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Abstract

Most of the non-asymptotic theoretical work in regressisrcarried out for the
square loss, where estimators can be obtained throughdefos® expressions. In
this paper, we use and extend tools from the convex optimizditerature, namely
self-concordant functions, to provide simple extensiohsheoretical results for the
square loss to the logistic loss. We apply the extensiomigales to logistic regression
with regularization by thé;-norm and regularization by thlg-norm, showing that new
results for binary classification through logistic regiesscan be easily derived from
corresponding results for least-squares regression.

1 Introduction

The theoretical analysis of statistical methods is usugtBatly simplified when the esti-
mators have closed-form expressions. For methods basdteanihimization of a certain
functional, such as M-estimation metho@s [1], this is trdeemwthe function to minimize is
guadratic, i.e., in the context of regression, for the sgl@ss.

When such loss is used, asymptotic and non-asymptotictsemay be derived with
classical tools from probability theory (see, e.d., [2])h# the function which is minimized
in M-estimation is not amenable to closed-form solutiomsal approximations are then
needed for obtaining and analyzing a solution of the optten problem. In the asymptotic
regime, this has led to interesting developments and dgienef results from the quadratic
case, e.g., consistency or asymptotic normality (see, [f][J. However, the situation is
different when one wishes to derive hon-asymptotic resutts results where all constants
of the problem are explicit. Indeed, in order to prove resalé sharp as for the square
loss, much notation and many assumptions have to be inteddwgarding second and third



derivatives; this makes the derived results much more deatpll than the ones for closed-
form estimators[[3]4,]5].

A similar situation occurs in convex optimization, for theidy of Newton’s method
for obtaining solutions of unconstrained optimization dems. It is known to be locally
quadratically convergent for convex problems. Howevsrgléssical analysis requires cum-
bersome notations and assumptions regarding second atatter derivatives (see, e.d], [6,
[D). This situation was greatly enhanced with the introtturcof the notion ofelf-concordant
functions i.e., functions whose third derivatives are controlledthgir second derivatives.
With this tool, the analysis is much more transparg¢ht{]7, BJhile Newton's method is
a commonly used algorithm for logistic regression (see,, 3g[10]), leading to iterative
least-squares algorithms, we don’t focus in the paper omebelution of the optimization
problems, but on the statistical analysis of the associgigzhl minimizers.

In this paper, we aim to borrow tools from convex optimizatand self-concordance to
analyze the statistical properties of logistic regressigimce the logistic loss is not itself a
self-concordant function, we introduce in Sectipn 2 a nepetyf functions with a different
control of the third derivatives. For these functions, wewver two types of results: first,
we provide lower and upper Taylor expansions, i.e., Taykpaasions which are globally
upper-bounding or lower-bounding a given function. Sec¢amel prove results on the be-
havior of Newton’s method which are similar to the ones fdf-sencordant functions. We
then apply them in Sectiorf$ B, 4 afjd 5 to the one-step Newtoatét from the population
solution of the corresponding problem (i.&, ,or /1 -regularized logistic regression). This es-
sentially shows that the analysis of logistic regressiantz@adonenon-asymptoticallyusing
the local quadratic approximation of the logistic loggthout complex additional assump-
tions. Since this approximation corresponds to a weightadtisquares problem, results
from least-squares regression can thus be naturally eatiend

In order to consider such extensions and make sure that ¥heaselts closely match the
corresponding ones for least-squares regression, weeder\ppendiq G new Bernstein-like
concentration inequalities for quadratic forms of boundmtdom variables, obtained from
general results on U-statistids J11].

We first apply in Sectior}]4 the extension technique to regation by the/;-norm,
where we consider two settings, a situation with no assumgtregarding the conditional
distribution of the observations, and another one wherenibdel is assumed well-specified
and we derive asymptotic expansions of the generalizagofopnance with explicit bounds
on remainder terms. In Sectiph 5, we consider regularizdiiothe/; -norm and extend two
known recent results for the square loss, one on model d¢ensis[12[1B[ 14} 15] and one
on prediction efficiency{[16]. The main contribution of tipiaper is to make these extensions
as simple as possible, by allowing the use of non-asympgetiond-order Taylor expansions.

Notation. Forz € R? andq > 1, we denote byjz||, the ,-norm of z, defined ag|x||{ =

> i =% We also denote byjz||oc = max;eqy 1 |2i] its £oo-norm. We denote by
Amax (@) andApin (@) the largest and smallest eigenvalue of a symmetric métrivVe use
the notation@; < Q- (resp. Q1 = @Q») for the positive semi-definiteness of the matrix



Q2 — Q1 (resp.Q1 — Q).

Fora € R, sign(a) denotes the sign af, defined asign(a) = 1if a > 0, —1if a <0,
and0 if « = 0. For a vectow € RP, sign(v) € {—1,0, 1}? denotes the vector of signs of
elements ob.

Moreover, given a vectar € R” and a subset of {1, ..., p}, |I| denotes the cardinal of
the setl, v; denotes the vector iR/!! of elements o indexed byZ. Similarly, for a matrix
A € RP*P, A;; denotes the submatrix of composed of elements of whose rows are in
I and columns are i/. Finally, we let denoté® andE general probability measures and
expectations.

2 Taylor expansions and Newton’s method

In this section, we consider a generic functibn R? — R, which is convex and three times
differentiable. We denote by”’(w) € RP its gradient atwv € R?, by F”(w) € RP*P its
Hessian atv € RP. We denote by\(w) > 0 the smallest eigenvalue of the Hessiah(w)
atw € RP.

If \M(w) > 0, i.e., the Hessian is invertible at, we can define th&lewton stepas
AN (w) = —F"(w)~'F'(w), and theNewton decrement(F, w) atw, defined through:

v(F,w)? = F'(w) " F"(w) " F'(w) = AN (w) T F" (w) AN (w).

Theone-step Newton iterate + A (w) is the minimizer of the second-order Taylor expan-
sion of F atw, i.e., of the functiony — F(w) + F'(w)(v — w) + 3(v —w) " F" (w) (v — w).
Newton’s method consists in successively applying the stereion until convergence. For

more background and details about Newton’s method, see[ﬁi.B,].

2.1 Self-concordant functions

We now review some important properties of self-concordiamttions [} [B], i.e., three times
differentiable convex functions such that for allv € RP?, the functiong : ¢ — F(u + tv)
satisfies for alt € R, |¢"(t)| < 29" (t)3/2.

The local behavior of self-concordant functions is welleiéd and lower and upper Tay-
lor expansions can be derived (similar to the ones we denivRroposition]J1). Moreover,
bounds are available for the behavior of Newton’s methogemgia self-concordant function
F,if w € RP is such thav(F, w) < 1/4, thenF attains its unique global minimum at some
w* € RP, and we have the following bound on the ertor- w* (see, e.g.,[J8]):

(w — w*) T F"(w)(w — w*) < (F,w)?. 1)

Moreover, the newton decrement at the one-step Newtortgtéi@mw € RP can be upper-
bounded as follows:
v(F,w+ AN (w)) < v(F,w)?, (2)



which allows to prove an upper-bound of the error of the dee-gerate, by application of
Eq. (@) tow + AN (w). Note that these bounds are not the sharpest, but are suffficieur
context. These are commonly used to show the global conveegaf the damped Newton’s
method [B] or of Newton’s method with backtracking line s#a[ff], as well as a precise
upper bound on the number of iterations to reach a givengoeci

Note that in the context of machine learning and statissie;concordant functions have
been used for bandit optimization and online learning [b8}, for barrier functions related
to constrained optimization problems, and not directlyNbestimation.

2.2 Modifications of self-concordant functions

The logistic functionu — log(1 + e~ ") is not self-concordant as the third derivative is
bounded by a constant times the second derivative (witheytower3/2). However, similar
bounds can be derived with a different control of the thirdwdgives. Propositiofi1 provides
lower and upper Taylor expansions while Proposifipn 2 atersi the behavior of Newton's
method. Proofs may be found in Appendlik A and follow closéig bnes for regular self-
concordant functions found if][8].

