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(k, 1)-coloring of sparse graphs

A graph G is called (k, 1)-colorable, if the vertex set of G can be partitioned into subsets V1 and V2 such that the graph G[V1] induced by the vertices of V1 has maximum degree at most k and the graph G[V2] induced by the vertices of V2 has maximum degree at most 1. We prove that every graph with a maximum average degree less than 10k+22 3k+9 admits a (k, 1)-coloring, where k ≥ 2. In particular, every planar graph with girth at least 7 is (2, 1)-colorable, while every planar graph with girth at least 6 is (5, 1)-colorable. On the other hand, for each k ≥ 2 we construct non-(k, 1)-colorable graphs whose maximum average degree is arbitrarily close to 14k 4k+1 .

Introduction

A graph G is called improperly (d 1 , . . . , d k )-colorable, or just (d 1 , . . . , d k )-colorable, if the vertex set of G can be partitioned into subsets V 1 , . . . , V k such that the graph G[V i ] induced by the vertices of V i has maximum degree at most d i for all 1 ≤ i ≤ k. This notion generalizes those of proper k-coloring (when d 1 = . . . = d k = 0) and d-improper k-coloring (when d 1 = . . . = d k = d ≥ 1).

Proper and d-improper colorings have been widely studied. As shown by Appel and Haken [START_REF] Appel | Every planar map is four colorable[END_REF][START_REF] Appel | Every planar map is four colorable[END_REF], every planar graph is 4-colorable, i.e. (0, 0, 0, 0)-colorable. Eaton and Hull [START_REF] Eaton | Defective list colorings of planar graphs[END_REF] and independently Škrekovski [START_REF] Škrekovski | List improper coloring of planar graphs[END_REF] proved that every planar graph is 2-improperly 3-colorable (in fact, 2-improper 3choosable), i.e. (2, 2, 2)-colorable. This latter result was extended by Havet and Sereni [START_REF] Havet | Improper choosability of graphs and maximum average degree[END_REF] to not necessarily planar sparse graphs as follows: For every k ≥ 0, every graph G with mad(G) < 4k+4 k+2 is k-improperly 2-colorable (in fact k-improperly 2-choosable), i.e. (k, k)-colorable, where

mad(G) = max 2|E(H)| |V (H)| , H ⊆ G
is the maximum average degree of a graph G.

Let g(G) denote the girth of graph G (the length of a shortest cycle in G). Glebov and Zambalaeva [START_REF] Glebov | Path partitions of planar graphs[END_REF] proved that every planar graph G is (1, 0)-colorable if g(G) ≥ 16. This was strengthened by Borodin and Ivanova [START_REF] Borodin | Near proper 2-coloring the vertices of sparse graphs[END_REF] by proving that every graph G is (1, 0)-colorable if mad(G) < 7 3 , which implies that every planar graph G is (1, 0)-colorable if g(G) ≥ 14.

This was extended by Borodin et al. [START_REF] Borodin | Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most k[END_REF] by proving that every graph with a maximum average degree smaller than 3k+4 k+2 is (k, 0)-colorable if k ≥ 2. Note that the proof in [START_REF] Borodin | Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most k[END_REF] extends that in [START_REF] Borodin | Near proper 2-coloring the vertices of sparse graphs[END_REF] but does not work for k = 1.

In this paper, we focus on (k, 1)-colorability of graph. So, a graph G is (k, 1)-colorable if its vertices can be partitioned into subsets V 1 and V 2 such that in G[V 1 ] every vertex has degree at most k, while in G[V 2 ] every component has at most two vertices. Our main result is:

Theorem 1 Every graph G with mad(G) < 10k+22 3k+9 , where k ≥ 2, is (k, 1)-colorable.
On the other hand, we construct non-(k, 1)-colorable graphs whose maximum average degree is arbitrarily close to 14k 4k+1 .

Since every planar graph G satisfies mad(G) < 2g(G) g(G)-2 , from Theorem 1 we have:

Corollary 1 Every planar graph G is (2, 1)-colorable if g(G) ≥ 7, and (5, 1)-colorable if g(G) ≥ 6.
On the other hand, there is (see [START_REF] Borodin | Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most k[END_REF]) a planar graph with girth 6 which is not (k, 0)-colorable whatever large k, whereas every planar graph G is (8, 0)-colorable if g(G) ≥ 7 and (4, 0)-colorable if g(G) ≥ 8 (see [START_REF] Borodin | Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most k[END_REF]). Also note that every planar graph G with g(G) ≥ 6 is (2, 2)-colorable, while that with g(G) ≥ 8 is (1, 1)-colorable (see [START_REF] Havet | Improper choosability of graphs and maximum average degree[END_REF]). The results are summarized in the following table:

g(G) (k, 0) (k, 1) (k, 2) 6 × [8] (5, 1) (2, 2)[11] 7 (8, 0) [8] (2, 1) 8 
(4, 0) [START_REF] Borodin | Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most k[END_REF] (1, 1) [START_REF] Havet | Improper choosability of graphs and maximum average degree[END_REF] Table 1: The relationship between the girth of G and its (k, j)-colorability.

