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CNRS UMR 6594 and Aix-Marseille Université
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Abstract

The effects of an imposed magnetic field on the development of the elliptical
instability in a rotating spheroid filled with a conducting fluid are considered.
Theoretical and experimental studies of the spin-over mode, as well as a more
general short-wavelength Lagrangian approach, demonstrate that the linear growth
rate of the instability and the square amplitude of the induced magnetic field
fall down linearly with the square of the imposed magnetic field. Application of
the results to the Galilean moon Io confirms the fundamental role played by the
elliptical instability at the planetary scale.

1 Introduction

The elliptical instability is a generic instability of rotating flows with elliptical
streamlines. It has for instance been observed in wakes [1], [2], in elliptically
deformed containers, [3], [4], [5], [6], and more generally in the transition to
turbulence of strained vortices [7]. Since its discovery in the mid-1970s, it has
received considerable attention, theoretically, experimentally and numerically
(see for instance the review by Kerswell [8]).

Flows with elliptical streamlines arise as a superposition of rotation and
a small strain field, and the instability mechanism has been identified as a
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parametric resonance of pairwise inertial waves coupled by this strain [9],
[10]. In the geophysical context of liquid planetary cores [11],[12], [13], the
strain comes from the tidal deformations due to gravitational interaction be-
tween neighboring celestial bodies. The elliptical instability (also called tidal
instability in this context), as well as the closely related precessional insta-
bility, may leave traces in the gravitational and magnetic fields of planets
[14], [13], and may even provide alternative sources to power the geodynamo
[11], [15]. Even if the hydrodynamic of the elliptical instability is today well
known, its planetary consequences are still controversial and necessitate a full
understanding of the magnetohydrodynamic (MHD) of the elliptical insta-
bility, which remains a mostly open question (e.g. [16]). Understanding the
MHD of the elliptical instability is also important in metallurgic applications,
especially regarding its role in the transition from two to three-dimensional
MHD-turbulence [17].

In the present paper, we consider an elliptically deformed rotating sphere
filled with a conducting fluid (figure 1) and we study both theoretically and
experimentally the effects of an imposed magnetic field parallel to the rota-
tion axis on the development of the elliptical instability. This situation is
reminiscent of planetary configurations where a tidally deformed moon with
a liquid iron core rotates in the magnetic field of its planet, as for instance
the Galilean moon Io in the vicinity of Jupiter. Our purpose is to answer
the two following questions. How is the elliptical instability damped by the
magnetic field? And what is the amplitude of the magnetic field induced by
the elliptical instability?

This article, which completes and extends the previous works of Lacaze
et al. [16] and Thess & Zikanov [17], is organized as follow. We first focus
on the so-called spin-over mode, which corresponds to the simplest mode of
the elliptical instability in spheroids, excited at the smallest values of the
Reynolds number above threshold. We derive a nonlinear and viscous model
of its development under an imposed magnetic field valid for low values of the
magnetic Reynolds number, based on the hydrodynamical model of Lacaze
et al. [5] and including the magnetic damping term determined by Thess &
Zikanov [17]. These results are validated experimentally using an extended
version of the set-up of Lacaze et al. [16], with stronger imposed magnetic
fields. These results are then extended to the large magnetic Reynolds num-
ber, large Reynolds number limit relevant to planetary applications, using
a short-wavelength Lagrangian theory [18]. An analytical expression of the
growth rate of the elliptical instability is determined and results are finally
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applied to the case of Io, highlighting the importance of the elliptical insta-
bility at the planetary scale.

2 Set-up and state of the art

We consider the experimental system sketched in figure 1. A spherical cavity
with radius R, molded in a deformable silicone block, is filled with a liquid
metal, with permeability µ, conductivity σe, kinematic viscosity ν, and den-
sity ρ. It is set in rotation at a constant angular velocity Ω0 = Ω0 ẑ around
the vertical z-axis, and a homogenous magnetic field B0 = B0 ẑ is externally
imposed along the same axis with a pair of Helmholtz coils. Following the
original idea of Malkus [3], a pair of fixed and opposed rollers compresses the
transverse section of the deformable container, giving it an elliptical cross-
section with long axis R

√
1 + ε along x and short axis R

√
1− ε along y,

ε being the eccentricity of the elliptical deformation. Previous experimental
studies (e.g. [5]) have demonstrated that the flow in the volume effectively ex-
hibits elliptical streamlines due to the boundary deformation and approaches
the theoretical elliptical base-flow

Ub =
(
−Ω0

√
1 + ε

1− ε
y,Ω0

√
1− ε
1 + ε

x, 0
)
. (1)

