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Abstract — We generalize the notion of identities among relations, well known for presentations of groups,
to presentations of n-categories by polygraphs. To each polygraph, we associate a track n-category,
generalizing the notion of crossed module for groups, in order to define the natural system of identities
among relations. We relate the facts that this natural system is finitely generated and that the polygraph
has finite derivation type.
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INTRODUCTION

The notion of identity among relations originates in the work of Peiffer and Reidemeister, in combina-
torial group theory [14, [17]]. It is based on the notion of crossed module, introduced by Whitehead, in
algebraic topology, for the classification of homotopy 2-types [20, 21]. Crossed modules have also been
defined for other algebraic structures than groups, such as commutative algebras [[16]], Lie algebras [[11]]
or categories [15]. Then Baues has introduced track 2-categories, which are categories enriched in
groupoids, as a model of homotopy 2-type [2, [1], together with linear track extensions, as generaliza-
tions of crossed modules [4].

There exist several interpretations of identities among relations for presentations of groups: as ho-
mological 2-syzygies [5l], as homotopical 2-syzygies [[12] or as Igusa’s pictures [[12} [10]. One can also
interpret identities among relations as the critical pairs of a group presentation by a convergent word
rewriting system [7]]. This point of view yields an algorithm based on Knuth-Bendix’s completion pro-
cedure that computes a family of generators of the module of identities among relations [9].

In this work, we define the notion of identities among relations for n-categories presented by higher-
dimensional rewriting systems called polygraphs (6], using notions introduced in [8]. Given an n-
polygraph £, we consider the free track n-category L' generated by X, that is, the free (n — 1)-category
enriched in groupoid on X. We define identities among relations for X as the elements of an abelian
natural system TT(Z) on the n-category X it presents. For that, we extend a result proved by Baues and
Jibladze [J3] for the case n = 2.

Theorem A track n-category T is abelian if and only if there exists a unique (up to isomorphism)
abelian natural system TI(T) on T such that TI(T) is isomorphic to Aut”.

We define TT(X) as the natural system associated by that result to the abelianized track n-category Z;L.
In Section we give an explicit description of the natural system TT(Z).
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Then, in Section we interpret generators of TT(X) as elements of a homotopy basis of the track
n-category L', see [8]. More precisely, we prove:

Theorem If an n-polygraph ¥ has finite derivation type then the natural system T1(L) is finitely
generated.

To prove this result, we give a way to compute generators of TT(X) from the critical pairs of a convergent
polygraph X. Indeed, there exists, for every critical branching (f, g) of £, a confluence diagram:

IN
A

An (n + 1)-cell filling such a diagram is called a generating confluence of Z. Tt is proved in [8]] that the
generating confluences of ¥ form a homotopy basis of £ . We show here that they also form a generating
set for the natural system TT(X) of identities among relations.

1. PRELIMINARIES

In this section, we recall several notions from [8]: presentations of n-categories by polygraphs (I.1),
rewriting properties of polygraphs (1.2)), track n-categories and homotopy bases (|1.3).

1.1. Higher-dimensional categories and polygraphs

We fix an n-category C throughout this section.

1.1.1. Notations. We denote by Cy the set (and the k-category) of k-cells of C. If f is in Gy, then s;i(f)
and t;(f) respectively denote the i-source and i-target of f; we drop the suffix i when 1 = k — 1. The
source and target maps satisfy the globular relations:

$isi+1 = Sitip and tisiy1 = titigg. (D

If f and g are i-composable k-cells, that is when t;(f) = si(g), we denote by f ; g their i-composite
k-cell. We also write fg instead of f xy g. The compositions satisfy the exchange relations given, for
every 1 # j and every possible cells f, g, h and k, by:

(f*i g) *j (h*lk) = (f*] h) *i (9*1 k) (2)

If f is a k-cell, we denote by 1; its identity (k 4 1)-cell and, by abuse, all the higher-dimensional identity
cells it generates. When 1; is composed with cells of dimension k + 1 or higher, we simply denote it
by f. A k~cell f with s(f) = t(f) = wis called a closed k-cell with base point .

1.1.2. Spheres. Let C be an n-category and let k € {0,...,n}. A k-sphere of C is a pairy = (f, g) of
parallel k-cells of C, that is, with s(f) = s(g) and t(f) = t(g); we call f the source of y and g its rarget.
We denote by SC the set of n-spheres of C. An n-category is aspherical when all of its n-spheres have
shape (f, f).