Proposition 1 (Taylor expansions)Let F' : R? — R be a convex three times differentiable
function such that for allv,v € RP, the functiong(t) = F(w + tv) satisfies for allt € R,
lg" (t)] < Rljv||2 x ¢"(t), for someR > 0. We then have for alb, v, z € R?:

T o
Flw+v) > Fw)+o" F(w) + %(6_}%”“2 R —1), ()
Vll2
T o
Flo-+o) < F(u)+0 () + gl e~ Rlol -1, @
Vll2
2T [F'(w + v)—F'(w)— F" (w)v] - eR||””2—1—RHvH2
< i 1/2 5
2T ()] o )l Bl O
e~ BVl B () < P (w + v) 5 efIll2 B (). (6)

Inequalities in Eq.[{3) and Eqf](4) provide upper and loweosd-order Taylor expansions
of F, while Eq. [b) provides a first-order Taylor expansionfifand Eq. [p) can be con-
sidered as an upper and lower zero-order Taylor expansidti ofNote the difference here
between Eqgs[]B}4) and regular third-order Taylor exparssad F: the remainder term in the
Taylor expansion, i.e['(w + v) — F(w) — v F'(w) — v F”(w)v is upper-bounded by
v By o Rifoll3
R2lvl3

to ||v||3 (like a regular local Taylor expansion), but the bound revaaalid for allv and does
not grow as fast as a third-order polynomial. Moreover, all@gTaylor expansion with a
uniformly bounded third-order derivative would lead to aibd proportional tdjv||3, which
does not take into account the local curvaturgadit w. Taking into account this local cur-
vature is key to obtaining sharp and simple bounds on thevihaf Newton’s method (see

proof in Appendix[A):

— $R?||v||3 — R||v||2 — 1); for ||v||2 small, we obtain a term proportional



Proposition 2 (Behavior of Newton’s method)Let F' : R? — R be a convex three times
differentiable function such that for alb, v € RP, the functiong(t) = F(w + tv) satisfies
forall ¢t € R, [¢"(t)] < R|v|]2 x ¢"(t), for someR > 0. LetA\(w) > 0 be the lowest
eigenvalue of"” (w) for somew € RP. If v(F,w) < A(‘%m, then ' has a unique global
minimizerw* € RP and we have:

(w— w*)TF"(w) (w—w*) < 16v(F,w)? (7)

Ru(F,w+ AN (w)) Ru(F,w)\?
orarr < (o) ©

N w«\ 1 N * 16R? 4
(w+ AN (w) —w*) F"(w)(w+ AV (w) —w*) < Wu(F,w). 9

Eq. (7) extends Eq[](1) while Eq[](8) extends Hd. (2). Not¢ tha notion and the results
are not invariant by affine transform (contrary to self-cmai@ant functions) and that we still
need a (non-uniformly) lower-bounded Hessian. The last wapositions constitute the
main technical contribution of this paper. We now apply éh&slogistic regression and its
regularized versions.

3 Application to logistic regression

We considem pairs of observation$z;, y;) in R? x {—1,1} and the following objective
function for logistic regression:

Jo(w) = % ;log (1 + exp(—yinxi)> = % ; {E(wTw,-) - %wTw,} , (10)
wherel : u — log(e~"/? + ¢%/?) is an even convex function. A short calculation leads to
U(u) ==1/2+0(u), "(u) = o(u)[1 —o(u)], 0" (u) = o(u)[1 — o(u)][1 — 20(u)], where
o(u) = (1 + e *)~! is the sigmoid function. Note that we have for allc R, |¢"(u)| <
¢"(u). The cost function/, defined in Eq. [(0) is proportional to the negative condaion
log-likelihood of the data under the conditional moBél; = <;|z;) = o(c;w " ;).

If R = max;cy . ) ||lz:]]2 denotes the maximurfy-norm of all input data points, then
the cost function/, defined in Eq.[(d0) satisfies the assumptions of Propodliom@eed,
we have, with the notations of Propositifn 2,

n

1 _ l 11 T o1 T 0y)3
O = |53 e
1 n
< LSl ) Trl o ol el < Rlvll x o)

i=1

Throughout this paper, we will consider a certain veetoe RP (usually defined through
the population functionals) and consider the one-step biewerate from thisw. Results
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from Section[2]2 will allow to show that this approximates tilobal minimum of, or a
regularized version thereof.

Throughout this paper, we considefiged desigrsetting (i.e.,z1, ..., x, are consider
deterministic) and we make the following assumptions:

(A1) Independent outputdhe outputgy; € {—1,1},7 =1,...,n are independent (but not
identically distributed).

(A2) Bounded inputsmax;c(y, .y [|2ill2 < R.

We define the model awell-specifiedif there existswy, € RP such that for ali =
L...,n, P(y;=¢;) = o(g;wg z;), which is equivalent t@& (y;/2) = ¢ (wg x;), and implies
var(y;/2) = ¢" (wg =;). However, we do not always make such assumptions in the .paper

We use the matrix notatioX’ = [z, ... ,xn]T € R™*P for the design matrix and; =
yi/2 — E(y;/2), fori = 1,... n, which formally corresponds to the additive noise in least-
squares regression. We also use the notaflor- 1 X T Diag(var(y;/2))X € RP*? and
g = 1XTe € RP. By assumption, we havg(qq ') = 1 Q.

We denote byJ, the expectation ofly, i.e.:

Jow) = EJo(w)] = = 3 {ew"z) ~ E(/2w 2}

i=1

Note that with our notation,Jo(w) = Jo(w) — ¢ w. In this paper we considefy (1)
as the generalization performance of a certain estimatoil his corresponds to the aver-
age Kullback-Leibler divergence to the best model when tloelehis well-specified, and
is common for the study of logistic regression and more galyegeneralized linear mod-
els [19,[2P]. Measuring the classification performanceuhothe 0-1 losq]21] is out of the
scope of this paper.

The functionJ, is bounded from below, therefore it has a bounded infinmfipcgy Jo(w) >
0. This infimum might or might not be attained at a finitg € R?; when the model is well-
specified, it is always attained (but this is not a necessamgition), and, unless the design
matrix X has rankp, is not unique.

The difference between the analysis through self-concmeland the classical asymp-
totic analysis is best seen when the model is well-speciéied exactly mimics the difference
between self-concordant analysis of Newton’s method andléissical analysis. The usual
analysis of logistic regression requires that the logfstictionu — log(1+4e~*) is strongly
convex (i.e., with a strictly positive lower-bound on thesed derivative), which is true only
on a compact subset &. Thus, non-asymptotic results such as the ones ffbfih [5oBinres
an upper bound/ on |w] z;|, wherewy is the generating loading vector; then, the second
derivative of the logistic loss is lower bounded @y-+ ¢ )~!, and this lower bound may be
very small whenM gets large. Our analysis does not require such a bound kechtise
fine control of the third derivative.



4 Regularization by the /;-norm

We denote by/y(w) = Jo(w) + 3|lw||3 the empiricalé,-regularized functional. Fok >
0, the functionJ, is strongly convex and we denote by the unique global minimizer
of Jy. In this section, our goal is to find upper and lower bounds hen deneralization
performance/y (i, ), under minimal assumptions (Section]4.2) or when the madedel-
specified (Sectiop 4.3).

