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Abstract

A graphG is called(k, 1)-colorable, if the vertex set ofG can be partitioned into subsets
V1 andV2 such that the graphG[V1] induced by the vertices ofV1 has maximum degree at most
k and the graphG[V2] induced by the vertices ofV2 has maximum degree at most1. We prove
that every graph with a maximum average degree less than10k+22

3k+9
admits a(k, 1)-coloring, where

k ≥ 2. In particular, every planar graph with girth at least 7 is(2, 1)-colorable, while every planar
graph with girth at least 6 is(5, 1)-colorable. On the other hand, for eachk ≥ 2 we construct
non-(k, 1)-colorable graphs whose maximum average degree is arbitrarily close to 14k

4k+1
.

1 Introduction

A graphG is calledimproperly (d1, . . . , dk)-colorable, or just(d1, . . . , dk)-colorable, if the vertex
set ofG can be partitioned into subsetsV1, . . . , Vk such that the graphG[Vi] induced by the vertices
of Vi has maximum degree at mostdi for all 1 ≤ i ≤ k. This notion generalizes those of proper
k-coloring (whend1 = . . . = dk = 0) andd-improperk-coloring (whend1 = . . . = dk = d ≥ 1).

Proper andd-improper colorings have been widely studied. As shown by Appel and Haken [1, 2],
every planar graph is 4-colorable, i.e.(0, 0, 0, 0)-colorable. Eaton and Hull [9] and independently
Škrekovski [12] proved that every planar graph is 2-improperly 3-colorable (in fact, 2-improper 3-
choosable), i.e.(2, 2, 2)-colorable. This latter result was extended by Havet and Sereni [11] to not
necessarily planar sparse graphs as follows: For everyk ≥ 0, every graphG with mad(G) < 4k+4

k+2
is k-improperly 2-colorable (in factk-improperly 2-choosable), i.e.(k, k)-colorable, where

mad(G) = max

{

2|E(H)|

|V (H)|
, H ⊆ G

}

is the maximum average degree of a graphG.
Let g(G) denote the girth of graphG (the length of a shortest cycle inG). Glebov and Zambal-

aeva [10] proved that every planar graphG is (1, 0)-colorable ifg(G) ≥ 16. This was strengthened
by Borodin and Ivanova [7] by proving that every graphG is (1, 0)-colorable ifmad(G) < 7

3 , which
implies that every planar graphG is (1, 0)-colorable ifg(G) ≥ 14.

∗The first and second authors were supported by grants 06-01-00694 and 08-01-00673 of the Russian Foundation for Basic
Research, the second author was also supported by the President of Russia grant for young scientists MK-2302.2008.1.

†The third author was supported by the ANR Project GRATOS ANR-09-JCJC-0041-01
‡The fourth author was supported by the ANR Project IDEA ANR-08-EMER-007.
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This was extended by Borodin et al. [8] by proving that every graph with a maximum average
degree smaller than3k+4

k+2 is (k, 0)-colorable ifk ≥ 2. Note that the proof in [8] extends that in [7]
but does not work fork = 1.

In this paper, we focus on(k, 1)-colorability of graph. So, a graphG is (k, 1)-colorable if its
vertices can be partitioned into subsetsV1 andV2 such that inG[V1] every vertex has degree at most
k, while in G[V2] every component has at most two vertices. Our main result is:

Theorem 1 Every graph G with mad(G) < 10k+22
3k+9 , where k ≥ 2, is (k, 1)-colorable.

On the other hand, we construct non-(k, 1)-colorable graphs whose maximum average degree is
arbitrarily close to 14k

4k+1 .

Since every planar graphG satisfiesmad(G) < 2g(G)
g(G)−2 , from Theorem 1 we have:

Corollary 1 Every planar graph G is (2, 1)-colorable if g(G) ≥ 7, and (5, 1)-colorable if g(G) ≥ 6.

