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ABSTRACT 

Daily variations in core temperature (Tc) within the normothermic range imply 

thermoregulatory processes that are essential for optimal function and survival. Higher 

susceptibility towards cold exposure in older animals suggests these processes are disturbed 

with age. In the mouse lemur, a long-day breeder, we tested whether aging affected circadian 

rhythmicity of Tc and locomotor activity (LA) and energy balance under long-day conditions 

when exposed to cold. Adult (N = 7) and aged (N = 5) mouse lemurs acclimated to LD14/10 

were exposed to 10–day periods at 25 and 12°C. Tc and LA rhythms were recorded by 

telemetry, and caloric intake (CI), body mass changes, and plasma IGF-1  were measured. 

During exposure to 25°C, both adult and aged mouse lemurs exhibited strong daily variations 

in Tc. Aged animals exhibited lower levels of nocturnal LA and nocturnal and diurnal Tc 

levels in comparison to adults. Body mass and IGF-1 levels remained unchanged with aging. 

Under cold exposure, torpor bout occurrence was never observed whatever the age category. 

Adult and aged mouse lemurs maintained their Tc in a normothermic range and a positive 

energy balance. All animals exhibited an increase in CI and a decrease in IGF-1  in response 

to cold. The decrease in IGF-1 was delayed in aged mouse lemurs compared to adults. 

Moreover, both adult and aged animals responded to cold exposure by increasing their diurnal 

LA compared to those under Ta = 25°C. However, aged animals exhibited a strong decrease 

in nocturnal LA and Tc, whereas cold effects were only slight in adults. The temporal 

organization and amplitude of daily phase of low Tc were particularly well preserved under 

cold exposure in both age groups. Sexually active mouse lemurs exposed to cold seemed thus 

to prevent torpor exhibition and temporal disorganization of daily rhythms of Tc, even during 

aging. However, although energy balance was not impaired with age in mouse lemurs after 

cold exposure, aging was associated with lower LA and Tc during the night and delayed 

decrease in IGF-1. This might reflect that adaptive strategies to cold exposure differ with age 



Aging and cold resistance in a non human primate 
 

3

in mouse lemurs acclimated to a summer-like photoperiod. (Author correspondence: 

terrien@mnhn.fr). 

 

Key words: Aging – LD14/10 – thermoregulation – IGF-1 – circadian rhythms – cold 

exposure – Microcebus murinus. 
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INTRODUCTION 

Daily variations in core temperature within the normothermic range imply 

thermoregulatory processes that are essential for optimal function and survival. The circadian 

rhythmicity in core temperature (Tc) is the result of both intrinsic circadian variations in heat 

production and heat loss, and interactions of heat generating behaviors, such as locomotor 

activity (LA) or adapted postures (for review, see Van Someren et al., 2002). Its expression is 

under the control of the central circadian pacemaker which generates the endogenous 

rhythmicity and allows effective synchronization to the light dark cycle (Dardente & 

Cermakian, 2007). Thermoregulatory processes are seasonally dependent (Lovegrove, 2005), 

suggesting that the seasonal breeding state could interfere with Tc levels. In long-day 

breeders, acclimatization to a long photoperiod induces entrance into reproductive state with 

an increase in gonadal steroid hormones, which are well known for their thermogenic action 

(Hampl et al., 2006). This may partially explain why many mammals, such as European 

(Wollnik & Schmidt, 1995) and golden hamsters (Jefimow et al., 2004) exhibit higher Tc 

during the summer than winter. The influence of seasonal acclimatization on 

thermoregulatory mechanisms has also been demonstrated in voles (Zubidat et al., 2007). 

Thus, the sexually active state could allow animals to cope with low ambient temperatures 

(Ta) and to efficiently prevent hypothermia. In fact, cold exposure interferes with circadian 

rhythmicity in Tc by inducing modulations in thermoregulatory processes. This implies 

hormonal changes (Larrouy et al., 1995). More specifically, Insulin-like Growth Factor type 1 

(IGF-1) has been proposed to act in cold-induced thermogenesis processes in the rat 

(Duchamp et al., 1997; Yamashita et al., 1994). 