A distinctive feature of the discharging in the proof of Theorem 1 for 2 ≤ k ≤ 4 is its "globality": a charge for certain vertices is collected from arbitrarily large "feeding areas", which is possible due to the existence of reducible configurations of unlimited size in the minimum counter-examples, called "soft components". Such global discharging first appears in [START_REF] Borodin | On the total coloring of planar graphs[END_REF] and is used, in particular, in [START_REF] Borodin | 5, 2)-Coloring of Sparse Graphs[END_REF][START_REF] Borodin | Oriented vertex 5-coloring of sparse graphs[END_REF][START_REF] Borodin | List 2-distance (∆+ 1)-coloring of planar graphs with given girth[END_REF][START_REF] Borodin | Near proper 2-coloring the vertices of sparse graphs[END_REF][START_REF] Borodin | Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most k[END_REF][START_REF] Havet | Improper choosability of graphs and maximum average degree[END_REF]. The terms "feeding area" and "soft component" are introduced in [START_REF] Borodin | Near proper 2-coloring the vertices of sparse graphs[END_REF] and also used in our recent paper [START_REF] Borodin | Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most k[END_REF].

Non-(k, 1)-colorable graphs with a small maximum average degree

Let H i a,b be the graph consisted of two adjacent vertices a and b and of i vertices of degree 2 c 1 , . . . , c i linked each to a and b. We take one copie of H k+1 a,b and k -1 copies of H 2 a,b and identify all the vertices a to a single vertex a * . Let H a * be the obtained graph. Finally, we take an odd cycle C 2n-1 = a 1 a 2 . . . a 2n-1 and n copies of H a * , and we identify each vertex a i with odd index with the vertex a * of a copy of H a * . Let G n,k be the obtained graph. An example is given in Figure 1.

One can observe that G n,k is not (k, 1)-colorable. Indeed, observe first that no two consecutive vertices x, y on C 2n-1 belongs to V 2 . Otherwise we can suppose that x is of odd index on C 2n-1 and the subgraph H k+1 a,b associated to x is not (k, 1)-colorable. Due to the parity of C 2n-1 , it follows that two consecutive vertices x, y on C 2n-1 belongs to V 1 . Similarly, we can suppose that x is of odd index on C 2n-1 . If G n,k is (k, 1)-colorable, then one more vertex in each H i a,b associated to x must belong to V 1 ; it follows that the degree of 

x in G[V 1 ] is k + 1, a contradiction.

Now observe that:

mad(G n,k ) = 2|E(G n,k )| |V (G n,k )| = 2(2n -1 + 5(k -1)n + n(2k + 3)) 2n -1 + 3(k -1)n + n(k + 2) = 2(7nk -1) n(4k + 1) -1 lim n→∞ mad(G n,k ) = 14k 4k + 1

Proof of Theorem 1

Let G = (V, E) be a counterexample to Theorem 1 on the fewest number of vertices. Clearly, G is connected and its minimum degree is at least 2. By definition, we have:

2|E| |V | ≤ mad(G) < 10k + 22 3k + 9 2|E| -|V | 10k + 22 3k + 9 = v∈V d(v) - 10k + 22 3k + 9 < 0 ,
where d(v) is the degree of a vertex v. Thus, we have:

v∈V 3(k + 3) 2(k + 1) d(v) - 5k + 11 k + 1 < 0 . ( 1 
)
Let the charge µ(v) of each vertex v of G be 3(k+3) 2(k+1) d(v) -5k+11 k+1 .
We shall describe a number of structural properties of G (Section 3.1) which make it possible to vary the charges so that the new charge µ * of every vertex becomes nonnegative for k ≥ 5 (Section 3.2). For 2 ≤ k ≤ 4 there is a difference: some vertices has a non-negative µ * individually (Section 3.3), while the others are partitioned into disjoint subsets, called feeding areas, and the total charge of each feeding area is proved to be non-negative (Lemma 1 in Section 3.3). Since the sum of charges does not change, in both cases we get a contradiction with (1), which will complete the proof of Theorem 1.