Together with a homogenous magnetic field along the axis, this flow defines
an exact base state of the MHD equations on which perturbations may grow
due to the elliptical instability. In our experiments, the magnetic Reynolds
number Rm = Ω0R

2/η, where η is the magnetic field diffusion η = (σeµ)−1,
is small (Rm = O(10−2)) and magnetic field diffusion is always dominant
over magnetic field advection. In this limit, the scales

[r] = R [t] = Ω−1
0 [u] = Ω0R

[p] = ρ(Ω0R)2 [b] = RmB0

(2)

respectively for space, time, velocity, pressure and magnetic field, are well
adapted to non-dimensionalize the perturbation problem. In addition to
Rm, the relevant non-dimensional parameters are the Ekmann number E =
ν/Ω0R

2, which measures the importance of diffusive effects over inertial
terms, and the Elsasser number Λ = σeB

2
0/ρΩ, measuring the ratio of Lorentz
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force effects over the inertial forces. In our experiments, E = O(10−4) and
Λ ≤ O(1) typically.

The hydrodynamic stability of elliptical flow in spheroids was previously
studied in [5], which formalizes an asymptotic theory in terms of inertial
wave coupling. In the limit Λ ∼ ε, Rm → 0, this theory can be extended
to include the magnetic field effect perturbatively. We will not go as far,
as the combination of the results of [5], [16] and [17], allows us to describe
the linear and nonlinear dynamics of the dominant spin-over mode, which
is the only mode accessible to purely hydrodynamical experiments using the
present device in a spherical geometry with a fixed strain field [19]. The spin-
over mode is mainly a solid body rotation around an inclined axis, whose
horizontal projection ΩH is aligned with the axis stretched by the strain
field, at polar angle in the vicinity of −45o in the (x, y) plane (see figure
1). A low-dimensional model was derived in [5] in close agreement with the
experiments, which describes the nonlinearly purely fluid evolving spin-over
mode as a solid body rotation. Even though E is small in the experiment,
viscosity plays an essential role. Indeed, it postpones the elliptical instability
to a critical eccentricity and allows the nonlinear dynamical system to have
stable non-trivial fixed points.

Stays the question whether the spin-over mode remains the most unstable
mode in presence of a magnetic field, which seems hard to answer without
a more complex global analysis of the elliptical instability. In [17] (see also
section 5), the local growth rates of elliptical instability in an unbounded
domain were calculated using Flocquet theory. For the limit of small ε we
are interested in, asymptotic arguments as in [10] imply a growth rate linear
in ε and a magnetic damping γM = Λλ2/4, where λ is the wave frequency
in the rotating frame. Since all elliptically interesting waves have λ ' 1 [5],
[19], local theory indicates that the magnetic field damping acts similarly on
all couplings, no matter what their spatial structure is. Since in our device
the spin-over mode is always the most unstable mode in the hydrodynamical
experiments, we expect that it remains the case when a magnetic field is
imposed.

Thess and Zikanov [17] also extended the non-linear, inviscid model of
the spin-over dynamics to include the magnetic field effects in the low Rm
limit. They found that the magnetic field introduces a Joule damping, which
only operates on the rotations with axis transverse to the imposed magnetic
field, identically to the Joule damping of solid conductors rotating in a strong
magnetic field, commonly used in magnetic brakes. In our experimental set-
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up, both viscous and magnetic field effects are important. The eccentricity
is small ε ' 0.1, which means that Λ is at most of order O(10−1) in the
experiments where we observe the instability. The important consequence is
that the magnetic field in this case is always too small to change the viscous
boundary layer into a Hartmann-layer, so that there is no need of a more
complex boundary layer analysis. This also implies that the viscous terms
in the nonlinear system of [5] may be used here. Finally, there will be no
significant contributions to the external and internal magnetic fields due to
the boundary layer, which would make the field deviate from the field induced
by the non-viscous spin-over mode, calculated in [16].

Notice that all these suppositions will be confirmed a-posteriori by the
good agreement between the following theory and our experimental results.

