane with our distribution model.1xAme: Ame Extensions to xArh, http://www-2.s.mu.edu/~ame/pub/xAme/

Two types of onstraints an be de�ned in a deploy-ment ontext: resoure onstraints and loation on-straints. Resoure onstraints allow hardware and soft-ware needs to be represented. Eah of these onstraintsde�nes a domain value for a resoure type that thetarget host(s) should satisfy. Loation onstraints areuseful to drive the plaement hoie of a omponent ifit ours that more than one host is andidate.An example of use of resoure and loation on-straints is illustrated in Figure 4 whih shows the de-ployment desriptor, in an XML notation, of the photoappliation introdued in the previous setion. De-sriptor (a) ontains the onstraints assoiated withthe DoumentSearh omposite omponent and de-sriptor (b) ontains those of the PhotoApp ompo-nent. Resoure onstraints are de�ned within theresoure-onstraint element. For every omponent,adding an XML tag orresponding to a resoure type(eg pu, memory) spei�es a onstraint on this resourethe target host has to verify.Loation onstraints are delared within theloation-onstraint element. The target element de�nesthe set of hosts among whih our runtime support willhave to hoose. Hosts an be represented in two ways:(1) by their hostname if their identity are known beforethe deployment or (2) by a variable. A variable namean be used at the omposite level to ontrol the plae-ment of the omponents. This feature is ahieved bythe use of the operator elemen, whih allows relationsbetween variables to be expressed. For example, in de-sriptor (a), the DoumentFinder omponent is said tobe deployed on host x and DoumentBu�er on host y.ConstrainingDoumentFinder and DoumentBu�er tobe on two distint hosts is ahieved by using the alldi�operator that delares x to be di�erent from y. For aprimitive omponent, at most one variable an be de-lared (beause a primitive omponent will be plaedon an unique host). Several variables an be used for aomposite omponent, whih is physially distributedover several hosts.When omposing the appliation, it is possible touse only variables. Then, the de�nition of the targetplatform is made at the �rst level of the hierarhy (forthe omponent PhotoApp on the example) by addingthe list of the mahines that will be involved in thedeployment (lines 71�75 on Figure 4). During the de-ployment, as it is detailed in the next setion, this set ofmahines, together with the loation onstraints, willbe inherited by the subomponents.6

Fig. 4: Deployment desriptor3.2 Deployment proess3.2.1 OverviewWhen the arhiteture desriptor and the deploymentdesriptor are de�ned, the deployment phase we on-sider in this artile onsists in hoosing one (or several)target host(s) for every omponent of the arhiteture.This seletion has to be done in aordane with thedeployment ontext assoiated with the omponents:the target hosts must satisfy the resoure onstraintsand must not ontradit the loation onstraints. De-pending on the resoures that are available on the ma-hines of the network, more than one mahine an behosen for hosting a omponent: for a primitive om-ponent, only one host has to be seleted whereas fora omposite omponent, aording to our distributionsheme, several hosts an be hosen. It is required toontrol the plaement of omponents. Indeed, we haveto guarantee that two islands of mahines do not makeinonsistent deisions (eg instantiating twie the sameprimitive omponent).Beause of the dynamism of the network on whih wedeploy our appliations, it is not possible to base a de-ployment on a full onnetion of the di�erent host. Weare interested in a deployment that will allow an appli-

ation to be ativated progressively, that is, part of itsprovided servies an be put at disposal even if somemahines, that are required for the �not yet� installedomponents, are not available. As soon as these ma-hines beome onneted, the deployment will go along.Moreover, the progression of the deployment is guaran-teed not only thanks to the aessibility of a new on-neted mahine but also beause of resoure hangeson any host. This deployment is therefore quali�ed aspropagative.However, in the kind of dynami network we tar-get, when a omponent is installed and instaniated,the resoures it requires may also disappear or be-ome unavailable. A redeployment is then mandatory.The autonomi deployment onsists in reonsideringthe plaement hoies that have been made in the prop-agative phase in order to take into aount the unavail-ability of resoures.The main di�ulty of suh a deployment in a per-vasive network is to guarantee the uniity of the in-stantiations de�ned in the arhiteture desriptor. Onone hand, a host that represents a omposite ompo-nent annot be seleted before the deployment, as ina fully onneted network, sine this mahine may notbe onneted. On the other hand, if we let eah of the7