On the other hand, there is (see [8]) a planar graph with girth6 which is not(k, 0)-colorable
whatever largek, whereas every planar graphG is (8, 0)-colorable ifg(G) ≥ 7 and(4, 0)-colorable
if g(G) ≥ 8 (see [8]). Also note that every planar graphG with g(G) ≥ 6 is (2, 2)-colorable, while
that withg(G) ≥ 8 is (1, 1)-colorable (see [11]). The results are summarized in the following table:

g(G) (k, 0) (k, 1) (k, 2)
6 × [8] (5, 1) (2, 2)[11]
7 (8, 0) [8] (2, 1)
8 (4, 0) [8] (1, 1)[11]

Table 1: The relationship between the girth ofG and its(k, j)-colorability.

A distinctive feature of the discharging in the proof of Theorem 1 for2 ≤ k ≤ 4 is its ”globality”:
a charge for certain vertices is collected from arbitrarilylarge ”feeding areas”, which is possible due
to the existence of reducible configurations of unlimited size in the minimum counter-examples,
called ”soft components”. Such global discharging first appears in [3] and is used, in particular,
in [4, 5, 6, 7, 8, 11]. The terms ”feeding area” and ”soft component” are introduced in [7] and also
used in our recent paper [8].

2 Non-(k, 1)-colorable graphs with a small maximum average
degree

Let Hi
a,b be the graph consisted of two adjacent verticesa and b and of i vertices of degree 2

c1, . . . , ci linked each toa andb. We take one copie ofHk+1
a,b andk − 1 copies ofH2

a,b and identify
all the verticesa to a single vertexa∗. Let Ha∗ be the obtained graph. Finally, we take an odd cycle
C2n−1 = a1a2 . . . a2n−1 andn copies ofHa∗ , and we identify each vertexai with odd index with
the vertexa∗ of a copy ofHa∗ . Let Gn,k be the obtained graph. An example is given in Figure 1.

One can observe thatGn,k is not(k, 1)-colorable. Indeed, observe first that no two consecutive
verticesx, y on C2n−1 belongs toV2. Otherwise we can suppose thatx is of odd index onC2n−1

and the subgraphHk+1
a,b associated tox is not(k, 1)-colorable. Due to the parity ofC2n−1, it follows

that two consecutive verticesx, y on C2n−1 belongs toV1. Similarly, we can suppose thatx is of
odd index onC2n−1. If Gn,k is (k, 1)-colorable, then one more vertex in eachHi

a,b associated tox
must belong toV1 ; it follows that the degree ofx in G[V1] is k + 1, a contradiction.

Now observe that:
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Figure 1: An example ofGn,k with n = 3 andk = 3.

mad(Gn,k) =
2|E(Gn,k)|

|V (Gn,k)|
=

2(2n − 1 + 5(k − 1)n + n(2k + 3))

2n − 1 + 3(k − 1)n + n(k + 2)
=

2(7nk − 1)

n(4k + 1) − 1

lim
n→∞

mad(Gn,k) =
14k

4k + 1

3 Proof of Theorem 1

Let G = (V, E) be a counterexample to Theorem 1 on the fewest number of vertices. Clearly,G is
connected and its minimum degree is at least 2. By definition,we have:

2|E|

|V |
≤ mad(G) <

10k + 22

3k + 9

2|E| − |V |
10k + 22

3k + 9
=

∑

v∈V

(

d(v) −
10k + 22

3k + 9

)

< 0 ,

whered(v) is the degree of a vertexv.
Thus, we have:

∑

v∈V

(

3(k + 3)

2(k + 1)
d(v) −

5k + 11

k + 1

)

< 0 . (1)

Let thecharge µ(v) of each vertexv of G be 3(k+3)
2(k+1)d(v) − 5k+11

k+1 . We shall describe a number
of structural properties ofG (Section 3.1) which make it possible to vary the charges so that the new
chargeµ∗ of every vertex becomes nonnegative fork ≥ 5 (Section 3.2). For2 ≤ k ≤ 4 there is
a difference: some vertices has a non-negativeµ∗ individually (Section 3.3), while the others are
partitioned into disjoint subsets, calledfeeding areas, and the total charge of each feeding area is
proved to be non-negative (Lemma 1 in Section 3.3). Since thesum of charges does not change, in
both cases we get a contradiction with (1), which will complete the proof of Theorem 1.