3 Analytical study of the spin-over mode

Combining the results of [5] and [17], the nonlinear evolution of the spin-
over mode can be modeled in the laboratory frame of reference as a solid

body rotation with angular velocity Ω =
(

Ω1(t),Ω2(t),Ω3(t)
)

, which evolves

according to the nonlinear system

Ω̇1 = − ε

2− ε
(1 + Ω3) Ω2 − (γso + Λ/4) Ω1, (3)

Ω̇2 = − ε

2 + ε
(1 + Ω3) Ω1 − (γso + Λ/4) Ω2, (4)

Ω̇3 = εΩ1 Ω2 − γ3 Ω3 + νnl
(
Ω2

1 + Ω2
2

)
. (5)

On the right hand sides, we first recognize the destabilizing terms from the
non-viscous system. The damping of the spin-over mode is controlled by the
viscous linear boundary layer γso = 2.62

√
E in the horizontal directions and

γ3 = 2.85
√
E around the vertical axis. Supplementary nonlinear terms arise

through the boundary layer, νnl = 1.42
√
E. All these coefficients are explic-

itly detailed in Lacaze et al. [5] and find their origin in the classical analysis
of Greenspan [20]. The magnetic field only adds a linear term corresponding
to the Joule-damping Λ/4 in the directions perpendicular to the imposed
field. The terms due to the viscous frequency detuning are left out from the
model as in [5], since they only introduce negligible differences in the limit
of small Ekman numbers we are interested in.
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Linearising the system around the trivial fixed point 0, we calculate the
linear growth rate of the spin-over mode

σ =
ε√

4− ε2
− 2.62

√
E − Λ/4. (6)

In agreement with [17], the magnetic damping lowers the growth rate of
the spin-over mode linearly with Λ, and the system becomes stable above a
critical Elsasser number

Λc = 4(
ε√

4− ε2
− 2.62

√
E). (7)

Some time-series for the horizontal projection of the spin-over mode am-
plitude, ΩH =

√
Ω2

1 + Ω2
2, found by numerical integration of the nonlinear

system (3)-(5), are shown in figure 2(a). After an exponential growth, the
flow always goes towards a stable non-zero fixed point which is a stable focus.
Before saturation the spin-over mode horizontal amplitude displays a small
overshoot which originates from the spiral trajectory around this focus. For
increasing magnetic field amplitudes, both the linear growth rate and the
saturation amplitude decrease. The non-zero fixed points of (3) can be cal-
culated explicitly. The square of the spin-over mode amplitude at saturation
writes

Ω2
H = 4

γ3

ε

σ

ε− 4 νnl /
√

4− ε2
. (8)

Note that Λ only appears in this formula through the growth rate. According
to [16], the field induced by the non-viscous spin-over mode at low Rm is
a dipole with axis transverse to the imposed field, in quadrature with the
rotation axis of the spin-over mode. On the dipole axis outside the spheroid,
the field is purely radial and decays as

br =
|ΩH |
35

1

r3
. (9)

Combining (8) and (9), we expect a linear decrease of the square of the
induced field amplitude with Λ at fixed ε and E. The polar angle in the
(x, y) plane of the saturated spin-over axis is determined by

φ̄so = ± arctan

(
Ω2

Ω1

)
= ± arctan

(
−
√

2− ε
2 + ε

)
(10)
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so that the vorticity of the saturated spin-over mode is not exactly aligned
with the direction of maximum stretching at −45o of the long axis of the
spheroid (e.g. φ̄so = −42.1o for ε = 0.10).

Lacaze et al. [5] tested experimentally the purely hydrodynamical ver-
sion of this theory and found good agreement for both linear and nonlinear
stages. However, the nonlinear overshoot was not observed and the authors
noticed that the experimental saturation amplitudes of the spin-over mode
agree better with the maximum theoretical amplitudes attained during the
overshoot than with the theoretical saturation amplitudes. We now extend
these experimental results by taking the magnetic field into account.

4 Experiments

Our experimental set-up is an extension of the one presented in [16] (see
figures 1 and 3). The experimental parameters are R = 22.75mm Ω0 ∈
[0, 10π] rad s−1 and ε = 0.10. The imposed field B0 ranges between 0 and
0.13T (up to 100 times larger than in the previous set-up [16]). It is realized
with a set of watercooled copper Helmholtz coils, powered by a stabilized DC-
supply. The liquid metal we use is Galinstan, a gallium-indium-tin eutectic
liquid at room temperature, with ρ = 6440 kg m−3, ν = 9.5 × 10−5m2s−1,
σe = 2.9×106 S m−1 and µ = µ0 = 4π×10−7 T A−1m. According to [16], the
field induced by the non-viscous spin-over mode at low Rm is a dipole with
axis transverse to the imposed field, in quadrature with the rotation axis of
the spin-over mode. It is measured in the experiment by a radial Hall-probe
mounted in the equator plane of the spheroid, facing the compressed direction
at a polar angle of 45o. The probe is 26.5±0.5mm away from the center of the
sphere. The hall probe and the Gaussmeter have a maximum sensibility of
s = 300 µT/mV . Since the induced fields are of order O(10−4B0), the probes
are used at the limit of their sensibility. This implies careful positioning,
thorough prefiltering and amplification of the recorded signals. In practice,
the electric signal produced by the Hall-probe is put to zero before each
experimental run. The recorded signals are prefiltered with a low-pass filter
at fc = 2Hz, and amplified by a factor 50. The signals are transferred to the
data-acquisition unit on the laboratory computer.

