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Abstract – We generalize the notion of identities among relations, well known for presentations of groups,
to presentations of n-categories by polygraphs. To each polygraph, we associate a track n-category,
generalizing the notion of crossed module for groups, in order to define the natural system of identities
among relations. We relate the facts that this natural system is finitely generated and that the polygraph
has finite derivation type.
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INTRODUCTION

The notion of identity among relations originates in the work of Peiffer and Reidemeister, in combina-
torial group theory [14, 17]. It is based on the notion of crossed module, introduced by Whitehead, in
algebraic topology, for the classification of homotopy 2-types [20, 21]. Crossed modules have also been
defined for other algebraic structures than groups, such as commutative algebras [16], Lie algebras [11]
or categories [15]. Then Baues has introduced track 2-categories, which are categories enriched in
groupoids, as a model of homotopy 2-type [2, 1], together with linear track extensions, as generaliza-
tions of crossed modules [4].

There exist several interpretations of identities among relations for presentations of groups: as ho-
mological 2-syzygies [5], as homotopical 2-syzygies [12] or as Igusa’s pictures [12, 10]. One can also
interpret identities among relations as the critical pairs of a group presentation by a convergent word
rewriting system [7]. This point of view yields an algorithm based on Knuth-Bendix’s completion pro-
cedure that computes a family of generators of the module of identities among relations [9].

In this work, we define the notion of identities among relations for n-categories presented by higher-
dimensional rewriting systems called polygraphs [6], using notions introduced in [8]. Given an n-
polygraph Σ, we consider the free track n-category Σ> generated by Σ, that is, the free (n− 1)-category
enriched in groupoid on Σ. We define identities among relations for Σ as the elements of a natural system
Π(Σ) on the n-category Σ it presents. For that, we extend a result proved by Baues and Jibladze [3] for
the case n = 2.

Theorem 2.2.3. A track n-category T is abelian if and only if there exists a unique (up to isomorphism)
natural system Π(T) on T such that Π̂(T) is isomorphic to AutT .

We define Π(Σ) as the natural system associated by that result to the abelianized track n-category Σ>ab.
In Section 2.2, we give an explicit description of the natural system Π(Σ).

In Section 2.3, we interpret generators of Π(Σ) as elements of a homotopy basis of the track n-
category Σ>, see [8]. More precisely, we prove:



1. Preliminaries

Theorem 2.3.7. If an n-polygraph Σ has finite derivation type then the natural system Π(Σ) is finitely
generated.

From this result, we deduce a way to compute generators of Π(Σ) from the critical pairs of a convergent
polygraph Σ. Indeed, there exists, for every critical pair (f, g) of Σ, a confluence diagram:
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An (n + 1)-cell filling such a diagram is called a generating confluence of Σ. It is proved in [8] that the
generating confluences of Σ form a homotopy basis of Σ>. We show here that they also form a generating
set for the natural system Π(Σ) of identities among relations.

1. PRELIMINARIES

In this section we recall several notions from [8]: presentations of n-categories by polygraphs (1.1),
rewriting properties of polygraphs (1.2), track n-categories and homotopy bases (1.3).

1.1. Higher-dimensional categories and polygraphs

We fix an n-category C throughout this section.

1.1.1. Notations. We denote by Ck the set (and the k-category) of k-cells of C. If f is in Ck, then si(f)
and ti(f) respectively denote the i-source and i-target of f; we drop the suffix i when i = k − 1. The
source and target maps satisfy the globular relations:

si ◦ si+1 = si ◦ ti+1 and ti ◦ si+1 = ti ◦ ti+1. (1)

If f and g are i-composable k-cells, that is when ti(f) = si(g), we denote by f ?i g their i-composite
k-cell. The compositions satisfy the exchange relations given, for every i 6= j and every possible cells f,
g, h and k, by:

(f ?i g) ?j (h ?i k) = (f ?j h) ?i (g ?j k). (2)

If f is a k-cell, we denote by 1f its identity (k+ 1)-cell and, by abuse, all the higher-dimensional identity
cells it generates. When 1f is composed with cells of dimension k + 1 or higher, we simply denote it
by f. A k-cell f with s(f) = t(f) = u is called a closed k-cell with base point u.

1.1.2. Spheres. Let C be an n-category and let k ∈ {0, . . . , n}. A k-sphere of C is a pair γ = (f, g) of
parallel k-cells of C, that is, with s(f) = s(g) and t(f) = t(g); we call f the source of γ and g its target.
We denote by SkC (resp. SC) the set of k-spheres (resp. n-spheres) of C. An n-category is aspherical
when all of its n-spheres have shape (f, f).
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1.1. Higher-dimensional categories and polygraphs

1.1.3. Cellular extensions. A cellular extension of C is a pair Γ = (Γn+1, ∂) made of a set Γn+1 and a
map ∂ : Γn+1 → SC. By considering all the formal compositions of elements of Γ , seen as (n+ 1)-cells
with source and target in C, one builds the free (n+ 1)-category generated by Γ , denoted by C[Γ ].