A vertex of degreek (resp. at leastk, at mostk) is called ak-vertex (resp.k+-vertex, k−-vertex).
A (k + 1)−-vertex isminor; a (k + 2)+-vertex issenior. A weak vertex is a minor vertex adjacent
to exactly one senior vertex. Alight vertex is either a 2-vertex or a weak vertex. A3i-vertex is a
3-vertex adjacent toi 2-vertices.

Claims 2 and 3 below lead us to the following definition. Ad-vertex, whered ≥ k+3, is soft if it
is adjacent tod−1 weak vertices. Ford = k+2 the notion of soft vertex is broader: a(k+2)-vertex
is soft if it is adjacent tok + 1 light vertices.

We will color the vertices of the subgraph of maximum degree at mostk by colork and the other
vertices by color 1.
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3.1 Structural properties of G

Claim 1 No 2-vertex in G is adjacent to a 2-vertex.

PROOF. SupposeG has two adjacent 2-verticest andu, and lets (resp.v) be the other neighbor of
t (resp.u). By the minimality ofG, the graphG \ {t, u} has a(k, 1)-coloringc. It suffices to color
t andu with a color different from those ofs andv respectively to extendc to the whole graphG, a
contradiction. 2

Claim 2 Every minor vertex in G is adjacent to at least one senior vertex.

PROOF. SupposeG has a minor vertexx adjacent only to minor vertices. Take a(k, 1)-coloringc
of G \ x. If none of the neighbors ofx has color 1, then we simply colorx with 1. So suppose that
at least one neighbor ofx is colored with 1. We then colorx with k. There is now a problem only if
there exists a neighbor ofx, sayy, colored withk and surrounded byk + 1 neighbors colored with
k. In this case, we recolory with 1. We iterate this operation while a suchy exists. The coloring
obtained is a(k, 1)-coloring ofG, a contradiction. 2

Claim 3 If a senior d-vertex is adjacent to d − 1 weak vertices, then it is adjacent to a non-light
vertex.

PROOF. SupposeG has ad-vertexx adjacent to verticesx1, . . . , xd, wherex1, . . . , xd−1 are weak
while xd is either weak or hasd(xd) = 2. We take a(k, 1)-coloring ofG \ x and recolor each weak
neighborxi with colork (followed by recoloring if necessary the neighbors ofxi’s in any order). If
xd is a 2-vertex, then we recolor it properly. Now it suffices to color x with 1; a contradiction. 2

Claim 4 No 3-vertex is adjacent to two soft vertices and to a minor vertex.

PROOF. SupposeG has a3-vertexx adjacent to verticesx1, x2, x3, wherex1 andx2 are(k + 2)+-
vertices whiled(x3) ≤ k + 1. Let y1

1 , . . . , y
1
d(x1)−1 (resp.y2

1 , . . . , y
2
d(x2)−1) be the other neighbors

of x1 (resp. x2). We take a(k, 1)-coloring ofG \ {x, x1, x2}. We first recolor the verticesyi
j as

follows: if yi
j hasd(yi

j) = 2, then we recoloryi
j properly ; otherwise ifyi

j is weak, we recoloryi
j with

k (followed by recoloring if necessary the neighbors ofyi
j ’s in any order). Now ifd(x1) ≥ k+3, we

colorx1 with 1 (observe that all colored neighbors ofx1 are colored withk). Assumed(x1) = k+2.
If the color 1 appears at least twice on theyi

j, then we colorx1 with k and with 1 otherwise. We do
the same forx2. Finally, if a same color appear three times in the neighborhood ofx, then we color
x properly. Otherwise we colorx with k (followed by recoloringx3 and someyi

j , if necessary). This
gives an extension ofc to the whole graphG, a contradiction. 2

An edgexy is soft if one of the following holds:

• d(x) = k + 2 while y is light, i.e. is a 2-vertex or a weak vertex, or

• x is a minor vertex whiled(y) = 2.

The vertexx is called thegood end of the soft edgexy.