1.1. Higher-dimensional categories and polygraphs

1.1.3. Cellular extensions. A cellular extension of C is a pair I' = (I,,1,0) made of a set I, and a
map 0 : 111 — SC. By considering all the formal compositions of elements of T, seen as (n + 1)-cells
with source and target in C, one builds the free (n + 1)-category generated by T, denoted by C[I'].

The quotient of C by T, denoted by C/T, is the n-category one gets from € by identification of 1-
cells s(y) and t(y), for every n-sphere y of I'. We usually denote by f the equivalence class of an n-cell f
of € in €/T. We write f =r g when f = g holds.

1.1.4. Polygraphs. We define n-polygraphs and free n-categories by induction on n. A 1-polygraph is
a graph, with the usual notion of free category.

An (n + 1)-polygraph is a pair £ = (X, X,,+1) made of an n-polygraph X,, and a cellular exten-
sion X, .1 of the free n-category generated by Z,,. The free (n + 1)-category generated by L and the
n-category presented by ¥ are respectively denoted by Z* and ¥ and defined by:

T =2 E.q] and I = ZX/T..

An n-polygraph X is finite when each set Xy is finite, 0 < k < n. Two n-polygraphs whose presented
(n — 1)-categories are isomorphic are Tietze-equivalent. A property on n-polygraphs that is preserved
up to Tietze-equivalence is Tietze-invariant.

An n-category C is presented by an (n + 1)-polygraph I when it is isomorphic to L. It is finitely
generated when it is presented by an (n + 1)-polygraph £ whose underlying n-polygraph X, is finite. It
is finitely presented when it is presented by a finite (n + 1)-polygraph.

1.1.5. Example. Let us consider the monoid As = {ag, a;} with unit ag and product aja; = a;. We
see As as a (1-)category with one O-cell ap and one non-degenerate 1-cell a; : ap — ag. As such,
it is presented by the 2-polygraph X, with one O-cell ap, one 1-cell a; : ayp — ap and one 2-cell
a; : aja; = aj. Thus As is finitely generated and presented. In what follows, we use graphical
notations for those cells, where the 1-cell a; is pictured as a vertical “string” | and the 2-cell a; as ‘y.

1.1.6. Contexts and whiskers. A context of C is a pair (x, C) made of an (n — 1)-sphere x of € and an
n-cell C in C[x] such that C contains exactly one occurrence of x. We denote by C[x], or simply by C,
such a context. If f is an n-cell which is parallel to x, then C[f] is the n-cell of C one gets by replacing x
by fin C.

Every context C of € has a decomposition

C = frxn1 (fno1 *n—2 (- %1 f1Xg1 %1 -+ ) *n—2 Gn—1) *n—1 9n,

where, for every k in{1,...,n}, fx and gy are k-cells of C. A whisker of C is a context that admits such
a decomposition with f;, and g, being identities. Every context C of C,_; yields a whisker of C such
that C[f x,,_1 g] = CI[f] x,_1 Clg] holds.

If T is a cellular extension of €, then every non-degenerate (n+ 1)-cell f of C[I'] has a decomposition

f = Cil@1] *n - - *n Ciloil,

with k > 1 and, for every 1in {1,...,k}, @; in T and C; a context of C.

The category of contexts of C is denoted by CC, its objects are the n-cells of € and its morphisms
from f to g are the contexts C of € such that C[f] = g holds. We denote by WC the subcategory of CC
with the same objects and with whiskers as morphisms.
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1.1.7. Natural systems. A natural system on C is a functor D from CC to the category of groups. We
denote by D,, and D¢ the images of an n-cell u and of a context C of C by the functor D. When no
confusion arise, we write C[a] instead of D¢ (a). A natural system D on C is abelian when Dy, is an
abelian group for every n-cell u.

1.2. Rewriting properties of polygraphs

We fix an (n + 1)-polygraph X throughout this section.

1.2.1. Termination. One says that an n-cell u of X}, reduces into an n-cell v when X* contains a non-
identity (n+ 1)-cell with source u and target v. One says that w is a normal form when it does not reduce
into an n-cell. A normal form of u is an n-cell v which is a normal form and such that u reduces into v.
A reduction sequence is a countable family (u, )nc1 of n-cells such that each u,, reduces into u,,1; it is
finite or infinite when the indexing set I is.