The quotient of C by Γ , denoted by C/Γ , is the n-category one gets from C by identification of n-cells
s(γ) and t(γ), for every n-sphere γ of Γ . We usually denote by f the equivalence class of an n-cell f
of C in C/Γ . We write f ≡Γ g when f = g holds.

1.1.4. Polygraphs. We define n-polygraphs and the free n-category generated by an n-polygraph by
induction on n. A 1-polygraph is a graph, with the usual notion of free category.

An n-polygraph is a pair Σ = (Σn, Σn+1) made of an n-polygraph Σn and a cellular extension Σn+1

of the free n-category generated by Σn. The free (n + 1)-category generated by Σ and the n-category
presented by Σ are respectively denoted by Σ∗ and Σ and defined by:

Σ∗ = Σ∗n[Σn+1] and Σ = Σ∗n/Σn+1.

An n-polygraph Σ is finite when each set Σk is finite, 0 ≤ k ≤ n. Two n-polygraphs whose presented
(n − 1)-categories are isomorphic are Tietze-equivalent. A property on n-polygraphs that is preserved
up to Tietze-equivalence is Tietze-invariant.

An n-category C is presented by an (n + 1)-polygraph Σ when it is isomorphic to Σ. It is finitely
generated when it is presented by an (n+ 1)-polygraph Σ whose underlying n-polygraph Σn is finite. It
is finitely presented when it is presented by a finite (n+ 1)-polygraph.

1.1.5. Example. Let us consider the monoid As = {a0, a1} with a0 being the unit and with product
given by a1a1 = a1. We see As as a 1-category with one 0-cell a0 and one non-identity 1-cell a1 :

a0 → a0. This monoid is presented by the 2-polygraph Σ2 with one 0-cell a0, one 1-cell a1 : a0 → a0
and one 2-cell a2 : a1a1 ⇒ a1, where we write a1a1 for a1 ?0 a1. Thus As is finitely generated and
presented. In what follows, we use graphical notations for those cells, where the 1-cell a1 is pictured as
a vertical "string" and the 2-cell a2 as .

1.1.6. Contexts and whiskers. A context of C is a pair (x,C) made of an (n− 1)-sphere x of C and an
n-cell C in C[x] such that C contains exactly one occurence of x. We simply denote by C such a context.
If f is an n-cell which is parallel to x, then C[f] is the n-cell of C one gets by replacing x by f in C.

Every context C of C has a decomposition

C = fn ?n−1 (fn−1 ?n−2 · · · (f1 ?0 x ?0 g1) · · · ?n−2 gn−1) ?n−1 gn,

where, for every k in {1, . . . , n}, fk and gk are n-cells of C. Moreover, one can choose those cells so
that fk and gk are k-cells. A whisker of C is a context that admits such a decomposition with fn and gn
being identities.

If Γ is a cellular extension of C, then every (n+ 1)-cell f of C[Γ ] has a decomposition

f = C1[ϕ1] ?n · · · ?n Ck[ϕk],

where, for every i in {1, . . . , k}, ϕi is in Γ and Ci is a context of C.
The category of contexts of C is denoted by CC, its objects are the n-cells of C and its morphisms

from f to g are the contexts C of C such that C[f] = g holds. We denote by WC the subcategory of CC

with the same objects and with whiskers as morphisms.
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1. Preliminaries

1.1.7. Natural systems of abelian groups. A functor D from CC to the category Ab of abelian groups
is called a natural system (of abelian groups) on C. We denote by Du and D(C) the images of an n-
cell u and of a context C of C by the functorD. When no confusion may occur, we write C[a] instead of
D(C)(a). The category of natural systems on C is denoted by Nat(C).

1.2. Rewriting properties of polygraphs

We fix an (n+ 1)-polygraph Σ throughout this section.

1.2.1. Termination. One says that an n-cell u of Σ∗n reduces into an n-cell v when Σ∗ contains a non-
identity (n+1)-cell with source u and target v. One says that u is a normal form when it does not reduce
into an n-cell. A normal form of u is an n-cell v which is a normal form and such that u reduces into v.
A reduction sequence is a countable family (un)n∈I of n-cells such that each un reduces into un+1; it
is finite or infinite when the indexing set I is.

One says that Σ terminates when it does not generate any infinite reduction sequence. In that case,
every n-cell has at least one normal form and one can use Noetherian induction: one can prove properties
on n-cells by induction on the length of reduction sequences.