4.1 Reproducing kernel Hilbert spaces and splines

In this paper we focus explicitly olinear logistic regression, i.e., on a generalized linear
model that allows linear dependency betwagrand the distribution of;;. Although ap-
parently limiting, in the context of regularization by thgnorm, this setting containson-
parametricand non-linear methods based on splines or reproducing kernel Hilbertespac
(RKHS) [22]. Indeed, because of the representer thedfejinriiimizing the cost function

1 - Y; A
D> {tr@) =S r@)}+ 101,

with respect to the functiorf in the RKHSF (with norm|| - | = and kernek), is equivalent
to minimizing the cost function

BN Yi A
n ; {E[(Tﬁ)i] - E(Tﬁ)i} - §Hﬁ||§, (11)

with respect to3 € RP, whereT € R™*? is a square root of the kernel matrix € R™*"
defined ask;; = k(z;,z;), i.e., such thatk = T7T"". The unique solution of the original
problem f is then obtained ag(z) = > !, ak(x,z;), wherea is any vector satisfying
TT"a = T (which can be obtained by matrix pseudo-inversipr] [24]migir develop-
ments can be carried out for smoothing splines (see, E3J2[). By identifying the matrix
T with the data matrixX, the optimization problem in Eq[ (11) is identical to minkinig
Jo(w) + 2|lw||3, and thus our results apply to estimation in RKHSs.

4.2 Minimal assumptions (misspecified model)

In this section, we do not assume that the model is well-fipdciWe obtain the following
theorem (see proof in Appendi} B), which only assumes bodmelss of the covariates and
independence of the outputs:

Theorem 1 (Misspecified model)AssumgAl), (A2) and A\ = 19R? W, with § €
(0,1). Then, with probability at least — ¢, for all wy € R?,

Jo(in) < Jo(ag) + (10 + 10082 g 3) B 12)



In particular, if the global minimum af, is attained atvy (which is not an assumption
of Theorem[]L), we obtain an oracle inequality.&$w) = infyere Jo(w). The lack of
additional assumptions unsurprisingly gives rise to a sk ofn—1/2,

This is to be compared with [P6], which uses different praafiniques but obtains sim-
ilar results for all convex Lipschitz-continuous losseadaiot only for the logistic loss).
However, the techniques presented in this paper allow theatien of much more precise
statements in terms of bias and variance (and with bettes),athat involves some knowl-
edge of the problem. We do not pursue detailed results hatéotus in the next section on
well-specified models, where results have a simpler form.

This highlights two opposite strategies for the theorétiszlysis of regularized prob-
lems: the first one, followed by [P6, P7], is mostly loss-ipdadent and relies on advanced
tools from empirical process theory, namely uniform coti@ion inequalities. Results are
widely applicable and make very few assumptions. Howetes tend to give performance
guarantees which are far below the observed performancascbhfmethods in applications.
The second strategy, which we follow in this paper, is torigsthe loss class (to linear or
logistic) and derive the limiting convergence rate, whicdesl depend on unknown constants
(typically the best linear classifier itself). Once the linsi obtained, we believe it gives a
better interpretation of the performance of these methawld,if one really wishes to make
no assumption, taking upper bounds on these quantities, ayegat back results obtained
with the generic strategy, which is exactly what Theofgmadcisieving.

Thus, a detailed analysis of the convergence rate, as do‘ﬁeeimrenﬂz in the next sec-
tion, serves two purposes: first, it gives a sharp resultdepends on unknown constants;
second the constants can be maximized out and more gensulisrmay be obtained, with
fewer assumptions but worse convergence rates.

4.3 Well-specified models

We now assume that the model is well-specified, i.e., thaptbbability thaty; = 1 is a
sigmoid function of a linear function af;, which is equivalent to:

(A3) Well-specified modeThere existsvy € R? such thatE(y;/2) = ¢ (wg x;).

Theorem[R will give upper and lower bounds on the expectédafishe ¢»-regularized
estimatorw,, i.e., Jo(wy). We use the following definitions for the two degrees of fiaed
and biases, which are usual in the context of ridge regmnesaial spline smoothing (see,

e.g., 22[25[28)):

degrees of freedom (1) d; = trQ(Q + \I)~!,
degrees of freedom (2) do = trQ*(Q + \I)~2,

bias (1): by N2 (Q + )~ w,
bias (2): by = Awd Q(Q + M) 2w

Note that we always have the inequalitids < d; < min{R?/\,n} andb, < b; <
min{\|lwo |3, \2wg Q 1wy}, and that these quantities depend\oin the context of RKHSs

8



outlined in Sectio] 4}1, we hawé = tr K(K + nADiag(c?))~!, a quantity which is
also usually referred to as thiegrees of freedorfgg]. In the context of the analysis of
(y-regularized methods, the two degrees of freedom are reegess outlined in Theorenip 2
and[B, and in[[28].

Moreover, we denote by > 0 the following quantity

R (d d —1/2
H:m<%+b1> (;24—172) : (13)

Such quantity is an extension of the one used bl [30] in théesowf kernel Fisher discrim-
inant analysis used as a test for homogeneity. In order @irbsymptotic equivalents, we
requirex to be small, which, as shown later in this section, occursamyrinteresting cases
whenn is large enough.

In this section, we will apply results from Sectifin 2 to thedtions.J, and.J,. Essen-
tially, we will consider local quadratic approximationstbése functions around the gener-
ating loading vectorug, leading to replacing the true estimatog by the one-step Newton
iterate fromwg. This is only possible if the Newton decremer(t]},w()) is small enough,
which leads to additional constraints (in particular theempbound orx).

Theorem 2 (Asymptotic generalization performance) AssumgAl), (A2) and (A3). As-
sume moreover: < 1/16, wherer is defined in Eq.[(33). It € [0,1/4] satisfiesv®(dy +
nby)'/? < 12, then, with probability at least — exp(—v?(dy + nby)):

J()(’Lf))\) — Jo(wo) — % <bz + %) ‘ < <b2 + %) (692) + 2560%). (14)
Relationship to previous work. When the dimensiop of wy is bounded, then under the
regular asymptotic regime:(tends to+o0c), Jy(wy) has the following expansiod (wg) +

1 (b2 + %), aresult which has been obtained by several authors inaleseitings [31[32].
In this asymptotic regime, the optimalis known to be of orde©(n~!) [B3]. The main
contribution of our analysis is to allow a non asymptotic lgsia with explicit constants.
Moreover, note that for the square loss, the bound in [Ed). fd#)s withx = 0, which can
be linked to the fact that our self-concordant analysis fRnopositiong]1 anf] 2 is applicable
with R = 0 for the square loss. Note that the constants in the previoesrém could
probably be improved.

Conditions for asymptotic equivalence. In order to have the remainder term in Ejg.](14)
negligible with high probability compared to the lowest erderm in the expansion of
Jo(wy), we need to havesy + nb, large andx small (so that can be taken taking small
while v2(dy + nbs) is large, and hence we have a result with high-probabilify)e assump-
tion thatds + nbs grows unbounded whemtends to infinity is a classical assumption in the
study of smoothing splines and RKH$s|[$4], 35], and simpliestthat the convergence rate
of the excess risky(wy) — Jo(wo), i.e.,ba + d2/n, is slower than for parametric estimation,
i.e., slower tham 1.



Study of parameter k. First, we always have > )\1/2 (dl +b )1/2; thus an upper bound

on  implies an upperbound o%jr + by which is needed in the proof of Theorgdin 2 to show
that the Newton decrement is small enough. Moreaveas, bounded by the sum af;;,s =

5 b1by 2 andkys, = = (41) (%2)_1/2. Under simple assumptions on the eigenvalues of

@ or equivalently oDiag(o;) K Diag(o;), one can show that,,, is small. For example, i
of these eigenvalues are equal to one and the remaining omesra, thenk,,, = Aﬁgli;/fm.
And thus we simply need asymptotically greater thaR?d/n. For additional conditions
for ryar, see [2B[30]. A simple condition fax,;.s can be obtained ifv] Q~'wy is assumed
bounded (in the context of RKHSs this is a stricter conditinat the generating function is
inside the RKHS, and is used Hy]36] in the context of spaisitiucing norms). In this case,
the bias terms are negligible compared to the variance tersoan as\ is asymptotically

greater tham—1/2.