One says that X ferminates when it does not generate any infinite reduction sequence. In that case,
every n-cell has at least one normal form and one can use Noetherian induction: one can prove properties
on n-cells by induction on the length of reduction sequences.

1.2.2. Confluence. A branching (resp. confluence) is a pair (f,g) of (n + 1)-cells of Z* with same
source (resp. target), considered up to permutation. A branching (f, g) is local when f and g contain
exactly one generating (n + 1)-cell of Z. It is confluent when there exists a confluence (f', g’) with
t(f) = s(f’) and t(g) = s(g’). A local branching (f, g) is critical when the common source of f and g
is a minimal overlapping of the sources of the (n + 1)-cells contained in f and g. A confluence diagram
of a branching (f, g) is an (1. + 1)-sphere with shape (f x,, ', g *n, g’), where (f’, g’) is a confluence. A
confluence diagram of a critical branching is called a generating confluence of X.

One says that X is (locally) confluent when each of its (local) branchings is confluent. A local
branching (f, g) is critical when the common source of f and g is a minimal overlapping of the sources
of the generating (n + 1)-cells of f and g. In a confluent (n + 1)-polygraph, every n-cell has at most
one normal form. For terminating (n + 1)-polygraphs, Newman’s lemma ensures that local confluence
and confluence are equivalent properties [[13]].

1.2.3. Convergence. One says that X is convergent when it terminates and it is confluent. In that case,
every n-cell u has a unique normal form, denoted by 1. Moreover, we have u =5 _,, v if and only if
U = V. As a consequence, a finite and convergent (1. + 1)-polygraph yields a syntax for the n-cells of
the category it presents, together with a decision procedure for the corresponding word problem.

1.2.4. Example. The 2-polygraph ¥; = (ap, aj, az) presenting As is convergent and has exactly one
critical pair (aar, ajay), with corresponding generating confluence as:

ajarag

as

aQ1a === a1

az\4 L/az

ai
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Alternatively, this 3-cell az can be pictured as follows:

W=y

In turn, the 3-polygraph X3 = (ao, aj, az, az), which is a part of a presentation of the theory of monoids,
is convergent and has exactly one critical pair, with corresponding generating confluence a4:

ajajarag aararaq
ajajay a1J aj ajajaq arajay © aiajay
asa; J’[ 143 \(h (1% arz CI]/
a &
aaq /01 a; 61\ aja; :iL> aaq aa ajaz
a a
- ]/ \cn a% 3 J 3
a
3 ajag arag 2 arag

a;ay E————————
aq a

In fact, this 4-cell a4 is Mac Lane’s pentagon [8]]:

1.3. Track n-categories and homotopy bases

1.3.1. Track n-categories. A track n-category is an n-category J whose n-cells are invertible, that is,
forn > 2, an (n — 1)-category enriched in groupoid. In a track n-category, we denote by f~ the inverse
of the n-cell f. A track n-category is acyclic when, for every (n — 1)-sphere (u,Vv), there exists an
n-cell f with source u and target v.

The n-category presented by a track (n+1)-category T is the n-category T = Ty, /T4 1, where T 11
is seen as a cellular extension of T,. Two track (n+1)-categories are Tietze-equivalent if the n-categories
they present are isomorphic. Given an n-category C and a cellular extension I" of C, the track (n + 1)-
category generated by T is denoted by C(T") and defined as follows:

er) = e[n ]/ Inv(r)
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where '™ contains the same (n+ 1)-cells as I', with source and target reversed, and Inv(I") is made of the
(n + 2)-cells (Y xn Y, 1sy) and (Y~ *n 7y, 1ty ), where y ranges over I'. Let us note that, when f and g
are n-cells of C, we have f = g if and only if there exists an (n + 1)-cell with source f and target g
in €(T"). When £ is an (n -+ 1)-polygraph, one writes £ instead of £ (Z,,,1).

1.3.2. Homotopy bases. Let C be an n-category. A homotopy basis of € is a cellular extension I" of C
such that the track (n + T1)-category C(I") is acyclic or, equivalently, when the quotient n-category C/T
is aspherical or, again equivalently, when every sphere (f, g) of C satisfies f =r g.