1.2.2. Confluence. A branching (resp. confluence) is a pair (f, g) of (n + 1)-cells of Σ∗ with same
source (resp. target). A branching (f, g) is local when f and g contain exactly one generating (n + 1)-
cell of Σ. It is confluent when there exists a confluence (f ′, g ′) with t(f) = s(f ′) and t(g) = s(g ′). A
local branching (f, g) is critical when the common source of f and g is a minimal overlapping of the
sources of the (n + 1)-cells contained in f and g. A confluence diagram of a branching (f, g) is an
(n + 1)-sphere with shape (f ?n f

′, g ?n g
′), where (f ′, g ′) is a confluence. A confluence diagram of a

critical branching is called a generating confluence of Σ.
One says that Σ is (locally) confluent when each of its (local) branchings is confluent. A local

branching (f, g) is critical when the common source of f and g is a minimal overlapping of the sources
of the generating (n + 1)-cells of f and g. In a confluent (n + 1)-polygraph, every n-cell has at most
one normal form. For terminating (n + 1)-polygraphs, Newman’s lemma ensures that local confluence
and confluence are equivalent properties [13].

1.2.3. Convergence. One says that Σ is convergent when it terminates and it is confluent. In that case,
every 1-cell u has a unique normal form, denoted by û. Moreover, we have u ≡Σn+1

v if and only if
û = v̂. As a consequence, a finite and convergent (n+1)-polygraph yields a representation of the n-cells
of the category it presents, together with a decision procedure for the corresponding word problem.

1.2.4. Example. The 2-polygraph Σ2 = (a0, a1, a2) presenting As is convergent and has exactly one
critical pair, with corresponding generating confluence a3:
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Alternatively, this 3-cell a3 can be pictured as follows:

_ %9

In turn, the 3-polygraph Σ3 = (a0, a1, a2, a3), which is a part of a presentation of the theory of monoids,
is convergent and has exactly one critical pair, with corresponding generating confluence a4:
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In fact, this 4-cell a4 is Mac Lane’s pentagon [8]:
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1.3. Track n-categories and homotopy bases

1.3.1. Track n-categories. A track n-category is an n-category T whose n-cells are invertible, that is,
an (n − 1)-category enriched in groupoid. In a track n-category, we denote by f− the inverse of the
n-cell f. A track n-category is acyclic when, for every (n − 1)-sphere (u, v), there exists an n-cell f
with source u and target v.

The n-category presented by a track (n+ 1)-category T is the n-category T = Tn/Tn+1. Two track
(n + 1)-categories are Tietze-equivalent if the n-categories they present are isomorphic. Given an n-
category C and a cellular extension Γ of C, the track (n+ 1)-category generated by Γ is denoted by C(Γ)

and defined as follows:
C(Γ) = C

[
Γ, Γ−

] /
Inv(Γ)

where Γ− contains the same (n + 1)-cells as Γ , with source and target reversed, and Inv(Γ) is made of
the (n + 2)-cells (γ ?n γ

−, 1sγ) and (γ− ?n γ, 1tγ), where γ ranges over Γ . Let us note that, when f
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1. Preliminaries

and g are n-cells of C, we have f ≡Γ g if and only if there exists an (n + 1)-cell A with source f and
target g in C(Γ). When Σ is an (n+ 1)-polygraph, one writes Σ> instead of Σ∗n(Σn+1).

1.3.2. Homotopy bases. Let C be an n-category. A homotopy basis of C is a cellular extension Γ of C

such that the track (n + 1)-category C(Γ) is acyclic or, equivalently, when the quotient n-category C/Γ

is aspherical or, again equivalently, when every sphere (f, g) of C satisfies f ≡Γ g.

1.3.3. Lemma (Squier’s fundamental confluence lemma). Let Σ be a convergent n-polygraph. The
generating confluences of Σ form a homotopy basis of Σ>.

Remark. A complete proof of Lemma 1.3.3 is given in [8]. Squier has proved the same result for presen-
tations of monoids by word rewriting systems [18, 19]. When formulated in terms of homotopy bases,
Squier’s result is a subcase of the case n = 2 of Lemma 1.3.3.

1.3.5. Example. The 2-polygraph Σ2 = (a0, a1, a2) presenting As has exactly one generating con-
fluence a3 and, thus, this 3-cell forms a homotopy basis of the track 2-category Σ>2 . The 3-polygraph
Σ3 = (a0, a1, a2, a3) also has exactly one generating confluence a4, with Mac Lane’s pentagon as
shape, which forms a homotopy basis of the track 3-category Σ>3 .

The resulting 4-polygraph Σ4 = (a0, a1, a2, a3, a4) is a part of a presentation of the theory of
monoidal categories. In [8], Mac Lane’s coherence theorem is reformulated in terms of homotopy bases
and proved by an application of Lemma 1.3.3 to a convergent 3-polygraph containing Σ3.