With age, there are evidences of a decrease in the robustness of circadian rhythmicity in 

Tc (for review, see Van Someren et al., 2002; Weinert & Waterhouse, 2007). More, aging  is 

associated with an increased prevalence of death caused by hypothermia (Stocks et al., 2004; 
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Ward & Cowley, 1999). However, data on daily Tc and LA rhythms during continuous 

exposure to cold are scarce (Palkova et al., 1999; Rensing & Ruoff, 2002; Tokura & Aschoff, 

1983) and do not address the question of age-related disturbances. Thus, the reasons why 

some aged individuals become more sensitive to cold exposure are not entirely clear. 

Considering that aging induces changes in many hormonal factors (Ferrari et al., 2008; 

Vermeulen, 1995), seasonal variations in hormones might also be disturbed with aging (Vom 

Saal et al., 1994), with lower capacities for photoperiod-induced adjustments. IGF-1 secretion 

is influenced by photoperiod in golden hamsters (Laartz et al., 1994) and primates (Ganzhorn 

et al., 2003) and is also modified with aging (Sherlock & Toogood, 2007). Such endocrine 

processes could directly or indirectly contribute to age-related impaired thermoregulatory 

responses towards cold exposure. Based on these published findings and to the lack of study 

on the role of reproductive state on cold resistance, we explored whether age-associated Tc 

decrease in response to cold are preserved in a sexually active non-human primate, i.e., the 

mouse lemur (Microcebus murinus). 

Microcebus murinus is a small nocturnal primate (body weight: 60 – 90 g) originating 

from Madagascar. The life span of this species is about 8 yrs in captivity (Perret, 1997). In 

thermoneutral conditions, mouse lemurs exhibit robust daily rhythms in Tc, particularly 

characterized by a phase of low Tc (assimilated as a drop to a minimal Tc followed by an 

increase in Tc) during the first half of the light period (Perret & Aujard, 2001). Daily 

exposure to light for longer than 12 h promotes sustained behavioral and reproductive activity 

(Perret, 1992). Entrance into the reproductive state appears to protect normothermia 

maintenance in the mouse lemur. For example, when testing behavioral thermoregulatory 

responses, adult animals under LD14/10 did not need to select warm environments to 

efficiently maintain normothermia. Furthermore, the effects of a moderate food deprivation, 

known to induce a decrease in Tc, were  minimal in adult mouse lemurs exposed to LD14/10 



Aging and cold resistance in a non human primate 
 

6

(Giroud et al., 2008). In contrast, aged animals always chose the warmest ambient 

temperatures during the behavioral test. Such differences in adaptive strategies between 

young adults and aged mouse lemurs highlight subtle changes in thermoregulatory capacities 

that were undetected when studying daily rhythms of Tc in reference Ta (25°C). Indeed, a 

marked rhythm of Tc is maintained in aged animals with, however, a delayed time of 

occurrence of minimal Tc with age (Aujard et al., 2007). Finally, aging is also associated in 

the mouse lemur with a decrease in amplitude of the seasonal variations in body mass, 

gonadal hormones (Aujard & Perret, 1998), melatonin (Aujard et al., 2001), and DHEA-S 

(Perret & Aujard, 2005, 2006). Based on these findings, age-related effects on 

thermoregulatory responses towards cold were investigated by monitoring daily Tc and LA 

rhythms, body mass, caloric intake, and plasma IGF-1 in sexually active mouse lemurs. 

METHODS 

Animals and housing conditions: 

 All the gray mouse lemurs studied were males, born in the laboratory breeding colony of 

Brunoy (MNHN, France, license approval N° A91.114.1) and were pathogen free. General 

conditions of captivity were maintained constant: Ta (24 - 26°C) and relative humidity (55%). 

Food (including fresh fruits and a milky mixture) and water were available ad libitum. In 

captivity, seasonal variations of physiological functions can be entrained by alternating 6-

month periods of summer-like long photoperiod (14 h of light/day) and winter-like short 

photoperiod (10 h of light/day) under artificial light (fluorescent tubes during the day and dim 

red light during the night). In the present study, male mouse lemurs were studied during the 

long-day season (LD14/10), at least two months after the onset of the summer-like 

photoperiod. This ensured stabilization of the physiological status of the animals. Long days 

correspond to the mating season (high testosterone levels and large testis size), associated 

with high levels of activity and significant body mass decrease. General conditions of 
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captivity were applied and animals were maintained in social groups before and after 

experimenting. In the breeding colony of the Brunoy laboratory, analysis of survival from 254 

male mouse lemurs determined the mean life span (mean ± SEM)to be 6.0 ± 0.2 yrs, the mean 

life span of the 10% of longest lived animals to be 10.0 ± 0.2 yrs, and the observed maximal 

survival duration to be 12.0 yrs. In the present study, randomly chosen adults (N = 7; mean 

age ± SEM: 1.6 ± 0.3 yrs, range: 1.0 – 2.4 yrs) and aged mouse lemurs (N = 5; mean age ± 