Figure 2(b) shows the experimentally recorded radial components of the
induced magnetic fields for different Λ. The shapes and relative positions of
the experimental records compare well with the theoretical profiles of figure
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2(a), with an exponential growth (see also figure 4) and a slight overshoot
preceding a saturation at a constant level. As expected, there is a gradual
decrease of growth rates and saturation amplitudes with Λ. Notice again
that the amplitude overshoot was not observed in the purely hydrodynamical
experiments (see [5]). At Λ = 0.121 and higher, we continue to observe a non-
zero induced magnetic field, but it becomes increasingly difficult to determine
a true exponential growth. These fields probably come in our experimental
set-up from misalignment between the axis of rotation of the sphere, the axis
of the rollers inducing the elliptical deformation, and the axis of the imposed
field.

The signals also give us quantitative informations on the growth rates and
saturation amplitudes. As shown in figure 5, the growth rate decreases as
Λ/4, following the analytical result given by (6). Also shown are the theoreti-
cal dashed curves for ε = 0.095 and ε = 0.105 representing the uncertainty in
ε. As can be observed, the experimental data are in complete agreement with
the theory within this 5% error range, without any adjustment parameter.
Figure 6 shows that the square of the induced field b2r behaves as the growth
rate, in close agreement with the theory (see formula 8 and 9). Figure 6
also provides an experimental measurement of the critical Elsasser number
Λc ' 0.096, close to the theoretical value Λc = 0.103.

Using (9), we systematically translate the magnetic field measurements to
spin-over-mode amplitude and show in figure 7 the variations of the ratio ζ1
of experimental saturation amplitudes to theoretical saturation amplitudes.
The ratio ζ1 significantly decreases with the Elsasser number, where we ex-
pected a constant value close to 1. This discrepancy between theoretical and
experimental saturation values was already observed in the absence of mag-
netic field in [5]. Several explanations can be provided. From a theoretical
point of view, all nonlinear viscous corrections as well as possible secondary
instabilities are not included in our model but may become important, es-
pecially far from the linear instability threshold. And from an experimental
point of view, one can notice that measurements at a fixed −45o angle only
take into account a fraction of the spin-over amplitude when φ̄so 6= −45o, this
effect being also more important far from the linear instability threshold.

Lacaze et al. [5] also remarked that the ratio ζ2 of experimental satura-
tion amplitudes to the maximal theoretical amplitudes attained during the
overshoot remains constant over a rather large range of Ekman number. As
shown in figure 7, this remain valid over a large Λ-interval. We expect that
this behavior is not a coincidence, but that it could be revealed by a more
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sophisticated model, beyond the scope of this paper. However, and contrary
to the hydrodynamical experiments by [5] where ζ2 ∼ 1, theoretical predic-
tions always underestimate the experimental measurements by a factor 1.42
in our case. Possible explanations are error in the positioning of the probe
(the field decreases rapidly in r−3), but most probably uncertainties in the
value of the electrical conductivity σe of Galinstan (values in the literature
typically range between 2.3 and 3.5 × 106 S m−1). Note also that the ellip-
tical deformation of the spheroid as well as the misalignment between the
spin-over axis and the axis of maximum strain are not taken into account in
equation (9).

5 From laboratory models to geophysical ap-

plications

Magnetic induction by inertial waves is of particular interest in geo- and
astrophysical applications. For instance, Kerswell and Malkus [13] have sug-
gested that Io’s magnetic field is induced from Jupiter’s magnetic field by
tidally driven inertial waves resonance, without dynamo action. However,
our previous results derived in the limit of dominant magnetic diffusion (i.e.
low Rm) and for the laminar spin-over mode (i.e. at rather large E) can-
not apply directly to planetary configurations, corresponding to the limit of
small E, large Rm and probably large wavenumbers. As can be seen in the
visualizations of figure 8, the flow can then become increasingly complex,
especially at small scale, and an extension of our analysis is necessary. For-
tunately, a more general expression of the growth rate of the tidal instability,
independent of the geometry of the flow, can be derived using the so-called
local approach. Our goal here is not to give the exact expression of the
growth rate of the various modes explicitly excited in a given planet but to
determine an analytical expression able to describe the power dependence of
the growth rate on all dimensionless numbers and to determine an order of
magnitude of the various prefactors.