mahines that host the same repliated omposite om-ponent make a deision, we annot guarantee that, intwo di�erent islands, ontraditory instantiations maynot be performed.In the following, we present the autonomi deploy-ment in two steps. First, we detail the propagative de-ployment, then, we present the mehanisms that makethis deployment autonomi.3.2.2 Propagative deploymentWhen the deployment is launhed from an initial ma-hine, the deployment desriptor and the arhiteturedesriptor are di�used to all the mahines that arelisted at the top level of the appliation (with theXML target element). Then, eah mahine that re-eives these desriptors, launhes a reursive proess(ie for eah omposite omponent) in order to seletthe omponents that an be deployed (instantiated)loally. The main steps of this proess for a host hiand for a omposite omponent C are the following:1. hi heks if it belongs to the set of the target hostsassoiated with C (see the XML target element).If hi is not onerned by the deployment (instan-tiation), the proess returns for this omponent,else,2. host hi launhes probes orresponding to the re-soure onstraints of every subomponent of C (ega probe for memory observation). For eah sub-omponent for whih the probes have returned aompatible value with regard to the resoure on-straints, hi delares itself as andidate for hostingthis omponent.3. hi also reeives other andidatures. As soon as hihas omputed a solution in funtion of these andi-datures, it tries to make it adopted via a onsensusalgorithm.4. One the onsensus has ompleted, ie a majorityof mahines has deided (or not) to on�rm theplaement solution of hi, this piee of information(whih ontains the values of the free variables) issent to the other mahines (and therefore to theother appliants) whih will stop the proess foreah omponent they are not authorized to instan-tiate, else,5. For eah subomponent that an be instantiatedon hi, the proess starts again at step 1.Sine resoures may �utuate (eg beome available andunavailable), disovery mehanisms (step 2) are usedperiodially. Moreover, it may be possible that no so-lution exists (step 3), that is, no ombination of an-didatures satis�es the loation onstraints. Periodi

observation of resoures allows a mahine to apply forthe instantiation of a spei� (not installed yet) om-ponent as soon as its resoure onstraints are veri�ed,potentially allowing the emergene of a new solutionfor the loation onstraints.The propagative deployment requires a distributedalgorithm in order to make a olletive deision (step3). This is ahieved thanks to the use of a onsensusalgorithm on the identity of the mahines that applyfor the instantiation of a omponent. This algorithmis detailed in the next setion.The plaement information is di�used to other ma-hines (step 4) by updating the deployment desriptorwith the new values, ie the names of the mahines thatare seleted for hosting eah omponent. Indeed, be-fore the deployment, the loation of a omponent anbe de�ned without any knowledge on the identity of aspei� host through the use of variables. For exam-ple, if hosts ambika and dakini are hosen respetivelyfor the DoumentFinder and DoumentBu�er ompo-nent, the following lines are modi�ed in the deploymentdesriptor:
/ / rep lace l i n e 12 by :
< t a r g e t varname=" x " value ="ambika " / >

/ / rep lace l i n e 24 by :
< t a r g e t varname=" y " value =" dak i n i " / >3.2.3 From a propagative deployment to an auto-nomi deploymentPriniple The propagative deployment allows aomponent-based appliation to be deployed as soon asits required resoures beome available. But, in gen-eral, and espeially in the kind of network we target,resoures an also beome unavailable (eg the amountof free memory demanded may derease and beomenot su�ient) and faults may happen. In these ases,one or several omponents have to be redeployed. Thisredeployment an be divided into three steps:1. Eah of the omponents that depend on the un-available resoure is stopped, yielding the deati-vation of its provided interfaes. All the (remote orloal) required interfaes bound to these latter be-ome inative. Thus, all the interfaes leading tothis omponent will be deativated, one after theother. The appliation runs then in a degradedmode.2. The state of the omponent is saved in a serializ-able form (we assume that the developer has an-tiipated this situation).3. A message holding the identity of the omponentto redeploy is di�used. This message also on-8