1.3.3. Lemma (Squier’s fundamental confluence lemma). Let & be a convergent n-polygraph. The
generating confluences of ¥ form a homotopy basis of L.

Remark. A complete proof of Lemmaf|l.3.3|is given in [8]]. Squier has proved the same result for presen-
tations of monoids by word rewriting systems [18}, [19]. When formulated in terms of homotopy bases,
Squier’s result is a subcase of the case n = 2 of Lemma[l.3.3

1.3.5. Example. The 2-polygraph £, = (ap, aj, az) presenting As has exactly one generating con-
fluence a3 and, thus, this 3-cell forms a homotopy basis of the track 2-category ZZT. The 3-polygraph
Y3 = (ag, aj, az, az) also has exactly one generating confluence a4, with Mac Lane’s pentagon as shape,
which forms a homotopy basis of the track 3-category Z;.

The resulting 4-polygraph £, = (ap, aj, az, as, aq) is a part of a presentation of the theory of
monoidal categories. In [8]], Mac Lane’s coherence theorem is reformulated in terms of homotopy bases
and proved by an application of Lemma|[I.3.3]to a convergent 3-polygraph containing X3.

1.3.6. Lemma. Let T be a track n-category and let B be a family of closed n-cells of T. The following
assertions are equivalent:

1. The cellular extension B = {B B —Tsp, B € B} is a homotopy basis of 7.
2. Every closed n-cell f in T can be written
f = (g1 %n—1 C1 [B}"] #n=197) *n—1 -+ *n—1 (9 *n—1 Ck [BE*] *n—1 gy ) (3)
where, for every i € {1,...,k}, we have 3; € B, ¢; € {—,+}, C; € WT and g; € T.

Proof. Let us assume that Bisa homotopy basis of T and let us consider a closed n-cell f : w — w
in 7. Then, by definition of a homotopy basis, there exists an (n + 1)-cell A : f — 1,, in T(B). By

construction of T(B), the (n 4+ 1)-cell A decomposes into

A = Aqkp -k Ax,

where each A; is an (n + 1)-cell of T(B) that contains exactly one generating (n + 1)-cell of B. As a
consequence, each A; has shape

gi*n-1 Cq [Bfl} *n-1 hy

with 3; € B, ¢; € {—,+}, C; € WT and gi, h; € Ty, . By hypothesis on A, we have f = s(A), hence:

f = g1 %n_1 Cils(B]")] *n_1 1.
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We proceed by case analysis on ¢1. If ¢ = 4+, then we have:

f = g1 %01 C1[B1] *n_1 hy
= (g1 *n—1 C1[B1] *n—1 g7 ) *n—1 (g1 *n—1 h1)
= (g1 *n—1 C1[B1] *n—1 97 ) *n_1 s(A2).

And, if ¢ = —, we get:

f = g1 %1 hy
= (g1 *n—1 C1[B71 *n=1 97 ) *n—1 (g1 *n—1 C1[B1] *n_1 h1)
= (91 *n-1 Cq [Bﬂ *n—1 9]7) *n—1 S(AZ)-

An induction on the natural number k proves that f has a decomposition as in (3)).

Conversely, we assume that every closed n-cell f in 7 has a decomposition as in (3). Then we have
f =5 Ty(r) for every closed n-cell f in T. Let us consider two parallel n-cells f and g in J. Then fx, 19~
is a closed n-cell, yielding f x, 1 g~ =5 15(s). We compose both members by g on the right hand to get

f =5 g. Thus Bisa homotopy basis of 7. O

1.3.7. Finite derivation type. One says that an n-polygraph X has finite derivation type when it is finite
and when the track n-category L' admits a finite homotopy basis. This property is Tietze-invariant
for finite n-polygraphs, so that one says that an n-category has finite derivation type when it admits a
presentation by an (1. + 1)-polygraph with finite derivation type.

1.3.8. Lemma. Let T be a track n-category and let T be a cellular extension of T. If T has finite
derivation type, then so does T/T.