Variance term.  Note that the diagonal matriXiag(o?) is upperbounded b%/] i.e.,Diag(c?) <
1[ so that the degrees of freedom for logistic regressmnlmm/a less than the correspond-
ing ones for least-squares regression amultiplied by 4). Indeed, the pairs:;, y;) for
which the conditional distribution is close to determiitisire such that? is close to zero.
And thus it should reduce the variance of the estimatorttes oise is associated with these
points, and the effect of this reduction is exactly measimethe reduction in the degrees of
freedom.

Moreover, the rate of convergendg/n of the variance term has been studied by many
authors (see, e.g] J2R,]25] 30]) and depends on the dechg efdenvalues af) (the faster
the decay, the smallek,). The degrees of freedom usually grows withbut in many cases
is slower tham!/2, leading to faster rates in Eq.]14).

4.4 Smoothing parameter selection

In this section, we obtain a criterion similar to Mallow’, [B7] to estimate the generaliza
tion error and select in a data-driven way the regularinafiarameten (referred to as the
smoothing parameter when dealing with splines or RKHSsg féHowing theorem shows
that with a data-dependent criterion, we may obtain a gotichate of the generalization
performance, up to a constant tegriw, independent oh (see proof in Appendik]D):

Theorem 3 (Data-driven estimation of generalization perfomance) AssumgAl), (A2) and
(A3). LetQy = L S0 | 0" (w) a;)z2) andg = L 3°7 | (y;/2 —E(y;/2))x;. Assume more-
overs < 1/16, wherex is defined in Eq EjS) i e [0, 1/4] satisfiesu® (dy +nby) /% <

then, with probability at least — exp(—v?(dy + nbs)):

To(3) = Ja(ix) =+t Qr(Qx + AN T

The previous theorem, which is essentially a non-asympiatision of results in[[31, B2]
can beAfurther extenAdedAto obtain oracle inequalities whiinmzing the data-driven cri-
terion Jo(wy) + L tr QA(Qx + AI)~!, similar to results obtained if 3F,]28] for the square

<b2 I >(69v + 2560k).
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loss. Note that contrary to least-squares regression wéths&an noise, there is no need
to estimate the unknown noise variance (of course only whenagistic model is actually
well-specified); however, the matri@ used to define the degrees of freedom does depend on
wp and thus requires thap, is used as an estimate. Finally, criteria based on genedaliz
cross-validation[[39,]4] could be studied with similar ol

5 Regularization by the /;-norm

In this section, we consider an estimatbdy obtained as a minimizer of thg-regularized
empirical risk, i.e.Jo(w) 4+ Aljw|;. It is well-known that the estimator has some zero com-
ponents [39]. In this section, we extend some of the recesuiitse[I2,[IB[ T4[ 19, 14, K0]
for the square loss (i.e., the Lasso) to the logistic loss.aggime throughout this section
that the model is well-specified, that is, that the obseowsti;, i = 1,...,n, are generated
according to the logistic mod@|(y; = ¢;) = o (s;w] x;).

We denote byK' = {j € {1,...,p}, (wp); # 0} the set of non-zero components:of
ands = sign(wp) € {—1,0, 1} the vector of signs oyy. On top of AssumptiongAl), (A2)
and(A3), we will make the following assumption regarding normdiiza for each covariate
(which can always be imposed by renormalization), i.e.,

(A4) Normalized covariatesfor all j = 1,...,p, 2 37 [(z;);]* < 1.

In this section, we consider two different results, one omlehgonsistency (Sectiqn b.1)
and one on efficiency (Sectidn b.2). As for the square loss; thill both depend on ad-
ditional assumptions regarding the square p matrix Q@ = = > | ¢"(wg @;)z;z] . This
matrix is a weighted Gram matrix, which corresponds to theaighted one for the square
loss. As already shown if][§] 3], usual assumptions for trenGmatrix for the square loss
are extended, for the logistic loss setting using the weijl@ram matrix). In this paper,
we consider two types of results based on specific assunspiiof, but other ones could be
considered as well (such gs][41]). The main contributionsifig self-concordant analysis
is to allow simple extensions from the square loss with shaybfs and sharper bounds, in
particular by avoiding an exponential constant in the makivalue of|w] x;|,i = 1,...,n.

5.1 Model consistency condition

The following theorem provides a sufficient condition for aebconsistency. It is based on
the consistency conditioﬁQKcKQ;(%sKHOO < 1, which is exactly the same as the one for

the square losg [15,11P]14] (see proof in Apperdiix E):

Theorem 4 (Model consistency for;-regularization) AssumgAl), (A2), (A3) and (A4).
Assume that there existsp, u > 0 such that

|Qkek Qksklloo <1—mn, (15)

11



. . 3/2
Amin(Qr k) = pandminjeg [(wo);| = p. Assume\ < mm{4|K\1/2’ 6%,’%']{‘ } Then the

probability that the vector of signs af, is different froms = sign(wy) is upperbounded by

nAZn? np?p? Anp?/2n
2 - 9| K . 9|K . . 16
pexp( G >+ | !exp< 16|K|>+ \ !exp< 64R|K|> (16)

Comparison with square loss. For the square loss, the previous theorem simplifiels [15,

fL2]: with our notations, the constraint< 62’;2/1( and the last term in Eg]_(IL6), which are the
only ones depending oR, can be removed (indeed, the square loss allows the appticat
of our adapted self-concordant analysis with the constant 0). On the one hand, the
favorable scaling betwegnandn, i.e.,log p = O(n) for a certain well-chosep, is preserved
(since the logarithm of the added term is proportional-ta:). However, on the other hand,
the terms inR may be large af is the radius of the entire data (i.e., with altovariates).
Bounds with the radius of the data on only the relevant festurK” could be derived as well

(see details in the proof in Appendix E).

Necessary condition. Inthe case of the square loss, a weak form of Eq. (15)]@xe Qi S|l co <
1 turns out to be necessary and sufficient for asymptotic comedel selectio[}4]. While

the weak form is clearly necessary for model consistenay,tha strict form sufficient (as

proved in Theorenf]4), we are currently investigating whethe weak condition is also
sufficient for the logistic loss.

5.2 Efficiency

Another type of result has been derived, based on diffenentfgechniques[[36] and aimed
at efficiency (i.e., predictive performance). Here agair,asn extend the result in a very
simple way. We assume, givét the set of non-zero componentswuaf:

(A5) Restricted eigenvalue condition

) (ATQA)l/Q
= min B TE—
Iakeli<laklh  [[Ax]2
Note that the assumption made [n][16] is slightly strongerdmly depends on the car-
dinality of K (by minimizing with respect to all sets of indices with caaity equal to the
one of K). The following theorem provides an estimate of the esiioma¢rror as well as an
oracle inequality for the generalization performance (@eef in Appendi{F):

Theorem 5 (Efficiency for /1-regularization) Assume(Al), (A2), (A3), (A4), and (A5).

Forall A < #TKI’ with probability at leastl — 2pe_>‘”2/5, we have:
lion —wolli < 12A[K|p~?,
Jo(y) — Jo(wp) < 12X2|K|p~2.

12



We obtain a result which directly mimics the one obtainedli] [for the square loss with
the exception of the added bound an In particular, if we take\ = M, we

n
get with probability at least — 2/p, an upper bound on the generalization performance
Jo(wy) < Jo(wo) + 1201"%|K|p—2. Again, the proof of this result is a direct extension
of the corresponding one for the square loss, with few amlthli assumptions owing to the

proper self-concordant analysis.

6 Conclusion

We have provided an extension of self-concordant functibasallows the simple extensions
of theoretical results for the square loss to the logistssloWe have applied the extension
techniques to regularization by tiie-norm and regularization by thig-norm, showing that
new results for logistic regression can be easily derivethfcorresponding results for least-
squares regression, without added complex assumptions.