SEM: 7.4 ± 0.2 yrs, range: 6.4 – 8.3 yrs) were used throughout all experiments. All 

experiments were carried out in accordance with the European Communities Council 

Directive (86/609/EEC) and the ethical standards of the journal (Portaluppi et al., 2008). All 

efforts were made to minimize nociception.  

 

Core temperature and locomotor activity recording:

Animals were maintained in climate chambers (Sanyo incubator MIR-253), in which air 

was filtered and light was provided by cool fluorescent lamps. Mouse lemurs were acclimated 

to the experimental device for 10 days at Ta = 25°C. They were then studied for 10 days at the 

reference Ta of 25°C and then exposed to a cold environment (10 days at 12°C). Core 

temperature (Tc) was measured using a telemetric device: a 2.5 g transmitter (TA10TA-F20, 

Data Science Co. Ltd, Minnesota, USA) was implanted under general anesthesia (Valium, 

2mg/100g i.m.; Ketamine Imalgem, 10mg/100g i.p.) in the visceral cavity of the animals. 

Calibrations for each transmitter were provided by the manufacturer. Experiments were 

performed after at least 2 weeks of recovery. Mouse lemurs were isolated in individual cages 

provided with branches and a wooden nest. A receiving plate (RPC-1, Data Science Co Ltd, 

Minnesota, USA) localized in the cage permitted the recording of data sent by the transmitter. 

Tc (in °C) was recorded every 10 min and locomotor activity (LA in arbitrary units a.u.) was 

continuously recorded and summed within this interval by two antennas located in the 
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receptor plate and detecting vertical and horizontal movements (X-Y coordinate system, 

Dataquest Lab Pro v. 3.0, Data Science Co. Ltd, Minnesota, USA).  

The following parameters were analyzed: mean Tc during the active nocturnal phase 

(Tcnight), mean Tc during the resting diurnal phase (Tcday), minimal Tc value (Tcmin), time of 

occurrence of Tcmin (Hmin), and time of onset of Tc drop (Hdecr). The last two parameters were 

expressed in minutes relative to lights on and determined day after day on graphic 

determination. Hdecr was determined each day as the first time point after which at least 3 

successive bins of Tc decrease occurred. Similarly, Hmin was determined each day as the time 

point occurring at least after 30 min of decrease and preceding at least 30 min of Tc increase. 

Consequently, Tcmin corresponded to the Tc value pointed at the Hmin time point. Tcmin, Hdecr, 

and Hmin were representative parameters of the daily phase of low Tc. Finally, LA values were 

averaged during the nocturnal active phase (LAnight) and the diurnal resting phase (LAday). 

Actograms were also generated using Clocklab software (Actimetrics Inc., Evanston, IL). LA 

onset and offset (in min) were defined as the time of occurrence of the first or last 

(respectively) 3 successive bins when activity was greater or lower (respectively) than LAday. 

LA onset and offset were calculated in reference to the time of lights-off and lights-on, 

respectively. The duration of the LA active phase (alpha, in min) corresponded to the time 

duration between LA onset and offset values. For all temporal parameters, phase advances 

were expressed by positive values and phase delays by negative values in reference to their 

respective reference points. All telemetric parameters were averaged for each thermal 

exposure. 

 

Body mass, caloric intake:

Before the experiment, body mass (BM) of adult (mean ± SEM: 80.4 ± 4.9 g) and aged 

mouse lemurs (mean ± SEM: 97.1 ± 8.7 g) did not differ significantly (one-way ANOVA, F1, 
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13 = 3.0, p = 0.11). BM was measured every 2 days throughout the experiment and the body 

mass gain (BMG) was calculated as a mean ratio (in g/day) during the whole exposures. 