1.3.6. Lemma. Let T be a track n-category and let B be a family of closed n-cells of T. The following
assertions are equivalent:

1. The cellular extension B̃ =
{
β̃ : β→ 1sβ, β ∈ B

}
is a homotopy basis of T.

2. Every closed n-cell f in T can be written

f =
(
g1 ?n−1 C1

[
β
ε1
1

]
?n−1 g

−
1

)
?n−1 · · · ?n−1

(
gk ?n−1 Ck

[
β
εk
k

]
?n−1 g

−
k

)
(3)

where, for every i ∈ {1, . . . , k}, we have βi ∈ B, εi ∈ {−,+}, Ci ∈WT and gi ∈ Tn.

Proof. Let us assume that B̃ is a homotopy basis of T and let us consider a closed n-cell f : w → w

in T. Then, by definition of a homotopy basis, there exists an (n + 1)-cell A : f → 1w in T(B̃). By
construction of T(B̃), the (n+ 1)-cell A decomposes into

A = A1 ?n · · · ?n Ak,

where each Ai is an (n + 1)-cell of T(B̃) that contains exactly one generating (n + 1)-cell of B. As a
consequence, each Ai has shape

gi ?n−1 Ci

[
β̃
εi
i

]
?n−1 hi

with Ci in WT, gi and hi in Tn, βi in B and εi in {−,+}. By hypothesis onA, we have f = s(A), hence:

f = g1 ?n−1 C1[s(β
ε1
1 )] ?n−1 h1.
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2. Identities among relations

We proceed by case analysis on ε1. If ε1 = +, then we have:

f = g1 ?n−1 C1[β1] ?n−1 h1

=
(
g1 ?n−1 C1[β1] ?n−1 g

−
1

)
?n−1 (g1 ?n−1 h1)

=
(
g1 ?n−1 C1[β1] ?n−1 g

−
1

)
?n−1 s(A2).

And, if ε1 = −, we get:

f = g1 ?n−1 h1

=
(
g1 ?n−1 C1[β

−
1 ] ?n−1 g

−
1

)
?n−1 (g1 ?n−1 C1[β1] ?n−1 h1)

=
(
g1 ?n−1 C1[β

−
1 ] ?n−1 g

−
1

)
?n−1 s(A2).

An induction on the natural number k proves that f has a decomposition as in (3).
Conversely, we assume that every closed n-cell f in T has a decomposition as in (3). Then we have

f ≡
B̃
1s(f) for every closed n-cell f in T. Let us consider two parallel n-cells f and g in T. Then

f ?n−1 g
− is a closed n-cell, yielding f ?n−1 g

− ≡
B̃
1s(f). We compose both members by g on the right

hand to get f ≡
B̃
g. Thus B̃ is a homotopy basis of T.

1.3.7. Finite derivation type. One says that an n-polygraph Σ has finite derivation type when it is finite
and when the track n-category Σ> admits a finite homotopy basis. This property is Tietze-invariant
for finite n-polygraphs, so that one says that an n-category has finite derivation type when it admits a
presentation by an (n+ 1)-polygraph with finite derivation type.

1.3.8. Lemma. Let T be a track n-category and let Γ be a cellular extension of T. If T has finite
derivation type, then so does T/Γ .

Proof. Let B be a finite homotopy basis of T. Let us denote by B the cellular extension of T/Γ made
of one (n + 1)-cell A with source f and target g for each (n + 1)-cell A from f to g in B. Then B is a
homotopy basis of T/Γ .

2. IDENTITIES AMONG RELATIONS

2.1. Abelian track n-categories

2.1.1. Definition. Let T be a track n-category. For every (n − 1)-cell u in T, we denote by AutTu the
group of closed n-cells of T with base u. This mapping extends to a natural system of groups AutT on
the (n− 1)-category Tn−1, sending a whisker C of T to the morphism of groups that maps f to C[f].

A track n-category T is abelian when, for every (n− 1)-cell u of T, the group AutTu is abelian. The
abelianized of a track n-category T is the track n-category denoted by Tab and defined as the quotient
of T by the n-spheres (f ?n−1 g, g ?n−1 f), where f and g are closed n-cells with the same base.

2.1.2. Lemma. A track n-category T is abelian if and only if AutT is a natural system of abelian groups
on Tn−1. In particular, each AutTab

u is the abelianized group of AutTu.

7



2. Identities among relations

2.1.3. Lemma. Let T be a track n-category. For every n-cell g : v → u, the mapping (·)g from AutTu
to AutTv and sending f to

fg = g− ?n−1 f ?n−1 g

is an isomorphism of groups. Moreover, if T is abelian and g, h : v → u are n-cells of T, then the
isomorphisms (·)g and (·)h are equal.

Proof. We have:
(1u)

g = g− ?n−1 1u ?n−1 g = 1v.