The present work could be extended in several interestings wa different settings.
First, for logistic regression, other extensions of thécak results from least-squares regres-
sion could be carried out: for example, the analysis of setipleexperimental design for
logistic regression leads to many assumptions that couletlaged (see, e.g.[ [#2]). Also,
other regularization frameworks based on sparsity-intuciorms could be applied to lo-
gistic regression with similar guarantees than for legstages regression, such as group
Lasso for grouped variablef [43] or non-parametric probI88], or resampling-based pro-
cedures[[44] 45] that allow to get rid of sufficient consisienonditions.

Second, the techniques developed in this paper could bededdo other M-estimation
problems: indeed, other generalized linear models beyogidtic regression could be con-
sidered where higher-order derivatives can be expressedgh cumulants[[]9]. Moreover,
similar developments could be made for density estimatiohfie exponential family, which
would in particular lead to interesting developments fou&aan models in high dimensions,
where/;-regularization has proved usef(il[46] 47]. Finally, otlesses for binary or muilti-
class classification are of clear interdst][21], potentialith different controls of the third
derivatives.

A Proofs of optimization results

We follow the proof techniques of][8], by simply changing tbentrol of the third order
derivative. We denote by (w) the third-order derivative of”, which is itself a function
from R? x R? x R? to R. The assumptions made in Propositiphs 1[&nd 2 are in factagot

to (see similar proof in[[8]):

Yu,v,w € RP, |F"[u,v,t)] < R|ull2[vT F"(w)o]2[tT F" (w)t]*/2. (17)
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A.1 Univariate functions

We first consider univariate functions and prove the follogviemma that gives upper and
lower Taylor expansions:

Lemma 1 Let g be a convex three times differentiable functipnR — R such that for all
g"(t)] < Sq’(t), for someS > 0. Then, for allt > 0:

9"(0) 9"(0) st
R sz (¢
Proof Let us first assume that'(¢) is strictly positive for allt € R. We have, for alk > 0:

S < C”%‘Z"(t) < S. Then, by integrating once betweerandt, taking exponentials, and
then integrating twice:

e+ 5t —1) < g(t) — g(0) — ¢'(0)¢ <

~St—1). (18)

—St <logg”(t) —log g"(0) < St,
g"(0)e < g"(t) < g"(0)e™, (19)
g"(0)S7 11— e ) < g'(t) — g'(0) < ¢"(0)S 7 (% — 1),
g(t) = g(0) + ¢'(0)t + ¢"(0)S (e~ + St — 1), (20)
g(t) < g(0) +¢'(0)t + g"(0)57>(”" — St — 1), (21)

which leads to Eq[(18).

Let us now assume only that(0) > 0. If we denote byA the connected component that
contains 0 of the open sét € R, ¢”(t) > 0}, then the preceding developments are valid on
A; thus, Eq. [(9) implies thatl is not upper-bounded. The same reasoning-grensures
that A = R and hence/”(¢) is strictly positive for allt € R. Since the problem is invariant
by translation, we have shown that if there existss R such thaty” (¢,) > 0, then for all
teR,g"(t) > 0.

Thus, we need to prove E{. [18) f@f always strictly positive (which is done above) and
for ¢” identically equal to zero, which implies thatis linear, which is then equivalent to

Eq. (18). [ |

Note the difference with a classical uniform bound on thedtllerivative, which leads to a
third-order polynomial lower bound, which tends-tec more quickly than Eq[(20). More-
over, Eq. [2]1) may be interpreted as an upperbound on thenderan the Taylor expansion
of g around0:

/ 9”(0) " - 1
9(t) = 9(0) = ' (0)t — ==1* < g"(0)S 2(e — 587 = St —1).
The right hand-side is equivalent (%Eg”(o) for ¢ close to zero (which should be expected
from a three-times differentiable function such thgdt(0) < Sg¢”(0)), but still provides a
good bound for away from zero (which cannot be obtained from a regular Taytpansion).
Throughout the proofs, we will use the fact that the fundtion— “— L andu — ﬁﬁ‘—“

can be extended to continuous functionsymwhich are thus bounded on any compact. The
bound will depend on the compact and can be obtained easily.
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A.2 Proof of Proposition[]

By applying Lemmd]1 (Eq.[(20) and Ed. [21)) 4¢t) = F(w + tv) (with constantS =
R||v|]2) and takingt = 1, we get the desired first two inequalities in Ef. (3) and ). (4
By considering the functiop(t) = v F"(w + tv)u, we havey (t) = F"(w + tv)[u, u,v],
which is such thaty'(t)| < |jv|j2Rg(t), leading tog(0)e~ 1125 < ¢(¢) < g(0)el*l2Ft and
thus to Eq. [|6) fot = 1 (when considered for all € R?).
In order to prove Eq[{5), we conside(t) = 2 (F'(w + tv) — F'(w) — F"(w)vt). We
haveh(0) = 0, 7/(0) = 0 andh” (t) = F" (w+tv)[v, v, 2] < R|v||2eBI12 2T B (w) 2] 2 [v T F" (w)v]'/?
using Eq. [B) and Eq[(IL7). Thus, by integrating betweandt,

h/(t) < [ZTF/l(w)Z]l/Z[,UTF//(w)v]l/Z(etRHvHQ - 1)7

which impliesh(1) < [z F”(w)z]/2[uT F" (w)o]/2 [} (eIl —1)dt, which in turn leads
to Eq. (b).

Using similar techniques, i.e., by considering the functio—= 2" [F"(w + tv) —
F"(w)]u, we can prove that for all, u, v, w € RP, we have:

cRlvl2 _ g
———— [ ()] T F (w)] P ufs. (22)

2 [F"(w+v) — F"(w)]u <
[0]l2

A.3 Proof of Proposition[2

Since we have assumed thetw) > 0, then by Eq.[(6), the Hessian &f is everywhere
invertible, and hence the functidiis strictly convex. Therefore, if the minimum is attained,
it is unique.

Letv € R? be such that " F”/(w)v = 1. Without loss of generality, we may assume
that ' (w) " v is negative. This implies that for all < 0, F'(w + tv) > F(w). Moreover,

let us denotes = —v " F’(w) R||v||2, which is nonnegative and such that W <
}j‘(’gj‘;’ < 1/2. From Eq. [B), for alk > 0, we have:
1
Fw+tv) > Fw)+v F'(w)t+ oz HQ(e-R”v'waHszt—1)
vll2

1
R2||v]3

> F(w) + e~ Bllvllzt 4 (1 — g)R||v|ot — 1] .

Moreover, a short calculation shows that forak (0, 1]:
e~ 2= L (1 - k)26(1— k) —1>0. (23)

This implies that fort, = 2(RH1)H2)‘1/¢(11— k)7L, F(w + tov) > F(w). Sincety <
20T F(w)] < 2v(F,w) (1 - ”;@;@}f) < 4v(F,w), we haveF (w + tv) > F(w) for
t =4v(F,w).
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Since this is true for alb such thatv" F”(w)v = 1, this shows that the value of the
function F on the entire ellipsoid (sincE” (w) is positive definite) " F” (w)v = 16v(F, w)?
is greater or equal to the valuewatthus, by convexity, there must be a minimizeér—which
is unique because of Eq] (6)—&f such that

(w —w*) T F"(w)(w — w*) < 16v(F, w)?,
leading to Eq.[(7).
In order to prove Eq{]9), we will simply apply Eq] (7)@t+ v, which requires to upper-
boundv(F,w + v). If we denote by = —F”(w) ! F’(w) the Newton step, we have:
1" (w) ™2 F (w + ) 2
= [P ()2 (w0 + 0) — F(w) — F"(w)o]
1
= ‘ / F"(w) Y2 [F" (w + tv) — F" (w)]vdt
0
1
/
1
J

Moreover, we have from Eq](6):