Animals were routinely fed ad libitum on a diet including fresh banana (393 kJ/100g) and a 

homemade milky mixture containing baby cereals, eggs, and milk (435 kJ/100g). Daily 

caloric intake (CI) was calculated by subtracting the remaining food from the total food mass 

given. CI was expressed in kJ according to the Diem table (Diem, 1963) and normalized to 

the BM of the animal (kJ/day*100g BM). The evaporation-related loss was taken into account 

in the calculation of CI (Seguy & Perret, 2005) to ensure reliable comparisons between 25 and 

12°C, since evaporative loss varied between the two Tas. 

 

Plasma IGF-1 levels: 

To assess the IGF-1 response to thermal stress, blood was taken from animals 3 h before 

the beginning of the nocturnal phase at the reference Ta of 25°C and then 2 days (short-term 

response) and 9 days (long-term response) after the beginning of cold exposure. About 100 μl 

of blood was drawn from the saphenous vein into heparinized tubes without anesthesia. After 

centrifugation, plasma was immediately collected and preserved at –20°C until the 

radioimmunoassay, which was performed according to the manufacturer instructions 

(Immunotech IGF-I IRMA; Beckman Coulter, Paris, France). Intra- and between-series 

variation rates were <7% and the minimal detectable value was 2 ng/ml. To avoid any 

potential influence of animal handling on Tc values, the telemetric data corresponding to the 4 

h after the blood samples were removed. Plasma IGF-1 is expressed in ng/ml. IGF-1 is known 

to co-vary with BM since it influences body composition, particularly body fat (Engstrom et 

al., 2006; Onder et al., 2006); therefore, BM was included in all statistical models analyzing 

IGF-1. 
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Statistical analysis 

All dependent variables were analyzed with Linear Mixed Effect models (LME), built 

with the “nlme” function (Pinheiro et al., 2005). All dependent variables were checked for 

normality with the residuals of the models. Non-normal variables were transformed to reach 

normality, i.e., log-transformation for LAnight, Hmin, and Tcnight and square-root transformation 

for LA onset and alpha. To take into account inter-individual variability, the effect of 

individual identity was declared as a random effect. In addition, since the same individuals 

were used at 12 and 25°C, we allowed inter-individual variation to depend on temperature by 

declaring the slope of the effect of Ta as a random factor. Statistical models that included the 

additive effects of age (two levels, adult versus old) and Ta (two levels, 12 and 25°C) and 

their interaction were constructed. Significance of effects were assessed by F-tests (Bolker et 

al., 2009) with software R Version 2.6.0 (R Development Core, 2004). 

RESULTS 

Effects of age and Ta on energy balance and IGF-1 levels: 

Energy balance was studied by quantifying CI, BMG, and plasma IGF-1 levels. CI was 

affected by cold exposure, independently of age (Figure 1A). Adult animals ingested on 

average 138 ± 12 kJ/day*100g BM at 25°C and 183 ± 7 kJ/day*100g BM at 12°C (33% 

increase from 25°C to 12°C). Aged animals exhibited an increase of 14% in CI after cold 

exposure, from 131 ± 22 kJ/day*100g BM at 25°C to 149 ± 30 kJ/day*100g BM at 12°C. BM 

remained stable throughout the experiment without significant effects of age or Ta exposure 

(Figure 1B), although the decrease in BMG between 25 and 12°C was close to significance. 

When taking into account variations in BM, IGF-1 was affected by an interaction 

between age and Ta effects (Figure 2). IGF-1 levels were similar at both ages at 25°C, but 

they were differently modified after cold exposure. The IGF-1 level decreased from 878 ± 70 

ng/ml to 685 ± 68 ng/ml after 2 days of cold exposure in adult animals, whereas such a 
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decrease was only observed after 9 days in aged animals (from 944 ± 131 to 808 ± 109 

ng/ml). Therefore, the IGF-1 level was higher in aged than in adult animals at the beginning 

of cold exposure, but it was similar at the end of the 10-day cold exposure (Figure 2). 