Let f1 and f2 be closed n-cells of T with base u. Then:

(f1 ?n−1 f2)
g = g− ?n−1 f1 ?n−1 f2 ?n−1 g

= g− ?n−1 f1 ?n−1 g ?n−1 g
− ?n−1 f2 ?n−1 g

= f
g
1 ?n−1 f

g
2 .

Hence (·)g is a morphism of groups and it admits (·)g−
as inverse. Now, if T is abelian and g, h : v→ u

are parallel n-cells, we have:

fg = g− ?n−1 f ?n−1 g

= (g− ?n−1 h) ?n−1 (h− ?n−1 f ?n−1 h ?n−1 h
− ?n−1 g)

= (h− ?n−1 f ?n−1 h) ?n−1 (g− ?n−1 h ?n−1 h
− ?n−1 g)

= fh.

2.1.4. Proposition. If a track n-category T has finite derivation type, then so does Tab.

Proof. We apply Lemma 1.3.8 to the quotient Tab of T.

2.2. Defining identities among relations

2.2.1. Definition. Let T be a track n-category and letD be a natural system of groups on T. We denote
by D̂ the natural system on Tn−1 defined by D̂u = Du. A track n-category T is linear when there exists
a natural system Π(T) on T such that Π̂(T) is isomorphic to AutT .

Remark. If such a natural system D exists, then it is unique up to isomorphism. Indeed, by definition
of D̂, we have D̂u = D̂v whenever u and v are (n − 1)-cells of T such that u = v holds. Thus, if u
is an (n − 1)-cell of T, then Du = D̂w for every (n − 1)-cell w of T with w = u. As a consequence,
if D and E are natural systems on T such that both D̂ and Ê are isomorphic to AutT , then D and E are
isomorphic.

2.2.3. Theorem. A track n-category is abelian if and only if it is linear.

Proof. If T is linear, then each group AutTu is isomorphic to an abelian group. Thus T is abelian.
Conversely, let us assume that T is abelian and let us define the natural system Π(T) on T. Ifw is an

(n− 1)-cell of T, then Π(T)w is defined as the quotient

Π(T)w =

( ⊕
a=w

AutTa

) /
'

8



2.2. Defining identities among relations

with ' generated by the following two families of relations, where bfc denotes the equivalence class of
a closed n-cell f of T with base a such that a = w:

i) bf ?n−1 gc = bfc+ bgc, for any closed n-cells f and g in T with same base a such that a = u,

ii) bf ?1 gc = bg ?1 fc, for any n-cells f : a→ b and g : b→ a in T with a = b = u.

If u and v are (n− 1)-cells of T and if C is a context of T from u to u ′, then the action

Π(T)(C) : Π(T)u −→ Π(T)u ′

is defined, on a generator bfc, with f a closed n-cell of T with base a such that a = u, by

Cbfc = bB[f]c,

where B is a context of Tn−1, from a to some a ′ with a ′ = u ′, such that B = C holds. We note that
B[f] is a closed n-cell of T with base some a ′ such that a ′ = u ′, so that bB[f]c is a generating element
of Π(T)u ′ . Now, let us check that this action is well-defined, that is, it does not depend on the choice of
the representatives f and B.

For f, we check that Π(T)(C) is compatible with the relations defining Π(T)u. If f and g are closed
n-cells of T with base a such that a = u, then we have:

bB[f ?n−1 g]c = bB[f] ?n−1 B[g]c = bB[f]c+ bB[g]c.

And, for n-cells f : a→ b and g : b→ a, with a = b = u, we have:

bB[f ?n−1 g]c = bB[f] ?n−1 B[g]c = bB[g] ?n−1 B[f]c = bB[g ?n−1 f]c.

For B, we decompose C in v ?n−2 C
′ ?n−2 w, where v and w are (n − 1)-cells of T and C ′ is a

whisker of T. Since T and Tn−1 coincide up to dimension n − 2, any representative B of C can be
written B = b ?n−2 C

′ ?n−2 c, where b and c are respective representatives of v and w in Tn−1. As a
consequence, it is sufficient (and, in fact, equivalent) to prove that the definition of Π(T)(C) is invariant
with respect to the choice of the representative B of C when C has shape v ?n−2 x or x ?n−2 w.

We examine the caseC = v?n−2x, the other one being symmetric. We consider two representatives b
and b ′ of v in Tn−1. By definition of T, there exists an n-cell g : b → b ′ in T, as in the following
diagram, drawn for the case n = 2:

b

!!

b ′

==
a

//g

��
f

8L

Thanks to the exchange relation, we have:

(g ?n−2 a) ?n−1 (b ′ ?n−2 f) = g ?n−2 f = (b ?n−2 f) ?n−1 (g ?n−2 a).

Hence:
b ′ ?n−2 f = (g− ?n−2 a) ?n−1 (b ?n−2 f) ?n−1 (g ?n−2 a).