2

N

F"(w) " V2[F" (w + tv) — F"(w)]F" (w) "2 F" (w) o) dt

2

N

dt.
2

‘ |:F//(w)—1/2F//(w+tv)F//(w)—1/2 _I:| F”(w)l/zv

(e—tR||vH2 o 1)[ < F//(w)—l/2Fl/(w —I—tv)F”(w)_l/2 . < (etRHng _ 1)]

Thus,

1
| F" (w) 2 F (w + )2 < / max{e vz — 1,1 — et BVl || " (1)1 /20|y dt
0

Rl —1— Riju]
Rl

=v(F,w) /Ol(etR””'2 —1)dt = v(F,w)

Therefore, using Eq[](6) again, we obtain:

SRl /2€2 = 1= Rlv]la
R|lv|[2

v(Fw+v) = [[F"(w+0) "2 F(w + 0) s < v(F,w)

We haveR||v||; < RA~Y?v(F,w) < 1/2, and thus, we have

GRllvll2/2 efllvll —1 — Rljo]l

< Rlv|l2 < Rv(F,w)\(w) ™2,
Rlv[l2

leading to:

v(F,w+v) < (F,w)?. (24)

R
/\(w)l/zy
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Moreover, we have:

Ru(F,w +v) ReFlvlz/2 R Riiol, €012 —1— R||v]|
’ < r < —— _u(F llvll2
Aw + v)1/2 Mw)1/2 vFwtv) Mw)1/2 v(Fw)e R[[vl2 ’
R R 2
< WV(F,U)) X R”’U”Q < <WV(F,U))> < 1/4,

which leads to Eq[{8). Moreover, it shows that we can apply(@gatw + v and get:

[(w* —w—v) " F"(w)(w* —w—v)]'/?
< efl2[(* —wp — )T F" (w + v) (w* — w — v)]H/?
< 4eflM2/2y(F w4 v) < AR|wl|av(F, w),

which leads to the desired result, i.e., El]q. (9).

B Proof of Theorem[]

Following [26,[21], we denote by, the unique global minimizer of the expected regularized
risk Jy(w) = Jo(w) + 3[lwl|3. We simply apply Eq.[{7) from Propositidh 2 8 andw,,

to obtain, if the Newton decrement (see Secfion 2 for its dfir) V(j)\,w)\)2 is less than
A/4R?, thatwy, and its population counterpait, are close, i.e.:

(0 — wy) " JY (wy) (0x — wy) < 160 (Jy, wy)2.

We can then apply the upper Taylor expansion in Hg. (4) froopﬁ&itionl]. toJy andw,, to

obtain, withv = @y — w (which is such thaRjv]|y < 424020 < 9):

vl JY (wy)v

(eRlIvl2 — Rjv]ly — 1) < 200 (Jy, wy)?.
R2||vf3

Ia(x) — Ja(wy) <
Therefore, for anyuy € RP, sincew, is the minimizer o/, (w) = Jo(w) + 5|Jw||3:

. A A
Jo(wx) < Jo(wo) + 5”“’0“% +200(Jy, wy )2 (25)

We can now apply the concentration inequality from Propasig} in Appendix[, i.e.,
Eq. (42), withu = log(8/5). We use\ = 19R? W. In order to actually have
y(jA,wA) < A/2/2R (so that we can apply our self-concordant analysis), it fiicient
that:

A R*u/ n < A/8R%, 63(u/n)>?R%/X < \/16R2, 8(u/n)*R? /X < \/16R?,
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leading to the constraints < n/125. We then get with probability at least-6 = 1 —8e™*
(for u < n/125):

A (10 + 100R?||wol3)+/log(8/9)
i S Jo(wo) + \/ﬁ .

Foru > n/125, the bound in Eq[(}2) is always satisfied. Indeed, this iegplith our choice
of A that\ > R?. Moreover, sincd|«w, |3 is bounded from above Hyg(2)A\~! < R72,

Jo(wy) < Jo(wo) + —Honz + 20—

. R%
Jo(wy) < Jo(wo) + 7”“& —woll < Jo(wo) + 1 + R?||wo3,

which is smaller than the right hand-side of Hq] (12).

C Proof of Theorem[2

We denote by]0 the second-order Taylor expansmn Loff aroundwo, equal toJT( ) =
Jo(wo) + 3(w — wo)TQ(w wp), with Q@ = J¢ (w), and.J] the expansion ofly around
wp, equal toJT( ) — q"w. We denote byu the one-step Newton iterate fromy for the
function Jo, defined as the global minimizer df and equal tai = wo + (Q + )~ (g —
/\ZU(]).

What the following proposition shows is that we can repldgéy jOT for obtaining the
estimator and that we can replaégby J{ for measuring its performance, i.e., we may do
as if we had a weighted least-squares cost, as long as thehNeeatrement is small enough:

Proposition 3 (Quadratic approximation of risks) Assume(Jy, wy)? = (g— wg) T (Q+
M) g — dwg) < 4R2 We have:

15Rv(Jy, wp)? . 40R?
—— Q@ —wo)lls + —

[ Jo(n) — Jg (@3] < v(Jxwo)'.  (26)

Proof We show that (1)&§V is close tow, using Propositiofi]2 on the behavior of Newton’s

method, (2) thatvYY is close taw, by using its closed formy = wy+(Q+AI)~1(g—Awy),

and (3) that/, andJ{ are close using Propositi¢h 1 on upper and lower Taylor esipas.
We first apply Eq.[{9) from Propositidh 2 to get

16R%2 .
LS NN 27)

(x — @3) "I (wo) oy — @) <
This implies thato, andwY are close, i.e.,
lox — @[ < A7 Hn —@f) T (wo) (@x — @})

16R?> .
e U




Thus, using the closed form expressiondgf = wo + (Q + M)~ (g — Awy), we obtain
[n —wol < ldox — @} || + [lwo — @Yl
V(J)\,’w()) I/(J)\,wo) < 3V(J)\,’w()) < i
A1/2 AL/2 = AL/2 S 9oR’
We can now apply Eq[|(3) from Propositiph 2 to get forafluch thatR||v||» < 3/2,
|Jo(wo 4 v) — JE (wo +v)| < (v Qu)R||v||2/4. (28)
Thus, using Eq[(28) for = @) — wo andv = v} — wyp :

| Jo () — Jg (03]

< 2

< o) = Jg ()] + g (@3) = Jg (@)l
R, . . 1 . .

< g lldx = wolla 1QY2 (bx — wo)13 + 5 ‘HQW(U}A —wo)|l3 — QY2 (@} — wo)|3]
3Rv J},w R 1 . .

< BB 012y — )13 + 1 [1Q 2000 — o)l — Q2 — wo)3].
3Rv j)\,wo “ N N

< 74&1/2 L1Q 20 — w3+ (3+2) Q"2 — wo)l3 — 1@~ wo) ).
3Ry(j)\7w0)

< W\|Ql/2(w§v—wo)”§
5 . . 5 . . .
+1|!Q1/2(wx —aV)[I3 + §|!Q1/2(wx — ) 2| Q2 (@Y — wo)lf2-

From Eq. [27), we havéQ/2(iy — )13 < 821 (Jy, wo)*. We thus obtain, using
that | Q"2 (@} — wo)ll2 < v(Jo, wo):

R R 3 5 v(Jy, wp)? R 40R? .
i) - I @l (3+5v52) “B T 1QY2 0ff — )l + (s, un)'
which leads to the desired result. [ |

We can now go on with the proof of Theordin 2. From g} (26) irpBsition[B above,
we have, ifv(Jy, w)? < A\/4R?,

Jo(in) = Jg (@) + B
1
= Jo(wo) + 5(a = Awo) TQQ + A7 (q — Mwo) + B
da b
= Jo(wo) + 5+ 5 +B+C,

WG = X (Q+ A Qa+ 5 (@ A (" - 1Q)

15R1/(j)\, w0)2
2\L/2

40R?