A soft component SC is a subgraph ofG such that∆(SC) ≤ k + 2, each edge joiningSC to
G \ SC is soft and each good end of the soft edges belongs toSC.

Claim 5 G does not contain soft components.

PROOF. Assume thatG contains a soft componentSC. By minimality ofG, the graphG \ SC has
a (k, 1)-coloringc. We will show that we can extendc to the whole graphG, a contradiction. First,
for each edgexy with x ∈ SC andy /∈ SC, we recolor (if necessary) the vertexy such that the
choice of any color forx will not create any problem ony. If y is a 2-vertex, then we just recolory
properly. If y is weak vertex, then we recolory with 1 if it has k colored neighbors with the color
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k and withk otherwise. Observe that ifx is later colored with 1 ork, then that will not create a
conflict fory. Now we extend the coloringc to the whole graphG as follows: we choose a coloring
φ of SC that minimizesσ = k ·E11 +Ekk whereEii denotes the number of edges whose both ends
are colored withi. Clearly, such a coloring exists. Moreover we will show thatsuch a coloring is
a (k, 1)-coloring. Assume that the coloringφ of SC is not a(k, 1)-coloring. So suppose that there
exists a vertexu of SC colored with 1 which has two neighbors colored with 1. We justrecoloru
with k and obtain a coloring with a smallerσ which contradicts the choice ofφ. Similarly, assume
that there exists a vertexv of SC colored withk which hask + 1 neighbors colored withk. We just
recolorv with 1 and obtain a coloring with a smallerσ which contradicts the choice ofφ. 2

Corollary 2 No (k + 2)-vertex can be adjacent to k + 2 light vertices.

3.2 Discharging procedure when k ≥ 5

Setα = 3k+1
2(k+1) , γ = k−1

k+1 , ǫ = k−5
2(k+1) . Note that2 − α = k+3

2(k+1) , 1
3 ≤ γ < 1, 1

2 < 2 − α ≤ 5
6 , and

γ ≥ 2 − α whenk ≥ 5.

Our rules of discharging are as follows:

R1. Everyd-vertex with3 ≤ d ≤ k + 1 gives2 − α to each adjacent 2-vertex.

R2. Every weak vertex getsα from its adjacent senior vertex.

R3. Every non-weak 2-vertex gets 1 from each neighbor.

R4. Every minor non-light vertex getsγ from each non-soft adjacent(k + 2)-vertex,ǫ from each
soft adjacent(k + 2)-vertex and2 − α from each adjacent(k + 3)+-vertex.

We now show thatµ∗(v) ≥ 0 for all v in V (G). Let v be ad-vertex, whered ≥ 2. Set

µd =
3(k + 3)

2(k + 1)
d −

5k + 11

k + 1

In particular,µ2 = −2 and− 1
2 < µ3 ≤ 1

2 .

Case 1. d ≥ k + 3.

Claim 6 If d ≥ k + 3, then µd ≥ α(d − 2) + 2; in particular, µk+3 = α(k + 1) + 2.

PROOF.

µd − α(d − 2) − 2 =
3(k + 3)

2(k + 1)
d −

5k + 11

k + 1
−

3k + 1

2(k + 1)
(d − 2) − 2

=
4(d − (k + 3))

k + 1
≥ 0

2

By Claim 3,v is adjacent to at mostd − 1 weak vertices. Ifv is adjacent to at mostd − 2 weak
vertices, thenµ∗(v) ≥ µd −α(d− 2)− 2× 1 ≥ 0 by R1–R4 due to Claim 6. Suppose now thatv is
adjacent to exactlyd − 1 weak vertices. By Claim 3,v is adjacent to a non light vertex. So we have
µ∗(v) ≥ µd − α(d − 1) − (2 − α) ≥ 0 by R1–R4 due to Claim 6.

Case 2. d = k + 2.