The local approach is based on the inviscid short–wavelength Lagrangian
theory developed in [9] and [21], then generalized in [22] and [18]. There,
perturbations are assumed to be sufficiently localized in order to be advected
along flow trajectories and are searched as local plane waves of the form

(u, p) =
(
u(t), p(t)

)
eik(t)·x, (11)
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where k(t) is the time-dependent wave vector and x the position vector. This
method has been applied to the elliptical instability by Le Dizès [23]. Here,
we extend his results by taking into account the induction equation and the
Lorentz force in the limit of small Elsasser number (e.g. Λ ≤ O(ε)) in the
presence of an imposed vertical magnetic field B0, looking for a perturbed
magnetic field under the same wave form

b = b(t)eik(t)·x. (12)

Details of the analysis are given in the appendix. Notice that in the following,
we do not consider the limit of small magnetic Reynolds number anymore;
hence, the magnetic field is made dimensionless using the amplitude of the
imposed field B0 rather than RmB0 as in the previous sections. MHD equa-
tions are solved analytically using a perturbative expansion in eccentricity
ε, supposing that the Lorentz force is of order ε. In this context, equations
for fluid motions at order 0 are similar to the purely hydrodynamical case.
Through the Lorentz force, the magnetic field induces a correction in the fluid
equation at order 1, hence a correction in the growth rate of the instability.

Using the 2D base flow Ub given by (1), which corresponds to a stationary
tidal deformation, we find a non viscous growth rate

σnv =
9

16
ε− k4Λ

4(Rm2 + k4)
, (13)

where k is a constant equal to the norm of the wave vector k(t) at leading
order in ε (see equation 29 in appendix). The viscous damping rate resulting
from the boundary layer can be estimated following [5], and induces a sup-
plementary correction of the order O(E1/2). Notice that in the limit of small
magnetic Reynolds number, one immediately finds the linear Joule damping
−Λ/4 determined in section 3. The present result generalizes the validity of
this scaling to all possible excited modes of the elliptical instability. Note
also that the numerical factor before ε is different from (6), but remains of
the same order of magnitude in the relevant limit of small ε.

The previous result can still not be directly applied to the case of Io, where
the elliptical deformation is not stationary. Indeed, as explained for instance
in [13], Io is almost synchronized in its revolution around Jupiter, but orbital
resonances with Europa and Ganymede force it to follow a slightly elliptical
orbit of eccentricity 0.004. As a result, the tidal bulge raised by Jupiter, of
magnitude ε ∼ 6× 10−3, does not rotate exactly at the same velocity as Io’s
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spin, but oscillates back and forth across Io’s body with a typical angular
velocity 1 − β cos(t), where β ∼ 0.008 is twice the eccentricity of Io’s orbit
and where time is made dimensionless using Io’s spin velocity. In this case,
the base flow in Io’s core at first order in βε writes (see Appendix)

Ub =
(
−y + βε cos(t)(sin(2t)x− cos(2t)y), (14)

x− βε cos(t)(cos(2t)x+ sin(2t)y]), 0
)
,

and the growth rate of the elliptic instability writes

σ =
17

64

√
(βε)2 − 576

289

Λ2Rm2k4

(Rm2 + 4k4)2
− 3

4

k4Λ

Rm2 + 4k4
. (15)

Formula (15) is closely related to (13), where the eccentricity ε in the case
of a stationary tidal deformation has been replaced by the product of the
tidal bulge times the amplitude of the perturbation βε. In particular at
small Rm, we once again end up at first order with a Joule damping linear
in Λ. As mentioned before, surface viscous effects induce a correction to
this formula of order O(E1/2) that could be explicitly determined. This is
not done here, since the interest of formula (15) is to determine the relevant
power law dependence on all dimensionless parameters (i.e. ε, Rm,Λ, E) as
well as the order of magnitude of the various prefactors. In the following, we
use for illustration the explicit values shown in (15) as well as the viscous
correction 8.8E1/2 determined in [13] for the first excited resonance in Io’s
configuration, but all our conclusions remain valid using prefactors of the
same order of magnitude.