Proof. Let B be a finite homotopy basis of J. Let us denote by B the cellular extension of T/T _made
of one (n 4 1)-cell A with source f and target g for each (n + 1)-cell A from f to g in B. Then B is a
homotopy basis of T/T. O

2. IDENTITIES AMONG RELATIONS

2.1. Abelian track n-categories

2.1.1. Definition. Let T be a track n-category. For every (n — 1)-cell u in 7, we denote by Autz
the group of closed n-cells of T with base w. This mapping extends to a natural system Aut” on the
(n — 1)-category T, 1, sending a context C of T, 7 to the morphism of groups that maps f to C[f].

A track n-category T is abelian when, for every (n — 1)-cell u of T, the group Autg is abelian. The
abelianized of a track n-category 7 is the track n-category denoted by Ty, and defined as the quotient
of T by the n-spheres (f x,—1 g, g *n—1 f), where f and g are closed n-cells with the same base.

2.1.2. Lemma. Each Autg“b is the abelianized group of Autg. As a consequence, a track n-category T
is abelian if and only if the natural system Aut” on Tn_ is abelian.
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2.1.3. Lemma. Let T be a track n-category. For every n-cell g : v — u, the mapping ()9 from Autg to
Aut? and sending f to
f9 = g sn1fan1g
is an isomorphism of groups. Moreover, if T is abelian and g,h : v — u are n-cells of T, then the
isomorphisms (-)9 and (-)™ are equal.
Proof. We have:
(1W)? = g *naTuxn1g = 1.
Let f7 and f; be closed n-cells of J with base u. Then:
(f1xn-12)9 = g Fna fixm1faxng

=g *n1fi*n19*n19g *n_1f2xn1 g
f? *n—1 fg

Hence (-)9 is a morphism of groups and it admits (-)9 as inverse. Now, if T is abelian and g,h: v — u
are parallel n-cells, we have:

f9 =g xafrxnag
= (g7 *n_1h)*n1 (h™ *n g Frn_1h)*n1 (K *,19g)
= (W xn g Frn1 M) xn1 (g *no1 h)sn1 (W xn1 g)
= f, O

2.1.4. Proposition. If a track n-category T has finite derivation type, then so does T .

Proof. We apply Lemma to the quotient Ty, of 7. O
2.2. Defining identities among relations

2.2.1. Definition. Let T be a track n-category and let D be a natural system on T. We denote by D
the natural system on T, defined by Du = D A track n-category 7 is linear when there exists an

abelian natural system TT(T) on T such that ﬂ(‘J’) is isomorphic to Aut”.

Remark. If such an abelian natural system D exists, then it is unique up to isomorphism. Indeed, by
definition of D we have Du = D whenever u and v are (n—1)-cells of T such that T = v holds. Thus,
ifuisan (n—1)-cell of T, then D, = D for every (n—1 ) cell wof T withw = u. As a consequence,
if D and E are abelian natural systems on T such that both D and E are isomorphic to Aut”, then D and E
are isomorphic.

2.2.3. Theorem. A track n-category is abelian if and only if it is linear.

Proof. 1If T is linear, then each group Autg is isomorphic to an abelian group. Thus T is abelian. B
Conversely, let us assume that T is abelian and let us define the abelian natural system TT(7) on 7.
For an (n — 1)-cell u of T, the abelian group TT(7T),, is defined as follows, by generators and relations:

e It has one generator | f| for every n-cell f : @ — a with @ = u.
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e [ts defining relations are:

i) [frn19]=|f]+|g].forf:a— aandg:a— awitha=u;

ii) [fxn—19]/=[g*n1f|],forf:a—bandg:b— awitha=b=mu.
If uwand u’ are (n — 1)-cells of T and if C is a context of T from u to u’, then the action
M(T)c : Ty — (T

is defined, on a generator |f|, with f a closed n-cell of T with base a such that @ = u, by

where B is a context of T,,_1, from a to some a’ with @’ = u’, such that B = C holds. We note that
BIf] is a closed n-cell of T with base some a’ such that @’ = u’, so that | B[f]] is a generating element
of TT(T)../. Now, let us check that this action is well-defined, that is, it does not depend on the choice of
the representatives f and B.

For f, we check that TT(T)¢ is compatible with the relations defining TT(7T),,. If f and g are closed
n-cells of T with base a such that a = u, then we have:

[B[f %n_1g]] = [Bfl xn_1Blgl] = |BIf]] + Blg]] .