1QY (@ — wo)|2 + v(Jx, wo)*.
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We can now bound each term separately and check that we ihdeed(.Jy, wo)? < A/4R?
(which allows to apply Propositidd 2). First, from Ef.](1@)e can derive

d d A/2
byt 2 <hy+ 2t (b2
n n R

1/2
20,

R
which implies the following identities:
d2 d1 I{2/\
—~ < — < == 29
bt = <bit — < 55 (29)
We have moreover:

V(j>n w0)2 =

(¢ — Awo) " (Q + M)~ (g — Awy)

d
by + 51 +tr (Q + AI)—1<qu — Q) + 2 wg (Q + M) q.

n

<

We can now apply concentration inequalities from Apperidixd@ether with the following

applications of Bernstein’s inequality. Indeed, we hawg (Q+\1)"2Qq = >, Z;, with
A _

1Zil < Slwg (Q+ M) *Qui

AT -2 V2o 1 “a M2 bé/z ~1/2
< %(wo (Q + \I) Qw0> (:c (Q + \I) sz) <2

Moreover,EZ2 < 22w (Q + A1) ~2Q3(Q + AI) 2wy < Lby. We can now apply Bernstein
inequality [2] to get with probability at least— 2¢~* (and using Eq.[(29)):

2b b
Mg (Q +M)72Qq < \/g_i_ 6%55/2R)\—1/2 < \/?-l— uk

6_n.
Similarly, with probability at least — 2¢e™%, we have:

2b
Xud (Q+AD)hg </ ==+

We thus get, through the union bound, with probability astéa— 20e "

. d 3242012 18u  53RdV*uP? R2u?
2 “ D4ty wrTT Lo 1
v(Jy,wp)” < <b1 + n> + ( - -7 REYCINYE +9 2 >

+<2\/ 2oou | ﬂ)
n 6n
d 4 1/2
< bt 1 64u

da\1/2  u Ky  R?9u?
—+ 5 (bt =)+ —(18+ =) +

6 A n?
53n1/2 ku3/?
e
k2
S itk
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together withC' < E. We now takeu = (nby + d2)v? and assume < 1/4, x < 1/16, and
v3(nby + dy)V/? < 12, so that, we have

Ky . 9R? d
gty )

+53n1/2 k03 (b +

B o< 6ot 2) 1o+ B)(s+
dz)s/z
9R? 4/\

64v 4 (18 + — ) e

N

+ 53k03 (nby + d2)1/2>

68.5v +

(b + — <
d
< (2t ) <64” +180° ’U +95%0" + 53k0° (nby +d2)1/2>,
(b + — <

12
—1—9/{/16 x 16 x 16 + 53k X a)

da

o)

< (b2+i?) 69v+10m)\ 0(by +

This implies thab/(jk,wo)2 <220 < so that we can apply Propositiph 2. Thus, by

R2 256 X 4R2’
denotinges = b, + ,e1 =b1+ d1 ,anda = 69v+ 10k < 20, we get a global upper bound:

1/2
0R? 15Red/ 2

4
B+ |C| < e+ 3 (e1 + eg)? + —2— /\1/2 (e1 + e2a)(1 + )

With e, + eza < eb/*(kAY2/R)(1 + ), we get

B +1|C| eaa 4 40k%ex(1 + @)? + 15kes (1 + o)®/?

a0 + €2k (40 x 21 x 21/16 4 15(21)%/2) < e2(69v + 2560k),

NN

which leads to the desired result, i.e., Hq] (14).

D Proof of Theorem[3

We follow the same proof technique than for Theof¢m 2 in Apipef}. We have:

Jo(tby) = Jo () +q" (x —wo) + ¢ wo
Jo(y) +q" (bx — 03 N) + g (@Y —wo) —q' Y (@Y )T IZ (@) + g wo,

wherewﬁv Nis the two-step Newton iterate fromy. We have, from Eq[R4)/(Jy, wY) <
2y v(Jx, wo)?, which then implies (with Eq[]9)):

(n — D) T(Q + M) (wy — w3 ™) <

16R2 (2R - ,\*  B5I12RSu(J\,wo)®
h\ <WV(J)\,ZUQ)> < A3 ’
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which in turn implies

R X _ 32R3u(J S W 4
g7 0y — M) < [g(@ + A1) L) )\(3/; 2

R[q(Q + \I)~1q)"/2 32R%v(J), wo)?
= A\1/2 A ’

(30)
Moreover, we have from the closed-form expressiodf

R d _ _
0" (@} —wo) = —| < [tr(@ +AD " (ag" — Q/n)| + dug (Q+AN'g. (31
Finally, we have, using Eq[](5) from Propositidn 1:
lq" @) R @Y)] = g I (@) T g (@]) = Jg(wo) — Q@R — wo)]|
< [a" H@N) Q@) ) P [ATQA] R AL

Rl/(j)” ’LU())

_ 1/2
2[47QQ +AD ) QP Al

N

(32)

whereA = @Y — wy.

What also needs to be shown is that Q\(Qx + M)~ — tr Q(Q + AI)~| is small
enough; by noting tha® = J/ (wo), Q\ = J{ (wo + v), andv = w) — wp, we have, using
Eqg. (22) from Appendif A]2:

[ tr QA (Qx + AI)7H —tr Q(Q + AI) |
At (@ +AD)7HQ — Q(Q + AN ]|

A1 (@ +ADTHQ — Q)@ + M)

<
i=1
p N
< AR QYAHQ + AD) TV Il (Qx + AD) T 121QY vl
i=1
p
< AVERIQV Y6 QQ AN TS = AARIQ P ladr. (33)

i=1

All the terms in Egs.[(30,3[L,B2]33) that need to be added taimkhe required upperbound
are essentially the same than the ones proof of Theffem 2 pereix[¢ (with smaller
constants). Thus the rest of the proof follows.

E Proof of Theorem[4

We follow the same proof technique than for the Lads¢ [1h,[#, i.e., we considetd
the minimizer of.Jy(w) + As'w subject towge = 0 (which is unique becaus@x is
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invertible), and (1) show thaby has the correct (non zero) signs and (2) that it is actually
the unrestricted minimum ofy(w) + A||wl||; overR?, i.e., using optimality conditions for
nonsmooth convex optimization problenjs][48], that) (0)] relloo < A. All this will be
shown by replacingv by the proper one-step Newton iterate fram.

Correct signs onkK. We directly use Propositiol) 2 with the functiary — jo(wK, 0) +
/\s}wK—where(wK,O) denotes the-dimensional vector obtained by completing, by
zeros—to obtain from Eqf](7):

(k — (wo)k) Qi (Wx — (wo)x) < 16(qx — Ask) ' Q' (ax — Ask) = 1607,

as soon as? = (qx — )\sK) Qi‘(lK(qK — Asi) < RQ, and thus as soon @&QKKqK
<& andA\?s L Qe sk < 5oz We thus have:

~ ~ — 1/2 —
1 — wolloo < 0k — (wo)klla < P~ QL (Wx — (wo)r)l2 < 47"/

We therefore get the correct signs for the covariates irdibyes’, as soon afw — wyl|%, <
minjex |(wo);|*> = 12 i.e., as soon as

max {qKQ[_{quK, /\ZSIT{QI_{IKSK} < min {1l)6 2 8—]22} .

Note thats}QKKsK |K|p~!, thus it is implied by the following constraint:

p . -1
A< 74|K|1/2 min {,u,R } , (34)

Ik Qxar < 1_6 min {p?, R™%} . (35)

Gradient conditipn on K¢. We denote byi'V the one-step Newton iterate from, for the
minimization of Jo(w) + As Tw restricted tawge = 0, equal tow ) = (wo)x + Qx5 (ax —
A\sx). From Eq. [P), we get:

. 16 R? 16 RZp4
(g —wN) Qrr(Wx —WR) < .