9



2. Identities among relations

As, a consequence, one gets, using the second defining relation of Π(T)v?n−2u:

bb ′ ?n−2 fc = b(g− ?n−2 a) ?n−1 (b ?n−2 f) ?n−1 (g ?n−2 a)c
= b(b ?n−2 f) ?n−1 (g ?n−2 a) ?n−1 (g− ?n−2 a)c
= bb ?n−2 fc.

Now, let us prove that the natural systems Π(T) and AutT are isomorphic. For an (n − 1)-cell u of T,
we define Φu : Π(T)u → AutTu as the morphism of groups given on generators by

Φu(bfc) = fg,

where f is a closed n-cell of T with base v such that v = u and g is any n-cell of T with source v and
target u. Let us check that Φu is well-defined. We already know that Φu is independent of the choice
of g. Let us prove that this definition is compatible with the relations defining Π(T)u.

For the first relation, let f1 and f2 be closed n-cells of T with base v such that v = u and let g : v→ u

be an n-cell of T. Then:

Φu(bf1 ?n−1 f2c) = (f1 ?n−1 f2)
g

= f
g
1 ?n−1 f

g
2

= Φu(bf1c) ?n−1 Φu(bf2c)
= Φu(bf1c+ bf2c).

For the second relation, we fix n-cells f1 : v1 → v2, f2 : v2 → v1 and g : v1 → u, with v1 = v2 = u.
Then:

Φu(bf1 ?n−1 f2c) = (f1 ?n−1 f2)
g

= (g− ?n−1 f1) ?n−1 (f2 ?n−1 f1) ?n−1 (f−1 ?n−1 g)

= (f2 ?n−1 f1)
g−?n−1f1

= Φu(bf2 ?n−1 f1c).

Thus Φu is a morphism of groups from Π(T)u to AutTu. Moreover, it admits f 7→ bfc as inverse and, as
a consequence, is an isomorphism.

Finally, let us prove that Φu is natural in u. Let C be a context of Tn−1 from u to v. Let us check
that the morphisms of groups Φv ◦ Π(T)(C) and AutT(C) ◦Φu coincide. Let f be a closed n-cell of T

with base point u ′ such that u ′ = u. We fix an n-cell g : u ′ → u in T and we note that C[g] is an n-cell
of T with source C[u ′] and target C[u] = v. Then we have:

Φv ◦ Π(T)(C)(bfc) = (C[f])C[g]

= C[g−] ?n−1 C[f] ?n−1 C[g]

= C
[
g− ?n−1 f ?n−1 g

]
= C[fg]

= AutT(C) ◦Φu(bfc).

10



2.3. Generating identities among relations

Remark. Theorem 2.2.3 is proved in [2, 3] for the case n = 2.

2.2.5. Definition. Let Σ be an n-polygraph. The natural system of identities among relations of Σ is the
natural system Π(Σ>ab), which we simply denote by Π(Σ). Ifw is an (n− 1)-cell of Σ, an element of the
abelian group Π(Σ)w is called an identity among relations associated to w.

2.3. Generating identities among relations

2.3.1. Lemma. Let Σ be an n-polygraph and let w be an (n − 1)-cell of Σ. The identities among
relations associated to w are the sums

bfc = ε1C1bϕ1c + · · · + εkCkbϕkc, (4)

where, for every i ∈ {1, . . . , k}, ϕi is an n-cell of Σ, Ci is a whisker of Σ∗ and εi is in {−,+}, such that
the composite

f = C1[ϕ
ε1
1 ] ?n−1 · · · ?n−1 Ck[ϕ

εk
k ] (5)

exists and is a closed n-cell of Σ>ab with base u such that u = w.

Proof. By definition, the abelian group Π(Σ)w is generated by the bfc where f is a closed n-cells of Σ>ab
with base u such that u = w. By construction of Σ>ab, the n-cell f has a decomposition such as in (5).
We apply the morphism of groups b·c to this decomposition to get (4).

2.3.2. Lemma. Let Σ and Υ be two Tietze-equivalent n-polygraphs. Then there exist n-functors

F : Σ>ab → Υ>ab and G : Υ>ab → Σ>ab

such that the following two diagrams commute:

Σ>ab
F

//

πΣ
����

c©

Υ>ab

πΥ
����

Σ Υ

Υ>ab
G

//

πΥ
����

c©

Σ>ab

πΣ
����

Υ Σ

Proof. Let us build F, the construction of G being symmetric. First, we define an n-functor F from Σ>

to Υ>. On i-cells, with i ≤ n− 2, F is the identity. If a is an (n− 1)-cell in Σ, we arbitrarily choose an
(n − 1)-cell in π−1

Υ πΣ(a) for F(a). Then, F is extended to any (n − 1)-cell of Σ> by functoriality. Let
ϕ : u→ v be an n-cell of Σ. We have, by definition of F(u) and F(v):

πΥ ◦ F(u) = πΣ(u) = πΣ(v) = πΥ ◦ F(v).