By Corollary 2, the vertexv is adjacent to at mostk + 1 light vertices. By Claim 6, we have
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µk+2 = µk+3 −
3(k + 3)

2(k + 1)

= α(k + 1) + 2 −
3(k + 3)

2(k + 1)

= αk + 2γ

If v is adjacent to at mostk light vertices, then this impliesµ∗(v) ≥ 0 by R1–R4.
If v is adjacent to exactlyk + 1 light vertices, thenv is soft. By Claim 3 and R1–R4, we have

µ∗(v) ≥ αk + 2γ − α(k + 1) − ǫ = 2γ − α − ǫ = 0.

Case 3. 2 ≤ d ≤ k + 1.

By Claim 1, a 2-vertex is adjacent to3+-vertices. By Claim 2, ad-vertex with3 ≤ d ≤ k + 1 is
adjacent to at mostd − 1 vertices of degree 2, each of which gets2 − α from v by R1.

Subcase 3.1. v is weak.

If d = 2, thenµ∗(v) = −2 + (2 − α) + α = 0 by R1 and R3. Supposed(v) ≥ 3.

Claim 7 For each d ≥ 3, it holds µd − (d − 1)(2 − α) + α = (k+3)(d−3)
k+1 .

PROOF.

µd − (d − 1)(2 − α) + α =
3(k + 3)

2(k + 1)
d −

5k + 11

k + 1
− (d − 1)

k + 3

2(k + 1)
+

3k + 1

2(k + 1)

=
(k + 3)(d − 3)

k + 1
2

The vertexv is weak. By R2, it getsα from its adjacent senior vertex and gives2 − α to at most
d − 1 adjacent 2-vertices, it follows from Claim 7 thatµ∗(v) ≥ (k+3)(d−3)

k+1 ≥ 0, whend ≥ 3.

Subcase 3.2. v is not weak.

The vertexv is adjacent to two senior vertices.
If d = 2, thenµ∗(v) = −2 + 2 · 1 = 0 by R3.
If d = 3, thenµ3 = 5−k

2(k+1) . Assume thatv is adjacent to 2-vertex. Thenv gives2 − α by R1.

By Claim 4,v is adjacent to a non soft(k + 2)+-vertex. Note thatγ ≥ 2 − α > ǫ. By R1 and R4,
we haveµ∗(v) ≥ µ3 − (2 − α) + 2 − α + ǫ = 0. Assume thatv is not adjacent to a 2-vertex. Then
µ∗(v) ≥ µ3 + 2ǫ = ǫ ≥ 0.

If d ≥ 4, then by R1,µ∗(v) ≥ µd − (d − 2)(2 − α) = k(d−4)+3d−8
k+1 ≥ 0.

3.3 Discharging procedure when 2 ≤ k ≤ 4

3.3.1 Preliminaries

A weak edge between verticesx andy is either an ordinary edgexy, or a pathxzy with 3 ≤ d(z) ≤
k + 1, wherez is called theintermediate vertex of the weak edge xy. A feeding area, abbreviated to
FA, is a maximal subgraph ofG consisting of(k + 2)-vertices mutually accessible from each other
along weak edges and of their intermediate vertices. An edgexy with x ∈ FA andy /∈ FA is alink.
By Claim 5, at least one of links forFA is not soft (such links will be calledrigid). A FA is a weak
feeding area, denoted byWFA, if it has just one rigid linkxy; in this case, the vertexy is called the
sponsor of WFA. See Figure 2.

Sometimes aWFA with d(y) = i will be denoted byWFA(i), where3 ≤ i ≤ k + 2. A FA
with at least two rigid links isstrong and denoted bySFA. By definition, noWFA(k + 2) can
be joined by its rigid link to aFA, and noWFA((k + 1)−) can be joined by its rigid link to a
(k + 2)-vertex in aFA. An immediate consequence of Claim 5 is that no twoWFA((k + 1)−)’s
can be joined by their rigid link.
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2-vertex
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weak 3-vertex or 2-vertex

FA

sponsor

sponsor

WFA

Figure 2: Examples of feeding areas fork = 2.

3.3.2 Discharging for 2 ≤ k ≤ 4 and its consequences

Setα = 3k+1
2(k+1) , γ = k−1

k+1 , β = 5−k
2(k+1) . Observe that2 − α = k+3

2(k+1) , α > 1 > 2 − α > β, and
2 − α ≥ γ. Moreover,µ2 = −2 andµ3 = β.