 

Effects of age and cold exposure on Tc and LA rhythms parameters: 

LA daily rhythms, for both age groups during both exposures to 25 and 12°C, are 

represented in Figure 3. The LAnight level significantly differed by interaction between age 

and Ta effects (Figure 3 & Table 1). At 25°C, aged animals exhibited a lower LA than adults 

during both the nocturnal and diurnal phases (Table 1). After cold exposure, adult animals 

slightly decreased their nocturnal activity compared to 25°C, whereas a 39% decrease 

occurred in aged animals between 25 and 12°C (Figure 3). Therefore, the LAnight level 

remained lower in aged compared to the young adult animals at 12°C as observed at 25°C. 

Cold exposure induced a 2.1-fold increase in LAday in adult animals, whereas a 1.5-fold 

increase was observed between 25 and 12°C in aged animals. In addition, a 10% lengthening 

of LA alpha was observed in both young adult and aged animals between 25 and 12°C (Table 

1). This effect of cold exposure was due to a strong phase advance in LA onset in both adult 

and aged mouse lemurs at 12°C, whereas LA offset was not affected by age or cold exposure. 

The nocturnal organization of LA was also modulated in both age groups in response to cold. 

The amount of LA decreased in the middle of the night and increased around the periods of 

lights on and lights off into distinct early and late peaks of activity (Figure 3). 

Tc daily rhythms of both age groups during the exposures to 25 and 12°C, are 

represented in Figure 4. At each Ta (25 or 12°C), adult and aged animals exhibited robust 

daily rhythms of Tc, with high values during the nocturnal active phase and lower values 

during the diurnal resting phase. Daily rhythms of Tc throughout the 10 days of exposure to 

25 and 12°C are represented in Figure 4. Tc levels at 25°C were lower in aged lemurs 
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compared to young adults ones, except for the minimal levels of Tc that were not affected by 

age at 25°C (Table 2). Nocturnal Tc responses to cold exposure strongly differed according to 

the age category. Indeed, only a slight decrease in Tcnight was observed in young adult animals 

after exposure to 12 compared to 25°C (Table 2). In contrast, in aged animals, Tcnight strongly 

decreased by 0.8°C between mean values at 25 and 12°C (Figure 4). Mean values of Tcmin 

were not significantly lowered, and neither adult nor aged animals exhibited torpor phases 

(i.e., Tc dropping <33°C). Tcmin values ranged from 33.8 to 35.4°C in young adult mouse 

lemurs and from 33.2 and 35.8°C in aged animals at 12°C. However, during the day, levels of 

Tc remained lower in aged than in adult animals. The difference between the two ages was 

greatly accentuated by cold exposure. Moreover, the amplitude between the nocturnal and 

diurnal levels of Tc was lowered after cold exposure (F(1,11) = 8.96, p = 0.01), independently 

of age (F(1,11) = 0.10, p = 0.76). In fact, the difference between night and day decreased from 

1.2 ± 0.1 to 1.0 ± 0.1°C in adult mouse lemurs, and from 1.2 ± 0.1 to 0.8 ± 0.1°C in aged 

animals. 

Concerning the temporal organization of the daily phase of low Tc, Hmin was not significantly 

affected by age or cold exposure (Figure 5A). Tcmin occurred in adult mouse lemurs -156 ± 36 

min and -209 ± 30 min after lights-on at 25 and 12°C, respectively. Aged animals exhibited 

Hmin values of -198 ± 22 min and -280 ± 18 min at 25 and 12°C, respectively. In contrast, 

Hdecr was significantly lowered after cold exposure, whatever the age, and the Tc drop was 

thus delayed at 12°C compared to 25°C (Figure 5B). At 25 °C, Hdecr occurred 51 ± 14 min 

before lights-off in young adult animals and 68 ± 22 min before lights-off in aged mouse 

lemurs. After cold exposure, Hdecr was delayed in aged (44 ± 18 min) and in adult (47 ± 14 

min) animals. No age effect could be detected at either 25 or 12°C. 

DISCUSSION 
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Both young adult and aged mouse lemurs exhibited strong daily variations in Tc at 25°C 

as previously described (Aujard et al., 2006, 2007). In adult mouse lemurs under LD14/10, 

behavioral thermoregulation appeared to be less crucial for maintenance of normothermia 

than what was observed under LD 10/14 (Aujard et al., 2006). Thus, autonomic mechanisms 

and hormonal status of breeding season seemed sufficient to maintain normothermia under 

long-day exposure. This is corroborated by the fact that, in the present study, no torpor bout 

was observed at 25°C, whatever the age category, and that age effects on Tc and LA rhythms 

were only slight. Aged animals exhibited a decreased nocturnal LA as seen previously in 

mouse lemurs (Aujard et al., 2007; Cayetanot et al., 2005) and in humans (Huang et al., 

2002). For the first time, the recording of daily rhythms was associated with a quantification 

of caloric intake (CI) and body mass variation in adult and aged animals. Interestingly, body 

mass stabilization was achieved by aged animals in a similar manner as in adult animals. 