Thus, there exists an n-cell from F(u) to F(v) in Σ>. We arbitrarily choose F(ϕ) to be one of those
n-cells and, then, we extend F to any n-cell of Σ> by functoriality.

Let f and g be closed n-cells in Σ>. We have F(f ?n−1 g) = F(f) ?n−1 F(g) by definition of F.
As a consequence, F induces a n-functor from Σ>ab to Υ>ab that satisfies, by construction, the relation
πΥ ◦ F = πΣ.

11



2. Identities among relations

2.3.3. Notation. We fix two Tietze-equivalent n-polygraphs Σ and Υ, together with n-functors F and G
as in Lemma 2.3.2. We denote by G̃ the morphism of natural systems on Σ = Υ, from Π(Υ) to Π(Σ),
defined by G̃(bfc) = bG(f)c.

For every (n−1)-cellw in Σ>ab, we define an n-cell fromw toGF(w) in Σ>ab, by structural induction
onw. Ifw is an identity, thenΛw is 1w. Now, letw be a generating (n−1)-cell in Σn−1. By hypothesis
on F and G, we have:

πΣ ◦GF(w) = πΥ ◦ F(w) = πΣ(w).

As a consequence, there exists an n-cell from w to GF(w) in Σ>ab and we arbitrarily choose Λw to be
such an n-cell. Finally, ifw = w1?iw2, for some i ∈ {0, . . . , n− 2}, thenΛw is defined asΛw1 ?iΛw2 .

If f : u→ v is an n-cell of Σ>ab, we denote by Λf the closed n-cell with basis u defined by:

Λf = f ?n−1 Λv ?n−1 GF(f)
− ?n−1 Λ

−
u .

Finally, we define:
ΛΣ =

{
bΛϕc

∣∣ ϕ ∈ Σn } .
2.3.4. Lemma. Let f be an n-cell in Σ>ab with a decomposition

f = C1[ϕ
ε1
1 ] ?n−1 · · · ?n−1 Ck[ϕ

εk
k ],

with ϕi in Σn, Ci a whisker of Σ∗ and εi in {−,+}. Then we have:

bΛfc =

k∑
i=1

εiCibΛϕic. (6)

Proof. Let f : u→ v and g : v→ w be n-cells in Σ>ab. We have:

Λf?n−1g = (f ?n−1 g) ?n−1 Λw ?n−1 GF(f ?n−1 g)
− ?n−1 Λ

−
u

= f ?n−1

(
g ?n−1 Λw ?n−1 GF(g)

− ?n−1 Λ
−
v

)
?n−1 Λv ?n−1 GF(f)

− ?n−1 Λ
−
u

= f ?n−1 Λg ?n−1 Λv ?n−1 GF(f)
− ?n−1 Λ

−
u

= f ?n−1 Λg ?n−1 f
− ?n−1 Λf.

Hence:
bΛf?n−1gc = bf ?n−1 Λg ?n−1 f

− ?n−1 Λfc = bΛfc+ bΛgc. (7)

Now, let f : w→ w ′ be an n-cell and u be an i-cell, i ≤ n− 1, of Σ>ab such that u ?iw is defined. Then
we have:

Λu?if = (u ?i f) ?n−1 Λu?iw ′ ?n−1 GF(u ?i f)
− ?n−1 Λ

−
u?iw

= (u ?i f) ?n−1 (Λu ?i Λw ′) ?n−1 (GF(u) ?i GF(f)
−) ?n−1 (Λ−

u ?i Λ
−
w)

= (u ?n−1 Λu ?n−1 GF(u) ?n−1 Λ
−
u) ?i (f ?n−1 Λw ′ ?n−1 GF(f)

− ?n−1 Λ
−
w)

= u ?i Λf.

Similarly, we prove that Λf?iv = Λf ?i v if v is an i-cell, i ≤ n − 1, such that w ?i v is defined. As a
consequence, we get ΛC[f] = C[Λf], for every whisker C of Σ∗, hence:

bΛC[f]c = CbΛfc. (8)

We prove (6) by induction on k, using (7) and (8).
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2.3. Generating identities among relations

2.3.5. Lemma. Let B be a generating set for the natural system Π(Υ). Then the set ΛΣ q G̃(B) is a
generating set for the natural system Π(Σ).

Proof. Let f be a closed n-cell with basis w in Σ>. By definition of Λf, we have:

bfc = bΛf ?n−1 Λw ?n−1 GF(f) ?n−1 Λ
−
wc = bΛfc+ bGF(f)c.