A 3∗-vertex is a 3-vertex adjacent to exactly one minor vertex.

The discharging rules for2 ≤ k ≤ 4 are almost the same as Subsection 3.2. Our rules of
discharging are as follows:

R1. Everyd-vertex with3 ≤ d ≤ k + 1 gives2 − α to each adjacent 2-vertex.

R2. Every weak vertex getsα from its adjacent senior vertex.

R3. Every non-weak 2-vertex gets 1 from each neighbor.

R4. Every3∗-vertex gets2 − α from each adjacent(k + 3)+-vertex.

R5. EveryWFA getsβ along the rigid link from its sponsor.

By the definition ofFA, a minor vertex can belong to at most one of them. We cannot prove that
each v ∈ FA has µ∗(v) ≥ 0; however, it turns out that the total new charge
µ∗(FA) :=

∑

v∈V (FA) µ∗(v) of eachFA is nonnegative (see Lemma 1 below). This is also a
way to arrive at a contradiction with (1).

We now proveµ∗(v) ≥ 0 assumingv /∈ FA.

Case 1. d = d(v) ≥ k + 3.

By Claim 3, the vertexv is adjacent to at mostd − 1 weak vertices. Ifv is adjacent to exactly
d − 1 weak verticesz1, . . . zd−1, then itsdth neighorzd (which is not a 2-vertex by Claim 3) may
be a3∗-vertex or a vertex belonging to a WFA. Hencev givesα to each adjacent weak vertex by R2
and may give2−α by R4 and R5 (2−α > β) ; it follows thatµ∗(v) ≥ µd − (d− 1)α− (2−α) =
µd − (d− 2)α− 2 ≥ 0 by Claim 6. Now ifv is adjacent to at mostd− 2 weak vertices, then its two
last neighbors may be 2-vertices and soµ∗(v) ≥ µd − (d − 2)α − 2 ≥ 0 by Claim 6 and R2–R5
(α > 1 > 2 − α > β).

Case 2. d = k + 2.

7



Since every(k + 2)-vertex belongs to a FA by definition, this case does not occur.

Case 3. 2 ≤ d ≤ k + 1.

We consider two cases:v is weak or not.

Subcase 3.1. v is weak.

If d = 2, then by R1 and R2, it receives2 − α from its minor neighbor andα from its senior
neighbor andµ∗(v) = −2 + 2 − α + α = 0.

Suppose thatd ≥ 3. The vertexv is adjacent tod − 1 minor vertices, sayz1, . . . , zd−1, and to a
senior vertex, sayzd. By Claim 5, the edgevzd cannot be the rigid link of a WFA. By R2,v receives
α from zd. Now, each edgevzi may lead to a 2-vertex, and in this case,v gives2 − α to zi, or, may
lead to al-vertex with3 ≤ l ≤ k+1 belonging to a WFA (vzi is a rigid link), and in this case,v gives
β to the corresponding WFA. Since2−α > β, it follows thatµ∗(v) ≥ µd − (d−1)(2−α)+α ≥ 0
due to Claim 7.

Subcase 3.2. v is not weak.

If d = 2, thenµ∗(v) = −2 + 2 · 1 = 0 by R2.
Assume thatd ≥ 3. Observe thatv is adjacent to at least two senior vertices (v is not weak)

and at most one of them belongs to a FA (otherwise,v would belong to a FA, contradicting our
assumption).

Supposed = 3. If v is not a3∗-vertex, thenv is adjacent to three senior vertices andµ∗(v) ≥
µ3 − β = 0 by R5. If v is a3∗-vertex, thenv is adjacent to a(k + 3)+-vertex which gives2 − α to
v by R4. Hence,µ∗(v) ≥ µ3 − (2 − α) − β + (2 − α) = 0 by R1, R4, and R5.

Supposed ≥ 4. By R1 and R5,v gives nothing to at least one(k + 3)+-vertex ; henceµ∗(v) ≥

µd − (d − 2)(2 − α) − β = (2d−7)(k+3)
2(k+1) ≥ 0 whend ≥ 4.