And, forn-cellsf:a — band g: b — a, with @ =b = u, we have:
[Blf %01 gl] = [B[fl%n1 Blgl] = |Blgl %n—1 BIfl] = [Blg*n—1fl].

For B, we decompose C in v xn_p C’ %_> W, where v and w are (n — 1)-cells of T and C’ is a
whisker of T. Since T and T, 1 coincide up to dimension n. — 2, any representative B of C can be
written B = b x,,_» C’ %15 ¢, where b and c are respective representatives of v and w in T,,_1. As a
consequence, it is sufficient (and, in fact, equivalent) to prove that the definition of TT(T)¢ is invariant
with respect to the choice of the representative B of C when C has shape v %, X or X *n,_2 W.

We examine the case C = vy, the other one being symmetric. We consider two representatives b
and b’ of vin T,,_1. By definition of T, there exists ann-cell g : b — b’ in T, as in the following diagram,
drawn for the case n = 2:

b
T
ST,

Thanks to the exchange relation, we have:
(g#n2a) *n1 (b *n2f) = grnaf = (bxn2f)xn1(g*n2a).

Hence:
b/ *n—2 f = (9_ *n—2 (1) *n—1 (b *n—2 f) *n—1 (9 *n—2 (1).
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As, a consequence, one gets, using the second defining relation of TT(T )y, ,u:

Lb/ *n—2 fJ = [(97 *n-2 @) *n 1 (b2 f)xn 1 (gxn2 a)J
= L(b *n—2 ) *n—1 (g *n-2 @) *n—1 (g~ *n-2 Cl)J
= {b *n—2 fJ .

Now, let us prove that the abelian natural systems ﬂ/(?) and Aut” are isomorphic. For an (n — 1)-cell u
of T, we define @, : TT(T)g — Autg as the morphism of groups given on generators by

(Du(LfJ) = fga

where f is a closed n-cell of T with base v such that v = T and g is any n-cell of T with source v and
target u. Let us check that @,, is well-defined. We already know that @, is independent of the choice
of g. Let us prove that this definition is compatible with the relations defining TT(7)x.

For the first relation, let f1 and f; be closed n-cells of T with base v such thatv =T andletg:v — u
be an n-cell of T. Then:

Oy ([f1 *n1f2]) = (f1 41 f2)?
= f? *n—1 fg
= Oy ([f1]) *n-1 Du(|f2])
= Oy ([f1] + [f2]).

For the second relation, we fix n-cells f1 : vi = vo, f2 : vy = viand g : vy — u, withviy =v; = 1.
Then:

Oy ([f1 %01 f2]) = (f1 %01 f2)9

= (g *n_1 1) *n1 (f2 4n_1 1) *n_1 (f] *n—19)
(f2 xnq F7)9 *n1h
= Oy (|f2 *n_1 f1]).

Thus @, is a morphism of groups from TT(T)y to Aut. Moreover, it admits f — |f] as inverse and, as
a consequence, is an isomorphism.

Finally, let us prove that @, is natural in u. Let C be a context of J;,_1 from u to v. Let us check
that the morphisms of groups @,, o TT(T)= and Autg o®,, coincide. Let f be a closed n-cell of T with
base point 1 such that i’ = . We fix an n-cell g : u’ — win T and we note that C[g] is an n-cell of T
with source C[u'] and target C[u] = v. Then we have:

@, o TI(Te([f]) = (CHNC
= Clg~] #n_1 Clf] #n1 Clg]
= C [g* *n_1 T *n_1 g]
= C[f9]
= Autl o®,([f]). O

10



2.3. Identities among relations of Tietze-equivalent polygraphs

Remark. Theorem is proved in [2, 3] for the case n = 2.

2.2.5. Definition. Let X be an n-polygraph. The natural system of identities among relations of L is
the abelian natural system W(Z;D, which we simply denote by TT(X). If wis an (n — 1)-cell of £, an
element of the abelian group TT(X),, is called an identity among relations associated to w.

2.3. Identities among relations of Tietze-equivalent polygraphs
2.3.1. Lemma. Let £ and Y be two Tietze-equivalent n-polygraphs. Then there exist n-functors
F:x2) =Y, and G:v) — L]
such that the following two diagrams commute:

F T T G 7T

Zz—zrb Yab Yab Zub
SN
T Y Y T

Proof. To simplify notations, we consider that the (n — 1)-categories £ and Y are equal, instead of
simply isomorphic. Let us build F, the construction of G being symmetric.