Moreover, there is some evidence of age-related decline in sexual endocrine function in the 

mouse lemur during the long-day season (Aujard et al., 2001; Aujard & Perret, 1998; Perret & 

Aujard, 2005, 2006). However, no significant effect of age on endocrine function was 

detected at 25°C in the present study, since IGF-1 level, which can be considered as a good 

biomarker for aging (Kappeler & Epelbaum, 2005), remained similar between adult and aged 

mouse lemurs. It would be interesting to test the effect of age on others hormones involved in 

energy balance to further define the ability of aged mouse lemurs to maintain energy balance 

and body temperature within a normothermic range at a Ta of 25°C under LD 14/10. 

Exposure to 12°C only induced slight variations in Tc in adult mouse lemurs. Diurnal 

and minimal Tc levels remained unchanged and only nocturnal Tc was significantly lowered 

between 25 and 12°C. Moreover, torpor bouts were not observed during the whole exposure 

at 12°C, in contrast to animals acclimated under LD10/14 (Terrien et al., 2008). Gonadal 

hormonal status, particularly enhanced during the reproductive season, would thus allow 
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protective normothermia and torpor avoidance. In the present study, mouse lemurs increased 

their caloric intake after cold exposure, as previously described in pigs (Schenck et al., 1992). 

In contrast with this species, body mass did not vary significantly in mouse lemurs, and this 

could be related to their stable energy balance in summer-like photoperiodic conditions. The 

concomitant increase in CI and diurnal LA suggest that adult animals strongly focus energy 

expenditure into the enhancement of LA to produce body heat and prevent Tc decrease. IGF-1 

level decreased after cold exposure, and this may implicate IGF-1 in cold resistance through 

non-shivering thermogenesis (NST) process, as already described in mouse lemurs acclimated 

to LD10/14 (Terrien et al., 2008). The daily organization of the Tc and LA rhythms appeared 

slightly disturbed in young adult mouse lemurs after cold exposure. In contrast with results 

observed in LD10/14, daily adjustments were manifested during the diurnal active phase. 

Adult animals strongly anticipated lights-off, therefore extending their locomotor activity 

periods. In fact, adult animals delayed the beginning of the Tc drop at the end of the activity 

period, and minimized their activity during the early phase of diurnal Tc decrease. But from 

the second part of the day to the beginning of night, their activity progressively increased. The 

time of occurrence of the minimal Tc value was unaffected by exposure to 12°C. Daily 

rhythmicity remained highly present in adult mouse lemurs under LD14/10, as also observed 

in squirrels monkeys (Robinson & Fuller, 1999). The sexually active state of mouse lemurs 

under summer-like photoperiod might enable a strong protection of Tc rhythm stability. 

Age-related differences in Tc were also slight after cold exposure in mouse lemurs and 

appeared clearly minor compared to results observed under LD10/14 (Terrien et al., 2008). In 

the present study, nocturnal Tc levels dropped between 25 and 12°C in association with a 

concomitant decrease in LA, probably reflecting the masking effect of LA on Tc. In aged 

animals, the increase in diurnal LA, combined with the decrease in nocturnal LA, led to a 

decreased amplitude of the daily rhythm in LA. In this manner, aged mouse lemurs could 
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compensate diurnal costs of LA, allowing normothermia maintenance and torpor avoidance, 

by lowering the costs of LA during the night. Moreover, aged animals prevented energy 

imbalance and compensated energy expended by increasing their CI. These results revealed 

that aged mouse lemurs enhance LA-induced production of body heat with a lower propensity 

than young adults. This could explain the lower nocturnal and diurnal levels of Tc observed in 

aged animals compared to young adults at 12°C. Otherwise, it is commonly accepted that 

aging is associated with a decreased stabilization and synchronization in Tc rhythms (Van 