Hence we proved that∀v /∈ FA, µ∗(v) ≥ 0. Since theFA’s in G are disjoint, to complete the
proof of Theorem 1 it suffices to prove the following:

Lemma 1 Each FA in G has

µ∗(FA) =
∑

v∈V (FA)

µ∗(v) ≥ 0.

PROOF. We define now thespecial rigid edge of a FA. For a weak feading areaWFA, thespecial
rigid edge is its unique rigid edge and observe that by R5 a chargeβ is transfered insideWFA along
this edge. Now, for a strong feading areaSFA, we are sure that at least one rigid link does not lead
to a WFA by Claim 5 ; we choose one of them as thespecial rigid edge of SFA. Observe that no
charge is transfered along this link by R5.

In order to compute the new charge ofFA, we perform now a series of operations, split in four
steps, which transformFA into a feeding areaFA4 consisting of just one vertex. Each operation
ϕ transforms a feeding areaFA into a feeding areaϕ(FA) of the same nature (strong or weak)
preserving the special rigid edge such thatµ∗(ϕ(FA)) ≤ µ∗(FA). During some of these operations
we will simplify and modify the structure ofFA by eliminating some partsRP of FA and adding
some “loose vertices”. For each removed partRP of FA, we may change locally the discharging
process to be sure thatµ∗(RP ) ≥ 0. The role of the loose vertices is to retain these changements.

The resultingFA of Stepi is denoted byFAi. We will easily see at Step 5 thatµ∗(FA4) ≥ 0,
which will complete the proof of Theorem 1.
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Step 1. (Eliminating edges between two minor vertices and subdividing (k + 2, k + 2)-edges.)
Supposexy is an edge between two vertices ofFA. If bothx andy are minor, then we deletexy and
add a loose adjacent 2-vertex to each ofx andy. This impliesµ∗(ϕ(FA)) = µ∗(FA)− 2(2−α) <
µ∗(FA) by R1. If d(x) = d(y) = k + 2, then we replacexy by a pathxzy, wherez is a 31-
vertex; clearly,µ∗(ϕ(FA)) = µ∗(FA) + µ3 − (2 − α) < µ∗(FA) by R1 (µ3 = β < 2 − α).
So, ourFA1 is bipartite, every edge ofFA1 joins a(k + 2)-vertex with a minor3+-vertex, and
µ∗(FA1) ≤ µ∗(FA).

Step 2. (Breaking cycles.) Suppose a cycleC in FA contains a pathyxz with d(x) ≤ k + 1 and
d(y) = d(z) = k + 2.

If x has a neighbort such thatt /∈ {y, z} andd(t) = k+2, then we delete edgeyx and add a loose
32-vertex adjacent toy and also add a loose2-vertex adjacent tox. This yieldsV (ϕ(FA)) = V (FA)
and this does not change the type (strong or weak) ofFA since this operation does not create or
destroy rigid links. By R1 and R2, we haveµ∗(ϕ(FA)) = µ∗(FA) − α − (2 − α) < µ∗(FA).

Now suppose all neighbors ofx other thany andz have a degree different fromk + 2, and let
r (resp.s) be the number of rigid (respectively, special) links associated toFA going out ofx. We
consider several cases according to the value ofr:

Case r = 0. We make the choice to transfer a chargeα from y and a chargeα from z to x. Hence,µ∗(x) ≥
µ(x) − (d(x) − 2)(2 − α) + 2α ≥ 0. Now we removex from FA. Moreover to retain the
fact that we have givenα twice from y andz, we add a loose adjacent32-vertex toy and
a loose adjacent32-vertex toz (by R2, y andz give eachα to these “virtual”32-vertices).
We obtain a new feeding areaϕ(FA) of the same type (strong or weak) andµ∗(ϕ(FA)) ≤
µ∗(FA) − µ(x) + (d(x) − 2)(2 − α) − 2α ≤ µ∗(FA).