First, we define an n-functor F from £" to Y'". On i-cells, with i < n — 2, F is the identity, which
makes the diagram commute up to dimension n — 2 since 7ty and 7ty are also identities on the same
dimensions.

If ais an (n — T)-cell in Z, we arbitrarily choose an (n — T)-cell in 7ty 175 (@) for F(a). Since Fis
the identity up to dimension n — 2, we have that the source and target of F(a) are equal to the source and
target of a, respectively.

Then, F is extended to any (n — 1)-cell of £ by functoriality. Let @ : u — v be an n-cell of £. We
have, by definition of F(u) and F(v):

my o F(u) = my(u) = my(v) = my o F(v).

Thus, there exists an n-cell from F(u) to F(v) in 7. We arbitrarily choose F(¢) to be one of those
n-cells and, then, we extend F to any n-cell of £ by functoriality.

Let f and g be closed n-cells in £7. We have F(f x,_1 g) = F(f) %,_1 F(g) by definition of F.
As a consequence, F induces a n-functor from Z; to YL that satisfies, by construction, the relation
vy o F = my. O

2.3.2. Notatlon We fix two Tietze-equivalent n-polygraphs X and Y, together with n-functors F and G
as in Lemma |2 We denote by G the morphism of natural systems on £ = Y, from TT(Y) to TT(Z),
defined by G( ij |G(f)].

For every (n — 1)-cell w in Z;;, we define an n-cell A,, from w to GF(w) in Z;L, by structural
induction on w. If w is an identity, then A,, = 1,,. Now, let w be an (n — 1)-cell in . By hypothesis
on F and G, we have:

Tty © GF(W) = Tty O F(W) = ﬂz(W).

11



2. Identities among relations

As a consequence, there exists an n-cell from w to GF(w) in ZL and we arbitrarily choose A, to be
such an n-cell. Finally, if w = wj x; wy, for some i € {0,...,n— 2}, then Ay, = Ay, % Ay,. If
f:u — visann-cell of Z;[), we denote by Ay the closed n-cell with basis u defined by:

/\f = fxn Av *n—1 GF(f)i *n—1 /\171

Finally, we define:
As = {|No) |@eZn}.

2.3.3. Lemma. Let f be an n-cell in Z]l;} with a decomposition
f = Cil@y T *n_1 - Hn1 Crlo],

with @; € Ly, €1 € {—,+}and C; € WZ*. Then we have:

k
[Ae] = D &Ci|Ag- 4)
i=1

Proof. Letf:u — vand g:v — wben-cellsin £ . We have:

/\f*n,1g = (f *n—1 9) *n—1 /\w *n—1 GF(f *n—1 9)7 *n—1 /\:L
- f‘knf1 (9 *n—1 /\w *n—1 GF(Q)f *n—1 /\\7) *n—1 /\v *n—1 GF(f)i *n—1 /\171
= fxn /\g *n—1 Ay *n_ GF(f)_ *n—1 /\1_1
= fxn_1 /\g *n—1 T *n_1 As.
Hence:
[ Aty 19] = [Frna1 Agxnat 1 Ar] = [A¢] + [Ag]. &)

Now, let f : w — w’ be an n-cell and u be an i-cell, 1 < — 1, of Z;L such that 1 %; w is defined. Then
we have:

Avwr = (Wi ) xn1 A’ *n—1 GF(w i )7 xnq Aliw
= (i ) oot (A xi Awr) ot (GF(W) % GF(F) ) o1 (A i Ay)
= (Wn—1 Ay rn—1 GF(u) *n—1 Ay ) *i (f *n—1 Aws *n—1 GF(f)™ *n_1 A,)
= Ui As.

Similarly, we prove that A¢,., = A x; vif visani-cell, i < n — 1, such that w x; v is defined. As a
consequence, we get A = C[A¢], for every whisker C of X*, hence:

[Aci] = CLA. ©6)
We prove (@) by induction on k, using (3)) and (6). O

2.3.4. Lemma. Let B be a generating set for the natural system TI(Y'). Then the set Ay 11 G(B)isa
generating set for the natural system T1(X).