Formula (15) allows us to compute the order of magnitude of the growth
rate of the elliptical instability in Io’s core. We take as typical values an
imposed magnetic field by Jupiter B0 = 1850nT , and for Io’s core R =
900km, 2π/Ω0 = 1.77days, and ν = 10−6m2s−1, σe = 4 × 105Sm−1, ρ =
12000kgm−3, consistent with a Fe/Fe-S composition. Then, Rm = 1.7×107,
E = 3.0× 10−14, Λ = 2.8× 10−6 and (15) implies that none of the elliptical
modes is significantly affected by Joule damping. The typical growth rate
of the tidal instability in Io is about 0.014years−1, suggesting rapid large-
scale variations in its core flows. Supposing that the spin-over mode still
has an important component in Io’s core (see figure 8 and appendix), its
saturation amplitude would be about ΩH = 0.096Ω0 according to (8). The
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corresponding induced magnetic field would be a dipole aligned with the spin-
over axis and of typical amplitude br ∼ sin(0.096)B0 = 178nT , as derived
from [16] in the relevant limit of large magnetic Reynolds number. We expect
this field to fluctuate on rapid times ranging between the rotation period of
1.77 days and the typical time given by the growth rate of the instability
of 72 years. The question then remains whether this field is measurable
outside the core. Taking as in the Earth a typical mantle conductivity of
0.1− 1S.m−1 and considering the short period signal of about 1 day, we find
a skin length of 200− 600km. In the Earth, this low value compared to the
typical depth of the mantle means that signals coming from the elliptical
instability will be totally filtered. This will not be the case in Io. Hence,
continuous field measurements of the ambient field in the vicinity of Io would
allow to discriminate between its internal and atmospheric origins, an issue
raised since the first punctual measurements provided by the Galileo mission
(e.g. [24]).

6 Conclusion

In this paper, we have studied the effects of an imposed magnetic field on the
elliptical instability in spheroids. By combining theoretical elements of pre-
vious works [16], [17], we have extended the nonlinear system governing the
dynamics of the spin-over mode to include simultaneously the magnetic and
viscous damping. We have shown theoretically and confirmed experimentally
that the linear growth rate of the instability as well as the square amplitude
of the induced magnetic dipole fall down linearly with the Elsasser number
(i.e. with the square of the imposed magnetic field), with good agreement
regarding predicted and measured prefactors. These conclusions have then
been extended to all possible resonances of the elliptical instability using a
short-wavelength Lagrangian approach. Applied to the specific case of Io in
the magnetic field of Jupiter, we conclude that despite the viscous and Joule
damping, a tidal instability is more than probable in the Jovian moon’s core
and induces in the core a relatively important field of about 10% of the am-
bient value. In addition to the magnetospheric interactions with Jupiter [25],
we thus conclude from purely magnetohydrodynamical considerations that
the elliptical instability provides a significant and non-stationary contribu-
tion to the magnetic field measured in the vicinity of Io, as first suggested by
[13]. Continuous measurements in Io’s vicinity should allow to discriminate
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between internal and external magnetic signatures.
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7 Appendix: WKB analysis of Io’s tidal in-

stability

The now classical application of the short–wavelength ”WKB” theory to
inviscid fluids was developed in [9] and [21], generalized in [22] and [18], and
summarized for the elliptical instability in [23]. It consists in looking for a
perturbed solution of the full equations of motion under the form of a plane
wave along the streamlines of the base flow. In our case, we thus look for a
perturbed solution of the non-dimensional system

∇.u = 0, (16)

dtu + (u.∇)u = −∇p+
Λ

Rm
(∇× b)× b, (17)

∇.b = 0, (18)

dtb + (u.∇)b = (b.∇)u +
1

Rm
∇2b, (19)

under the form

u = Ub + u(t)eik(t)·x, (20)

p = Pb + p(t)eik(t)·x, (21)

b = B0 + b(t)eik(t)·x, (22)

along the streamlines of the base flow described by

dx

dt
= Ub, (23)

where Ub stands for the two-dimensional base flow, Pb for the correspond-
ing pressure field, B0 = (0, 0, 1) for the (non-dimensional) imposed vertical
magnetic field and x for the position vector. The linearised MHD equations
then write

k.u = 0, (24)
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dtu + iu(dtk.x) + i(Ub.k)u + (u.∇)Ub = −ikp+
Λ

Rm
(ik× b)× B0, (25)

k.b = 0, (26)

dtb(t) + ib(dtk.x) + i(Ub.k)b = (b.∇)Ub + ( B0.k)u− k2

Rm
b, (27)

The velocity and induction equations can be decoupled in space and time to
give an equation for the wave vector only

dtk.x + Ub.k = 0. (28)

Linearized equations are then solved analytically using a perturbative expan-
sion in the small parameter (i.e. the eccentricity in our case), supposing that
the Elsasser number is of order 1. In this context, equations for fluid mo-
tions at order 0 are similar to the purely hydrodynamical equations, and the
Lorentz force only induces a correction at order 1. Technically, the easiest
way to solve the MHD equations in our case is to use the vertical velocity
uz and the vertical vorticity Wz = ∂xuy − ∂yux = i(kxuy − kyux) of the
perturbed field as unknowns, as well as the vertical component bz of the
perturbed magnetic field and the corresponding magnetic vertical vorticity
Cz = i(kxby − kybx). The resolution is then straightforward.