tains the loation from whih the state of the om-ponent(s) an be retrieved. Eah mahine thatreeives this message updates its deployment de-sriptor by removing the loation of the ompo-nent.The above proedure is su�ient to de�ne an auto-nomi deployment. Indeed, when reeiving the mes-sage di�used at step 3, the mahines�beause theyupdate their deployment desriptor��nd themselvesbak in the propagative deployment: some omponentsare not installed yet. Thus, beause the deployment isnot fully ompleted, the propagative deployment re-mains ative, that is, some mahines will apply for theinstantiation of the uninstalled omponent. In our ap-proah, the arhiteture desriptor of the appliationis viewed as a goal to ahieve in terms of omponents'instantiations and with respet to some onstraints tosatisfy.Consensus The propagative and autonomi deploy-ment desribed above is based on a olletive deisionmaking algorithm. When several mahines apply forthe instantiation of the same omponent, and in orderto avoid inonsistenies regarding the arhiteture de-sriptor, we have to guarantee that one and only onemahine will be hosen. We use the onsensus algo-rithm desribed in [10℄ to elet among appliants themahine whose identity will be approved by a majorityof hosts. The authors of this algorithm have identi-�ed onditions for whih there exists an asynhronousprotool that solves the onsensus problem despite theourrene of t proess rashes. In our ase, if thereare n mahines involved in the deployment, t an beas great as �n2 �. Thus, a olletive deision makingis possible if there is at least a majority of mahinesthat ompose the island. By relying on a majority weguarantee that within an island there is at least onemahine that holds the latest version of the deploy-ment desriptor, and so, no ontraditory deision anbe made in two distint islands.The onsensus algorithm requires that the number ofmahines that are aessible among the target hosts ofthe omposite omponent reahes the majority. Thismajority is not the same depending on the ompos-ite omponent. For example, the photo appliation isdistributed over h1; h2; h3; h4 and h5; as a onsequene,the majority is reahed when at least three of these ma-hines are in the same island. Whereas for ompositeomponent DoumentSearh, whih is distributed overfh1; h2; h3g, the onsensus is solved when an island,omposed of at least fh1; h2}, fh1; h3g or fh2; h3g, isformed.Moreover, the onsensus may not terminate (eg thenumber of hosts within an island may not be su�ient).

In order to prevent this situation, we allow a newly on-neted mahine to partiipate in the onsensus. This isahieved by periodially broadasting a message askingif a onsensus is still in progress. In this ase, the newlyonneted mahine ollets the data that have alreadybeen exhanged between the other mahines and pro-poses a value that an make the onsensus evolve.4 Implementation status and results4.1 Component distributionWe have implemented a middleware support for hierar-hial distributed omponents by extending Julia [3℄, aJava implementation of the Fratal omponent model.Ative interfaes have been realized thanks to the addi-tion of a new ontroller (ubik-ontroller) to the prim-itive and omposite omponents. This ontroller is inharge of maintaining up-to-date the state of the re-quired and provided interfaes. The ubik-ontrollerprevents method invoations on the inative interfaesby reifying methods invoation (using the Julia Meta-CodeGenerator). We propose an API to make possiblethe use of spei� strategies when an interfae is ina-tive: for example, one an wait for the reativation ofthe interfae.The support for managing ative and inative inter-faes relies on the mixin mehanisms o�ered by Juliathat allow ode insertion in the membrane of the om-ponent. It is thus possible to take into aount thiskind of interfae in any appliation implemented withJulia without any ode modi�ation. The omponentsare then endowed with an API for disovering the stateof the interfaes (ative or not) and the dependeniesbetween interfaes.4.2 Context-awarenessThe deployment that has been presented in this pa-per relies on the disovery of the resoures requiredby the omponents. Thanks to Draje (DistributedResoure-Aware Java Environment) [11℄, an extensibleJava-based middleware developed in our team, hard-ware resoures (eg proessor, memory, network inter-fae) or software resoures (eg proess, soket, thread,diretory) an be modeled and observed in an homoge-neous way. For every resoure onstraint of the deploy-ment desriptor, a resoure in Draje is reated and aperiodi observation is launhed.Moreover, Draje has been extended by adding twonew types of resoures: the RemoteBinding and Net-workLink resoures. A NetworkLink resoure models thephysial link between two hosts and maintains some in-formation about the state of the network onnetion.A RemoteBinding resoure subsribes to a NetworkLink9