12



2.4. Generating identities among relations

Proof. Let f be a closed n-cell with basis w in £T. By definition of Ay, we have:
[f] = [At#n1 Awknor GF(f) a1 AL = [A] + [GF()].
On the one hand, we consider a decomposition of f in generating n-cells of X:
f = Cile]' I xn_1 -+ *no1 Cilogkl.

Hence:
/\fJ Z 81 1 .

On the other hand, the natural system TT(Y") is generated by B, so that |F(f)] admits a decomposition
[F(f)] = ng]ﬂij ngJ, with ngj € B. Hence:

[GF(f)) = }_B;1G(g)) = }_BylGllg;])
j€] j€]
Thus, | f] can be written as a linear combination of elements of Ay and of B, proving the result. O

2.3.5. Proposition. Let £ and Y be two Tietze-equivalent n-polygraphs such that £, and Yy, are finite.
Then the natural system TI(X) is finitely generated if and only if the natural system TI(Y) is finitely
generated.

Proof. We use Lemma with B and X,, finite. O

2.4. Generating identities among relations

2.4.1. Theorem. If an n-polygraph ¥ has finite derivation type then the natural system T1(X) is finitely
generated.

Proof. Let us assume that the n-polygraph Z has finite derivation type. By Proposition[2.1.4] the abelian
track category Z » has finite derivation type. Let B be a finite homotopy basis of Z;;) and let B be the set
of closed n- cells of Z;{, defined by:

B = {s(B)mt(B) |BeB}.
By Lemma|1.3.6} any closed n-cell f in Zab can be written
= (91 *n—1 C1IBT" T *n—1 97) *n—1 -+ - *n1 (G *n—1 C[BE] *n1 9y ),

where, for every 1in {1,...,k}, B; € B, g € {—,+} Ci € WZ*and g; € Z}. As a consequence, for
any identity among relations |f]| in TT(X), we have:

K
= Y &t |gi*n1 CilBil *n1 g7 | Z &C

Thus, the elements of FJ form a generating set for TT(X). 0
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2. Identities among relations

2.4.2. Proposition. For a convergent n-polygraph X, the natural system T1(L) is generated by the gen-
erating confluences of X.

Proof. By Squier’s confluence lemma (Lemma [1.3.3), the set of generating confluences of X forms a
homotopy basis of £ . Following the proof of Theorem [2.4.1| we transform it into a generating set for
the natural system TT(Z). ]

2.4.3. Example. We consider the 2-polygraph ¥ = (ayp, aj, az) presenting the monoid As. Here is a
part of the free 2-category L*:

azaijara;
aza1aq
azaq araza a;
ap o ajazag »
Q) &———aiq aiaa) & a1a1a1qq aiaiajaraq ()
v 2
arpaz aja;aza;
ajayaz
ajararaz

The 2-polygraph X is convergent and has exactly one generating confluence, written with both notations:

as .t
a1 x] Q) == a1a; *] a2 w Eu

Thus the natural system TT(Z) on the category £ = As is generated by following the element, where the
last equality uses the exchange relation:

[s(a3) 1 tla3)™| = [(a2ar1 %1 a2) %1 (a5 %1 aja;)| = |@ayx aray | = |aza;].

The graphical notations, where W~ is pictured as 4, make this last equality more clear:

s(S=)xt)| = {%J - T 4| = val

One can prove the same result by a combinatorial analysis. Indeed, one can note that the minimal 2-cells

from a?“ to al' are the ai] a a?*]*i, foriin{0,...,n — 1}. Thus, the natural system IT(X) is generated
by the following elements, forn > 2and0 <i<j<n—1:
) L C i
l9ij] = [aﬁ aal "  dayal”? J )

Then, one uses the exchange relations to get:

i 2 il e
ajaxa; - Ca, qq ifj >i+2.

6s — { a%(azcu *1 a7 ag)a?’i*] ifj=1+1
Hence, if j = 1+ 1, we have, using the relations defining TT(X) and |a; | = O:
lgii+1] = tla] + [@ar vy [+ (n—i-1) 1] = |[aa;].
And, ifj > i+ 2, we get:
lgij] = tla] +la] +(—i-2) [a1] = [a2] + (n—j—T1) [a1] = 0.

Thus, the natural system TT(X) is generated by one element: Laz aEJ .
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