The study of the 2D base flow Ub given by (1), which corresponds to a
stationary tidal deformation, closely follows the results already presented by
Le Dizès [23]. From (28), one immediately finds the wave vector

k(t) = k
(sin(a)√

A
cos(χt), sin(a)

√
A sin(χt), cos(a)

)
, (29)

where k is a constant, A =
√

(1 + ε)/(1− ε) is the ellipticity, χ =
√

1− ε2,
and a is the angle between the flow rotation axis and the wavevector. Equa-
tions for fluid motions at order 0 give the expression of u at order 0 with a
temporal frequency f

f = ±2 cos(a), (30)

whereas the linearised induction equation immediately gives the expression
of b at order 0. According to [23], an elliptical instability is possible if the
forcing terms due to the elliptical deformation oscillate at the same frequency
as the inertial wave, which means in our case f = 1. Then, at order 1 in ε,
inertial waves resonate implying an exponential growth rate of the elliptical
instability [23]

σnv =
9

16
ε− k4Λ

4(Rm2 + k4)
. (31)
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This result is not directly applicable to the case of Io, where the ellip-
tical deformation is not stationary. Indeed, Io is almost synchronized with
Jupiter. It means that, in an isolated Jupiter-Io system, Io’s spinning and
orbital periods would be exactly equal: Io would always present the same face
to Jupiter, and the tidal bulge would rotate at exactly the same frequency as
Io. However, well-known orbital resonances with the other Galilean satellites
maintain a 0.004 eccentricity in Io’s orbit. The equality of orbital and spin-
ning velocities is only true on average: in reality the orbital angular velocity -
hence the tidal bulge angular velocity - varies periodically with the orbital ra-
dius around this mean. Focusing on the first harmonic of this oscillation, the
orbital angular velocity in the absolute frame of reference writes 1−β cos(t),
where β ∼ 0.008 is twice the eccentricity of Io’s orbit and where time is
made dimensionless using Io’s (constant) spin velocity. As demonstrated by
Kerswell and Malkus [13], the fluid’s laminar response in Io’s core driven by
this tidally distorted mantle motion corresponds in the bulge frame to the
simple elliptical flow

Ub
B.F. =

(
−(1 + ε)β cos(t)Y, (1− ε)β cos(t)X, 0

)
, (32)

which is an exact nonlinear solution to the incompressible Navier-Stokes
equations of motion for any finite viscosity in the spheroid of equationX2/(1+
ε) + Y 2/(1− ε) +Z2 = 1. A simple change of frame then gives the base flow
in the absolute frame of reference at first order in β

Ub =
(
−y + βε cos(t)(sin(2t)x− cos(2t)y), (33)

x− βε cos(t)(cos(2t)x+ sin(2t)y]), 0
)
.

For a given initial position (R, 0), streamlines are described by

x(t) = R cos(t) +
βεR

2
(1− cos(2t)), (34)

y(t) = R sin(t)− βεR

2
sin(2t), (35)

(note that the results of the WKB theory do not depend on the chosen initial
position along a closed trajectory). The solution to the wave vector equation
along this streamline then writes

k(t) = k
(

sin(a) cos(t+ φ) + βε/2(cos(2t− φ)− cos(φ)), (36)

sin(a) sin(t) + βε/2(sin(2t− φ) + sin(φ)), cos(a)
)
,
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where k, a and φ are constant. At order zero in βε, the system can be reduced
to a single equation for uz

d2u0
z

dt2
+ 4 cos2(a)u0

z = 0, (37)

whose solution writes

uz(t) = c1e
ift + c2e

−ift, (38)

where c1, c2 are constant and f is the frequency determined as a function of
the wave vector, i.e. f = 2 cos(a). At order 1, we allow a long term variation
of the solution at order zero, i.e.

uz(t) = (c1e
ift + c2e

−ift)eβεσt, (39)

where σ is the growth rate of the instability. The system then reduces
to the same type of equation as (37), with a forcing term directly com-
ing from the first order terms in the base flow. According to (33), terms of
type cos(t) sin(2t) and cos(t) cos(2t) arise here, and the equation at order 1
schematically reads

d2u1
z

dt2
+ 4 cos2(a)u1

z = F (eit/2, e−it/2, e3it/2, e−3it/2). (40)