in order to onstrut the state of a binding between tworemote omponents. Thus, thanks to a simple noti�a-tion system, when a disonnetion (resp. reonnetion)ours at the network level between two mahines, thestate of the bindings is updated and the orrespondinginterfaes of omponents are deativated (resp. ati-vated).4.3 Deployment resolutionThe deployment proess presented is based on a on-straint language to desribe the plaement of the om-ponents aording to some onditions on resoures.This language is purely delarative. It has been imple-mented with FratalADL and is supported at run-timeby a onstraint engine developed with Cream2. Creamis a Java library for writing and solving onstraint sat-isfation problems or optimization problems. Thanksto this library, information about andidates and aboutthe state of the loal resoures an be �told� to a store.This store is then used in order to get a loation plae-ment solution or to detet a onstraint inonsisteny(eg the amount of free memory required is no longeravailable).4.4 Performane evaluationThe performane of the deployment proess dependson multiple parameters imposed by the exeution envi-ronment (disonnetions, �utuation of the resoures,volatility of the hosts, et.).In a preliminary experiment, we have tried to iso-late the impat of the implementation of our onsen-sus from onnetivity onditions. This experiment hasbeen hene onduted on a (fully onneted) 100Mb/sEthernet network of workstations (2GHz Pentium 4).It dealt with the deployment of a omponent whosedeployment desriptor is similar to the one of the Do-umentSearh omponent desribed in setion 3. Fig-ure 5 shows the time taken by our algorithm to deideon a plaement solution in funtion of the number ofmahines involved in the deployment. First (urve 1),we have limited to one the number of mahines thatapply for hosting a omponent. Then we have onsid-ered onurrent appliants, with 5 and 8 simultaneousandidatures (urves 2 and 3).This experiment allowed us to verify that the timeto obtain a plaement solution remains aeptable andthat the multipliity of simultaneous onsensus exeu-tions does not inur prohibitive overost.We are urrently investigating the onnetion of ourmiddleware support to a mobility simulator so as toemulate more realisti exeutions.2http://kurt.site.kobe-u.a.jp/~shuji/ream/

Fig. 5: Evaluation of the duration of a deision making onthe plaement of omponents5 Related WorkThe main aspets developed in this paper are related toa distribution sheme for hierarhial omponents ondynami networks and to an automati managementof their deployment whih is driven by onstraints onresoures that the mahines of the network have tosatisfy.Many works have taken into aount a ontext-awaredeployment, that is, the plaement of omponents ontohosts aording to some resoure requirements. A for-mal statement of the deployment is given in [12℄ anda set of algorithms that improve mobile system's avail-ability is presented. In [13℄ the authors propose a de-ployment on�guration language (DCL) in whih prop-erties on the target hosts an be expressed. The de-ployment onsidered in this work extends the CorbaComponent Model, whih is a �at omponent model.In [9℄, the authors present the Deladas language thatalso allows onstraints to be de�ned on hosts and om-ponents. A onstraint solver is used to generate a validon�guration of the plaements of omponents and re-on�guration of the plaement is possible when a on-straint beomes inonsistent. But this entralized res-olution is not suited to the kind of dynami network wetarget. Moreover, the urrent version of Deladas doesnot onsider resoure requirements.These abovementioned works aim at �nding an opti-mum for the plaement problem of omponents. Thisaspet is not one of our objetives. Indeed, due to thedynamism of the environment, it is hardly feasible tode�ne a quiesent state that will allow our onsensusalgorithm to deide on an optimal plaement. More-over, the solutions proposed are entralized.10