Someren et al., 2002; Weinert & Waterhouse, 2007). In the present work, daily temporal 

organization in Tc rhythms were slightly modulated in aged mouse lemurs after cold 

exposure, as observed in adult animals. Hdecr occurred later in aged animals at 12 than at 

25°C, which can be related to the delayed peak of LA observed at the end of the dark phase at 

such an ambient temperature. The time occurrence of minimal Tc was unaffected by cold 

exposure. Moreover, aged animals seemed to adapt their LA like the young adults did, by 

extending the LA duration to cope with Ta lowering. Finally, the decrease in plasma IGF-1 

level observed after cold exposure occurred later in aged than in young adult mouse lemurs. It 

was not associated with a differential time-course of day-after-day variations in Tc levels 

between both ages, but it could lead to impaired responses towards extreme cold during aging. 

Furthermore, this could be related to the impairment of hormonal status observed during 

aging (Ferrari et al., 2008; Vermeulen, 1995) and could play a role in the circadian instability, 

however not really evidenced in the present study. 

Conclusions and perspectives  

Modulations of rhythm parameters were relative minor after cold exposure in LD14/10, even 

in aged animals. This might suggest the active reproductive state of animals protects circadian 

rhythmicity and prevents animals from Tc decrease when coping with low ambient 

temperatures and that this property is well preserved with age. However, additional 
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experiments such as effects of castration or injection of testosterone during LD10/14 are 

necessary to determine if this process is only due to gonadal function. Finally, challenges in 

energy savings appeared strongly dependent on seasons, since the present results strongly 

differed from those observed under LD10/14 (Aujard et al., 2006; Terrien et al., 2008). In 

fact, the increase in diurnal LA, compensated with an increase in CI, appeared efficient to 

avoid Tc decrease below the normothermic level. However, even though energy balance was 

not impaired with age in mouse lemurs after cold exposure, aging was associated with lower 

LA and Tc levels during the night and delayed decrease in plasma IGF-1. This might reflect 

different adaptive strategies to cold exposure that vary by age in mouse lemurs acclimated to 

a summer-like photoperiod. 
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FIGURE CAPTIONS 
 

Figure 1: A. Mean (± SEM) body mass (BM) corrected caloric intake (CI in kJ/day*100g 

BM) and B. Body mass gain (BMG in g/day) observed in young adult (N = 7) and aged (N = 

5) mouse lemurs acclimated to LD14/10 and exposed to 25 and 12 °C. Linear Mixed Effects 

models were performed to test effects of Ta and Age. 

 

Figure 2: Mean (± SEM) levels of plasma IGF-1 (ng/ml) measured in young adult (N = 7) and 

aged (N = 5) mouse lemurs acclimated to LD14/10 and exposed to 25 and 12 °C. Linear 

Mixed Effects models were performed to test effects of Ta and Age. 

 

Figure 3: Average daily profiles of locomotor activity (LA in arbitrary units a.u.) in adult (N = 

7) and aged (N = 5) mouse lemurs acclimated to LD14/10 and exposed for 10 days to 25 and 

12 °C. Data presented as mean ± SEM. 

 

Figure 4: Time course of mean (± SEM) core temperature (Tc in °C) in adult (N = 7) and aged 

(N = 5) mouse lemurs acclimated to LD14/10 and exposed for 10 days at 25 and 12 °C. 

 

Figure 5: A. Time of minimal core temperature occurrence (Hmin in min) and B. of core 

temperature decrease onset (Hdecr in min) in young adult (N = 7) and aged (N = 5) mouse 

lemurs acclimated to LD14/10 and exposed to 25 and 12 °C. Data presented as mean ± SEM. 

Linear Mixed Effects models were performed to test effects of Ta and Age. 
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Table 1. Rhythm parameters (means values ± SEM) of locomotor activity (LA) registered in adult and aged 
mouse lemurs acclimated under LD14/10 during the 10-day exposures to 25 °C and 12 °C. LME were 
performed and F and p values are notified.



Figure 4.



Table 2. Rhythm parameters (means values ± SEM) of core temperature (Tc) registered in adult and aged 
mouse lemurs acclimated under LD14/10 during the 10-day exposures to 25 °C and 12 °C. LME were 
performed and F and p values are notified.



Figure 5.
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