Solvability conditions then imply∫ 2π/f

0

F (eit/2, e−it/2, e3it/2, e−3it/2)eift = 0, (41)∫ −2π/f

0

F (eit/2, e−it/2, e3it/2, e−3it/2)e−ift = 0, (42)

which validate the whole asymptotic approach by ensuring that forcing terms
are not secular. This system with unknown c1, c2 admits a non trivial solution
if and only if f = 1/2 or f = 3/2, in which case the growth rate σ is
determined by the nullity of the determinant. It is then maximized over all
values of wavevector phase φ. The maximum is obtained for f = 1/2 and
φ = π/4 and writes

σ =
17

64

√
(βε)2 − 576

289

Λ2Rm2k4

(Rm2 + 4k4)2
− 3

4

k4Λ

Rm2 + 4k4
. (43)
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Note that the resonance condition f = 1/2 corresponds to the resonance
condition for the closely related precession instability, where the spin-over
mode is also known to be excited [11]. This validates the evaluation of the
spin-over induction performed at the end of section 5.
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H

Figure 1: Sketch of the set-up, side and top-view (see also Lacaze et al.
[16]). A liquid metal in a deformable spheroidal cavity rotates at Ω0. A
strong magnetic field B0 is imposed along the rotation axis. Fixed rollers
induce an elliptical deformation of the streamlines. Also shown here is the
horizontal projection of the spin-over mode, corresponding to a transverse
solid body rotation ΩH in the stretched direction (dashed arrow), which tilts
the rotation axis of the fluid to Ω. In the limit of low magnetic Reynolds
number, ΩH induces in the compressed direction a dipolar magnetic field
br ∼ ΩH , which is measured by a Hall probe.
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Figure 2: (a) Theoretical nonlinear temporal evolution of the horizontal
projection of the spin-over mode amplitude ΩH = (Ω2

1 + Ω2)
1/2, for vari-

ous values of the Elsasser number Λ. Ekmann number and eccentricity are
fixed, E = 8.53× 10−5, ε = 0.10. Calculations started from the initial state
Ω1 = 10−3, Ω2 = −10−3, Ω3 = 0, which is the linearly unstable spin-over
mode with small amplitude. The arrow on the right side, indicate the sat-
uration level of the slowly growing spin-over mode horizontal amplitude at
Λ = 0.095. The critical Elsasser number is Λc = 0.103 for this parameter
set. (b) Typical recorded magnetic field-signals for varying Elsasser number.
Ekmann number and eccentricity are fixed E = 8.53×10−5, ε = 0.10±0.005
. The experiments agree with the theoretical profiles of figure 2(a).
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Figure 3: Picture of the experimental set-up. Large watercooled Helmholtz
coils provide a homogenous magnetic field up to B0 = 0.1T . Induced fields
are measured with a radial Hall probe.
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Figure 4: Logarithm of the induced magnetic field signal (full line) at E =
8.53× 10−5, ε = 0.100± 0.005, Λ = 0.01. The slope of the linear fit (dashed
line) provides the initial linear growth rate.
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Figure 5: Linear growth rates σ as a function of Elsasser number Λ. E =
8.5 × 10−5, ε = 0.100 ± 0.005 . The experimental measurements (•) are in
good agreement with the theoretical values for ε = 0.10 (soft line). Also
shown are the theoretical (dashed) curves for ε = 0.095 and ε = 0.105,
representing the uncertainty in ε; note however that there is no adjusting
parameter in the comparison between theory and experiment. Growth was
no longer exponential beyond Λ ≥ 0.121.
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Figure 6: Square of the measured saturation-amplitudes of the magnetic
field b2r , sat, as a function of Elsasser number Λ. E = 8.5 × 10−5, ε = 0.10.
Experimental measurements (•) and linear fit (dashed line). The saturation
amplitudes are in agreement with the weakly nonlinear scaling, predicting a
linear dependance on Λ.
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Figure 7: Ratios of the experimentally observed saturation amplitude, to
the theoretical saturation amplitudes ζ1 (•) and to the maximum amplitude
attained during the overshoot ζ2 (+), as a function of the Elsasser number
Λ. E = 8.5× 10−5, ε = 0.10.
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Figure 8: Kalliroscope visualization of the elliptical instability for a fixed
Ekmann number E = 10−5 and increasing values of ε (purely hydrodynamical
experiment). As suggested by (6), the relevant parameter to describe the
dynamics of the elliptical instability is α = E1/2/ε. Decreasing α from 0.11
to 0.053, the flow becomes more and more complex, especially at small scale,
but the spin-over mode remains present at large scale. The same behavior
is expected to remain valid at the planetary scale, for instance in Io’s core
where α ∼ 0.0036.
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