In [14℄ a deentralized redeployment is presented.The on�guration to be deployed is available on everyhost involved in the deployment. A loal deision anthen be made aording to the loal subsystem on�g-uration state. However the hoie of the omponents'loation is made before the deployment proess.The work presented in [15℄ deals with the deploymentof hierarhial omponent-based appliations. The au-thors desribe an asynhronous deployment and usethe hierarhial struture of the appliation in order todistribute deployment tasks. In the solution developedby the authors, a deployment ontroller is statiallyhosen and de�ned in the deployment desriptor. Inour approah we ould not deide at design-time whihmahine will host suh a ontroller. Besides, the ap-proah proposed by the authors fouses on funtionalonstraints and thus resoure requirements have notbeen taken into aount.Among the works on autonomi omputing, [16℄and [17℄ are based on autonomi entities�theomponents�to de�ne autonomi systems. Changes inthe environment are performed loally by every om-ponent that is responsible for its own reon�guration,update, migration et. However, the deployment of au-tonomi systems and the management of arhiteturalonsisteny are not expliit.6 ConlusionThis paper has presented a middleware support for de-ploying and exeuting an appliation built with ubiqui-tous hierarhial omponents on an heterogeneous anddynami network. The main ontribution of this workis that it attempts to take into aount a hallengingdistributed target platform haraterized by the het-erogeneity and the volatility of the hosts, volatility thatmay result in the fragmentation of the network.A distribution method has been proposed for hierar-hial omponents. Composite omponents are ubiqui-tous in the sense that they are made available on a setof hosts whereas eah primitive omponent is loalizedon a single host. Besides, via the notion of ative inter-fae, we allow a omponent to operate in a degradedmode in order to aount for network disonnetionswithout making the entire appliation unusable.Our proposal for supporting the deployment oversthe last phases of the deployment proess, namely theinstantiation of the omponents' instanes and theirativation, whih are handled through the individualativation of their interfaes. We have presented apurely desriptive language for speifying deploymentdesriptors that allow for a ontext-aware deployment.This language is meant to extend some existing ADL.A deployment desriptor allows the desription of the

resoure needs of a omponent and some plaementonstraints.An algorithm allowing an autonomi deployment of aomponent-based appliation has been proposed. Theinstantiation and the ativation of a omponent is per-formed as soon as some resoures that meet its needsare disovered. This early ativation is possible be-ause some of its interfaes an remain inative (theomponent then exeutes in a degraded mode) and de-�nes the propagative deployment phase. When a on-straint attahed to a omponent beomes inonsistent,its redeployment is performed automatially by goingbak to the propagative deployment phase. The auto-nomi deployment is based on a onsensus algorithmin order to guarantee the onsisteny (in terms of om-ponents' instanes) of the deployed arhiteture evenin the ontext of a partitioned network.Referenes[1℄ H. Roussain and F. Guide. CooperativeComponent-Based Software Deployment in Wire-less Ad Ho Networks. In Proeedings of the 3rdInternational Working Conferene on ComponentDeployment (CD 2005), volume 3798 of LNCS,pages 1�16, Grenoble, Frane, November 2005.Springer.[2℄ D. Hoareau and Y. Mahéo. Distribution of a Hier-arhial Component in a Non-Conneted Environ-ment. In Proeedings of the 31th Euromiro Con-ferene - Component-Based Software EngineeringTrak, pages 143�150, Porto, Portugal, September2005. IEEE CS Press.[3℄ E. Bruneton, T. Coupaye, M. Lelerq, V. Quéma,and J-B. Stefani. An Open Component Modeland its Support in Java. In Proeedings of the7th International Symposium on Component-basedSoftware Engineering (CBSE7), volume 3054 ofLNCS, pages 7�22, Edinburgh, UK, May 2004.Springer.[4℄ R.C. van Ommering. Koala, a Component Modelfor Consumer Eletronis Produt Software. InProeedings of the 2nd International ESPRITARES Workshop, volume 1429 of LNCS, pages 76�86, Las Palmas de Gran Canaria, Spain, February1998. Springer.[5℄ J. Magee, N. Dulay, S. Eisenbah, and J. Kramer.Speifying Distributed Software Arhitetures. InProeedings of the 5th European Software Engi-neering Conferene (ESEC'95), volume 989 ofLNCS, pages 137�153, Sitges, Spain, September1995. Springer.11