On the one hand, we consider a decomposition of f in generating n-cells of Σn:

f = C1[ϕ
ε1
1 ] ?n−1 · · · ?n−1 Ck[ϕ

εk
k ].

Hence:

bΛfc =

k∑
i=1

εiCibΛϕic.

On the other hand, the natural system Π(Υ) is generated by B, so that bF(f)c admits a decomposition
bF(f)c =

∑
j∈J ηjBjbgjc, with bgjc ∈ B. Hence:

bGF(f)c =
∑
j∈J
BjbG(gj)c =

∑
j∈J
Bj[G̃(bgjc)].

Thus, bfc can be written as a linear combination of elements of ΛΣ and of B, proving the result.

2.3.6. Proposition. Let Σ and Υ be two Tietze-equivalent n-polygraphs such that Σn and Υn are finite.
Then the natural system Π(Σ) is finitely generated if and only if the natural system Π(Υ) is finitely
generated.

Proof. We use Lemma 2.3.5 with B and Σn finite.

2.3.7. Theorem. If an n-polygraph Σ has finite derivation type then the natural system Π(Σ) is finitely
generated.

Proof. Let us assume that the n-polygraph Σ has finite derivation type. By Proposition 2.1.4, the abelian
track category Σ>ab has finite derivation type. Let B be a finite homotopy basis of Σ>ab and let B̃ be the set
of closed n-cells of Σ>ab defined by:

B̃ =
{
s(β) ?n−1 t(β)−

∣∣ β ∈ B
}
.

By Lemma 1.3.6, any closed n-cell f in Σ>ab can be written

f =
(
g1 ?n−1 C1[β

ε1
1 ] ?n−1 g

−
1

)
?n−1 · · · ?n−1

(
gk ?n−1 Ck[β

εk
k ] ?n−1 g

−
k

)
,

where, for every i in {1, . . . , k}, βi is in B̃, εi is in {−,+}, Ci is a whisker of Σ∗ and gi is an n-cell of Σ∗.
As a consequence, for any identity among relations bfc in Π(Σ), we have:

bfc =

k∑
i=1

εibgi ?n−1 Ci[βi] ?n−1 g
−
i c =

k∑
i=1

εiCibβic.

Thus, the elements of bB̃c form a generating set for Π(Σ).
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2. Identities among relations

2.3.8. Proposition. For a convergent n-polygraph Σ, the natural system Π(Σ) is generated by the gen-
erating confluences of Σ.

Proof. By Squier’s confluence lemma (Lemma 1.3.3), the set of generating confluences of Σ forms a
homotopy basis of Σ>. Following the proof of Theorem 2.3.7, we transform it into a generating set for
the natural system Π(Σ).

2.3.9. Example. We consider the 2-polygraph Σ = (a0, a1, a2) presenting the monoid As. Here is a
part of the free 2-category Σ∗:

a1 a1a1
a2ey a1a1a1

a2a1
m�

a1a2

]q a1a1a1a1
a1a2a1ey

a2a1a1

v


a1a1a2

Th a1a1a1a1a1
a1a2a1a1k�
a1a1a2a1_s

a2a1a1a1

t�

a1a1a1a2

Vj (· · · )

The 2-polygraph Σ is convergent and has exactly one generating confluence

a3 : a2a1 ?1 a2 V a1a2 ?1 a2.

Thus the natural system Π(Σ) on the category Σ is generated by the element:

bs(a3) ?1 t(a3)
−c = b(a2a1 ?1 a2) ?1 (a−

2 ?1 a1a
−
2 )c = ba2a1 ?1 a1a

−
2 c = ba2a−

2 c.

One can prove the same result by a combinatorial analysis. Indeed, one can note that the minimal 2-cells
from an+1

1 to an1 are the ai1a2a
n−1−i
1 , for i in {0, . . . , n− 1}. Thus, the natural systemΠ(Σ) is generated

by the following elements, for n ≥ 2 and 0 ≤ i < j ≤ n− 1:

bgi,jc = bai1a2an−i−1
1 ?1 a

j
1a

−
2 a

n−j−1
1 c.

Then, one uses the exchange relations to get:

gi,j =

{
ai1(a2a1 ?1 a1a

−
2 )an−i−1

1 if j = i+ 1

ai1a2a
j−i−2
1 a−

2 a
n−j−1
1 if j > i+ 2.

Hence, if j = i+ 1, we have, using the relations defining Π(Σ) and ba1c = 0:

bgi,i+1c = iba1c+ ba2a1 ?1 a1a
−
2 c+ (n− i− 1)ba1c = ba2a−

2 c.

And, if j > i+ 2, we get:

bgi,jc = iba1c+ ba2c+ (j− i− 2)ba1c− ba2c+ (n− j− 1)ba1c = 0.

Thus, the natural system Π(Σ) is generated by one element: ba2a−
2 c.
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