Case r = 1. We make the choice to transfer a chargeα from y to x. Henceµ∗(x) ≥ µ(x) − (d(x) −

3)(2 − α) − β + α = k(2d(x)−3)+6d(x)−17
2(k+1) ≥ 0 (the rigid link incident tox may lead to a

WFA). Now we removex from FA, we add a loose32-vertex adjacent toy (by R2,y gives
α to this added vertex) and a rigid link incident toz, namely a special link ifs = 1 and non-
special otherwise. We obtain a new feeding areaϕ(FA) of the same type (strong or weak)
andµ∗(ϕ(FA)) ≤ µ∗(FA) − µ(x) + (d(x) − 3)(2 − α) − α ≤ µ∗(FA).

Case r ≥ 2. We removex from FA (d(x) ≥ 4). We haveµ∗(x) ≥ µ(x) − (d(x) − 4)(2 − α) − 2β =
k(d(x)−2)+3d(x)−10

k+1 ≥ 0. We add a rigid link to each ofy andz and make one of these links
special if and only ifs = 1. We obtain a new feeding areaϕ(FA) of the same type (strong or
weak) andµ∗(ϕ(FA)) ≤ µ∗(FA) − µ(x) + (d(x) − 4)(2 − α) ≤ µ∗(FA).

Thus,µ∗(FA2) ≤ µ∗(FA1) andFA2 is a((k + 1)−, (k + 2))-alternating tree with all pendant
vertices having degree(k + 2).

Step 3. (Deleting and moving rigid links.) We want to leave aSFA with just two rigid links and
then we want to move all links of aFA (strong or weak) to a pendant(k + 2)-vertex.

Supposexy is a non-special rigid link, wherex ∈ SFA (andy /∈ SFA). We deletexy and
join x to a loose 2-vertex ifd(x) ≤ k + 1 or to a loose32-vertex if d(x) = k + 2. We obtain
µ∗(ϕ(SFA)) = µ∗(SFA)−(2−α) orµ∗(SFA)−α by R1 and R2 ; soµ∗(ϕ(SFA)) ≤ µ∗(SFA).
Thus, starting with aSFA we can get anSFA with just two rigid links, one of which is special.

Note that replacing a rigid link rooted at a minor vertex ofFA by a rigid link of the same kind
(special or not) at a(k + 2)-vertex yieldsµ∗(ϕ(FA)) = µ∗(FA) + (2 − α) − α < µ∗(FA).

Thus, we arrive at aµ∗-minimal FA whose all rigid links are adjacent to a pendant vertex of
FA, calleda root. in particular, aSFA has one special and one non-special rigid links.
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Step 4. (Reducing pendant vertices other than the root.)Suppose our alternating treeFA has
|V (FA)| > 1; then there is a pathzyx, wherez is a pendant(k + 2)-vertex different from the root
of FA. We make the choice to transfer a chargeα from x to y andz. It follows that :

µ∗(z) + µ∗(y) ≥ µ(z) − (d(z) − 1)α + µ(y) − (d(y) − 2)(2 − α) + α

≥ αk + 2γ − (k + 1)α + µ(y) − (d(y) − 2)(2 − α) + α

≥
k(d(y) − 4) + 3d(y) − 8

k + 1
+ 2

k − 1

k + 1

≥
k(d(y) − 2) + 3d(y) − 10

k + 1
≥ 0

Then we deletez andy and add a loose32-vertex adjacent tox (by R2,x givesα to this new
vertex). We obtain a new feeding areaϕ(FA) of the same type (strong or weak) andµ∗(ϕ(FA)) ≤
µ∗(FA).

Step 5. (Countingµ∗(FA) for terminalFA’s.) Recall that eachWFA getsβ from its sponsor by
R5, and in eachSFA, no chargeβ is transfered along the special rigid link. It follows:

µ∗(WFA) = µk+2 − (k + 1)α + β

= αk + 2γ − (k + 1)α + β

= 2γ − α + β

= 0

µ∗(SFA) ≥ µk+2 − kα − β

≥ αk + 2γ − kα − β

≥ 2γ − β

≥
5k − 9

2(k + 1)
≥ 0

This completes the proofs of Lemma 1 and Theorem 1.
2
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