[6℄ F. Plasil, D. Balek, and R. Janeek. SOFA/D-CUP: Arhiteture for Component Trading andDynami Updating. In Proeedings of the 4thInternational Conferene on Con�gurable Dis-tributed Systems (ICCDS'98), pages 43�51, An-napolis, Maryland, USA, May 1998. IEEE CSPress.[7℄ N. Medvidovi and R.N. Taylor. A lassi�ationand omparison framework for software arhite-ture desription languages. IEEE Transations onSoftware Engineering, 26(1):70�93, 2000.[8℄ E.M. Dashofy, A. van der Hoek, and R.N. Taylor.An Infrastruture for the Rapid Development ofXML-based Arhiteture Desription Languages.In Proeedings of the 24th International Confer-ene on Software Engineering (ICSE'02), pages266�276, Orlando, Florida, USA, May 2002. IEEECS Press.[9℄ A. Dearle, G. N. C. Kirby, and A. J. MCarthy.A framework for onstraint-based deployment andautonomi management of distributed applia-tions. In Proeedings of the International Confer-ene on Autonomi Computing (ICAC'04), pages300�301, New York, USA, May 2004. IEEE CSPress.[10℄ A. Mostéfaoui, S. Rajsbaum, M. Raynal, andM. Roy. Condition-based onsensus solvability:a hierarhy of onditions and e�ient protools.Distributed Computing, 17(1):1�20, 2004.[11℄ Y. Mahéo, F. Guide, and L. Courtrai. A JavaMiddleware Platform for Resoure-Aware Dis-tributed Appliations. In Proeedings of 2nd Inter-national Symposium on Parallel and DistributedComputing (ISPDC'2003), pages 96�103, Ljubl-jana, Slovenia, Otober 2003. IEEE CS Press.[12℄ M. Miki-Raki and N. Medvidovi. Software ar-hitetural support for disonneted operation inhighly distributed environments. In Proeedings ofthe 7th International Symposium on Component-Based Software Engineering (CBSE7), volume3054 of LNCS, pages 23�39, Edinburgh, UK, May2004. Springer.[13℄ T. Li, A. Ho�mann, M. Born, and I. Shiefer-deker. A platform arhiteture to support thedeployment of distributed appliations. In Pro-eedings of the IEEE International Conferene onCommuniations (ICC'02), volume 4, pages 2592�2596, New York, USA, April 2002. IEEE CS Press.[14℄ M. Miki-Raki and N. Medvidovi. Arhiteture-level support for software omponent deployment

in resoure onstrained environments. In Pro-eedings of the 1st Working Conferene on Com-ponent Deployment (CD 2002), volume 2370 ofLNCS, pages 15�30, Berlin, Germany, June 2002.Springer.[15℄ V. Quéma, R. Balter, L. Bellissard, D. Féliot,A. Freyssinet, and S. Laourte. Asynhronous, hi-erarhial and salable deployment of omponent-based appliations. In Proeedings of the 2ndInternational Working Conferene on ComponentDeployment (CD'2004), volume 3083 of LNCS,pages 50�64, Edinburgh, UK, May 2004. Springer.[16℄ H. Liu, M. Parashar, and S. Hariri. A omponent-based programming model for autonomi appli-ations. In Proeedings of the 1st InternationalConferene on Autonomi Computing (ICAC'04),pages 10�17, New York, USA, May 2004. IEEECS Press.[17℄ S.R. White, J.E. Hanson, I. Whalley, D.M. Chess,and J.O. Kephart. An arhitetural approah toautonomi omputing. In Proeedings of the 1stInternational Conferene on Autonomi Comput-ing (ICAC'04), pages 2�9, New York, USA, May2004. IEEE CS Press.

12