[(gx — Asi) T Qi (ax — )\sK)]z = p

We thus have

—1/2 ARV?  ARV?

Hw wN”Z < Pl/2 P) < 1/R7
lwo —a™|la < p~H?w <1/2R,
[ —wolly < [ld —@Nl2 + lwo — @N|2 < 3vp~'/* < 3R/2.

Note that up to here, all boundgmay be replaced by the maximalnorm of all data points,
reduced to variables ix .
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In order to check the gradient condition, we compute theigraaf J, along the direc-
tions in K¢, to obtain for allz € RP, using Eq.[(f) and with any such thatR|jv|s < 3/2

|27 [Jg (wo + v) = Tf (wo + v))|
(ZTQZ)1/2

12z —1— Rjv]ls

<2 vTQv 12|l 2,
i (v Qo) 2Rl

< (v Qu)

whereTy(w) = Jj(wo) + Ji (wo)(w — wy) is the derivative of the Taylor expansion &f
aroundwy. This implies, sinceliag(Q) < 1/4, the following/..-bound on the differencé,
and its Taylor expansion:

[ (wo + v) — Th(wo + v)]kelloo < (v Q)2 R]Jv]|2.
We now have,

170/(@) ice oo < Hfé@N)KcHoo
HITG (@) rce To( Jicelloe + I1T5(@) xce = Jo (@) ke oo,

< [Jg(wo) + Q™ — wo)]kelloo
H[Q( — &™) ke[l + Rl — woll2]| Q" (0 — wo)||2,
< |l = gre + Qrer Qx4 — Ask)|
HIQrek Qi Qi (i — W) oo + 3uRp V2(4Rv2p72 4 ),
_ IR
< lgre — QKCKQKK(qK = A8k )|l + HQKK(wK wK)”Z + =7 /2 2=
B 1 16R IR
< Hch - QKCKQKII((QK - )\SK)HOO 4 1/2 2 mu27
_ 16R
< lgre — QKCKQKIK(QK — ASK)||oo + WVZ
Thus, in order to geft.J} (1) k||l < A, we need
lgre — QrerQukax oo < MA/4, (36)
and 12
- - Anp
maxc { g Qi N2k Qs b < o (37)

In terms of upper bound ok we then get:

/

. p P 1 P
A< ; R™ ——=== ¢
ml“{4|K|1/2“ AK|? 64R|K|}

which can be reducedl < min { 4‘K”|1/2M, ng\% } In terms of upper bound oy, Q) ax
we get:

P 9 P o Mpl/z}

67168 T6aR
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which can be reduced tg, Qg < min {I—%MQ, AZZ;/Q , using the constraint ok.

We now derive and use concentration inequalities. We firstBernstein’s inequality
(using for allk andi, |(z;)r — QrrxQxx (i) Kllei] < R/p'/? and Qpr. < 1/4), and the
union bound to get

A2n? /32
P(lgre — QrexQtoqicllas = An/a) < 2 "
(laxe — Qrer Qx| n/4) P EXp < 1/4—|—R/\77p_1/2/12>

)\2 2
< 2pexp<—n d )

16

as soon aRRAnp~ /2 < 3, i.e., as soon as\ < 3p*/2R~!, which is indeed satisfied because
of our assumption on. We also use Bernstein’s inequality to get

_ pt npt
M&@&w>w<ﬂﬁmw> —O<mep(jm)

The union bound then leads to the desired result.

F Proof of Theorem[3

We follow the proof tAechnique ofJlL6]. We havfa(zzu) = Jo(wy) — q"10y. Thus, because
w) is a minimizer ofJy(w) + Aljw

1
Jo(ty) — gy + Al < Jo(wo) — g wo + Aljwoll1, (38)
which implies, since/y(wy) = Jo(wo):

All@ally
M(@x) el + All(@x) kella

Allwolly + [lglloc @ = woll1,
All(wo) i ll1 + llglloo (I (t0x) i = (wo) il + [1(2) 5cel1)-

VAR/A

If we denote byA = w) — w the estimation error, we deduce:

(A = llalloo)l[Akellr < (A + llglloo) [ AK |1

If we assumé|q||o < A\/2, then, we havélA k|| < 3||Ak |1, and thus usingA5), we get
ATQA > p?||Ak|3. From Eq. [38), we thus get:

Jo(y) — Jo(wo) < ¢ (x — wo) — Alldal1 + Al|woll1,
(

3\
Tofwo +A) = Jo(wo) < (lalle + NIAIL < AL (39)

Using Eq. [B) in Propositiof] 1 wittl, we obtain:

T
Jo(’w() + A) — Jo(wo) > A QA

> A (@ RlIAL 1),
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which implies, usingA TQA > p?||Ak |3 and Eq. [39):

PzHAKuz

3\
SAINE <3P
A (¢ 1+ RIAE - 1) < TlA L (40)

We can now use, with =

< Al < 4l|Ak |l < 4y/s]|Ak |2 to get:

3\ (4[| Ak]l2)* R A2
2 IAK]I3

p? (e BlIAlz 1 RI|A], — 1) < < 24AsR%||Alf5.

This implies using Eq.[(23), thak|All> < % < 2 asoon asAsp~? < 1/48,

which itself implies thatzrarz (¢~ #1212 + R|| Al — 1) > 1/2, and thus, from Eq[§0),

3\
1A%kll2 < 5 > 4[| Ak 2.
The second result then follows from E{.](39) (using Bernsiteéquality for an upper bound
onP(llgllec = A/2)).
G Concentration inequalities

In this section, we derive concentration inequalities foadyatic forms of bounded random
variables that extend the ones already known for Gausstatona variables[[28]. The fol-
lowing proposition is a simple corollary of a general cortcation result on U-statistic$ [IL1].

Proposition 4 Letyq,...,y, ben vectors inR? such that||y;||c < bforalli =1,...,n
andY = [y/,...,ys]" € R*™*P. Lete € R" be a vector of zero-mean independent
random variables almost surely bounded by 1 and with vagan¢, i = 1,...,n. Let

S = Diag(c;) 'YY T Diag(o;). Then, for allu > 0:

P[1eTYY e —tr S| > 32tr(S*)2u!/? + 18 )\ ax(S)u
+ 126b(tr )2/ 4 390%u?] < 8e 7. (41)

Proof We apply Theorem 3.4 froni [L1], with; = &;, g; j (t:, t;) = y; yitit; if |t:], |t;] < 1
and zero otherwise. We then have (following notations fridj);

A = H;&;XIyiTyijz,
B2 = max 2 max bo 2 b2 tr(S
i€ {1} i)' \ze{l, m}Zyz v (5);

1

c? = Z(yfyj)%f—a? < 5 t2(5%),
1<
1

D < a5 /'\max .
S E)

26



Thus (using: = 4 in [[[7]):
IP’( > ulyiei;

j#i
Moreover, we have from Bernstein’s inequalify [2]:

> 44.8Cu'? + 35.36Du + 124.56 Bu®/? + A38.26u2> < 5.542¢7%,

n
Y vl vilel —o?)
=1

r(|:

leading to the desired result, noting that fox log(8), the bound is trivial. [ |

b2
> ul/2V2p2tr S + %) < 2e7,

We can apply to our setting to get, wigh= 1 (P+AI)~1/2z; (with [|z;||> < R), leading
tob = $Rn~*A"2 andS = % Diag(o)X(P + \I)"*X " Diag(o).

Misspecified models. If no assumptions are made, we simply havg;, (S) < (tr §2)1/2 <
tr(S) < R%/An and we get after bringing terms together:

41R*u  R? [ _u? u3/?
1, > - — - < u
]P)[q (P+ M) g > n + \ <8n2—|—63n3/2>] < 8e (42)

Well-specified models In this case,P = Q andApax(S) < 1/n, trS = di/n, tr S? =
do/n?.

d
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