A vertex of degree k (resp. at least k, at most k) is called a k-vertex (resp. k + -vertex, k --vertex). A (k + 1) --vertex is minor; a (k + 2) + -vertex is senior.
A weak vertex is a minor vertex adjacent to exactly one senior vertex. A light vertex is either a 2-vertex or a weak vertex. A 3 i -vertex is a 3-vertex adjacent to i 2-vertices.

Claims 2 and 3 below lead us to the following definition. A d-vertex, where

d ≥ k + 3, is soft if it is adjacent to d -1 weak vertices. For d = k + 2 the notion of soft vertex is broader: a (k + 2)-vertex is soft if it is adjacent to k + 1 light vertices.
We will color the vertices of the subgraph of maximum degree at most k by color k and the other vertices by color 1.

Structural properties of

G Claim 1 No 2-vertex in G is adjacent to a 2-vertex.
PROOF. Suppose G has two adjacent 2-vertices t and u, and let s (resp. v) be the other neighbor of t (resp. u). By the minimality of G, the graph G \ {t, u} has a (k, 1)-coloring c. It suffices to color t and u with a color different from those of s and v respectively to extend c to the whole graph G, a contradiction.

2 ) be the other neighbors of x 1 (resp. x 2 ). We take a (k, 1)-coloring of G \ {x, x 1 , x 2 }. We first recolor the vertices y i j as follows: if y i j has d(y i j ) = 2, then we recolor y i j properly ; otherwise if y i j is weak, we recolor y i j with k (followed by recoloring if necessary the neighbors of y i j 's in any order). Now if d(x 1 ) ≥ k + 3, we color x 1 with 1 (observe that all colored neighbors of x 1 are colored with k). Assume d(x 1 ) = k + 2. If the color 1 appears at least twice on the y i j , then we color x 1 with k and with 1 otherwise. We do the same for x 2 . Finally, if a same color appear three times in the neighborhood of x, then we color x properly. Otherwise we color x with k (followed by recoloring x 3 and some y i j , if necessary). This gives an extension of c to the whole graph G, a contradiction.

Claim
2

An edge xy is soft if one of the following holds:

• d(x) = k + 2 while y is light, i.e. is a 2-vertex or a weak vertex, or

• x is a minor vertex while d(y) = 2.
The vertex x is called the good end of the soft edge xy.

A soft component SC is a subgraph of G such that ∆(SC) ≤ k + 2, each edge joining SC to G \ SC is soft and each good end of the soft edges belongs to SC.

Claim 5 G does not contain soft components.

PROOF. Assume that G contains a soft component SC. By minimality of G, the graph G \ SC has a (k, 1)-coloring c. We will show that we can extend c to the whole graph G, a contradiction. First, for each edge xy with x ∈ SC and y / ∈ SC, we recolor (if necessary) the vertex y such that the choice of any color for x will not create any problem on y. If y is a 2-vertex, then we just recolor y properly. If y is weak vertex, then we recolor y with 1 if it has k colored neighbors with the color k and with k otherwise. Observe that if x is later colored with 1 or k, then that will not create a conflict for y. Now we extend the coloring c to the whole graph G as follows: we choose a coloring φ of SC that minimizes σ = k • E 11 + E kk where E ii denotes the number of edges whose both ends are colored with i. Clearly, such a coloring exists. Moreover we will show that such a coloring is a (k, 1)-coloring. Assume that the coloring φ of SC is not a (k, 1)-coloring. So suppose that there exists a vertex u of SC colored with 1 which has two neighbors colored with 1. We just recolor u with k and obtain a coloring with a smaller σ which contradicts the choice of φ. Similarly, assume that there exists a vertex v of SC colored with k which has k + 1 neighbors colored with k. We just recolor v with 1 and obtain a coloring with a smaller σ which contradicts the choice of φ.

2

Corollary 2 No (k + 2)-vertex can be adjacent to k + 2 light vertices.

Discharging procedure when

k ≥ 5 Set α = 3k+1 2(k+1) , γ = k-1 k+1 , ǫ = k-5 2(k+1) . Note that 2 -α = k+3 2(k+1) , 1 3 ≤ γ < 1, 1 2 < 2 -α ≤ 5 6
, and γ ≥ 2 -α when k ≥ 5.

Our rules of discharging are as follows:

R1. Every d-vertex with 3 ≤ d ≤ k + 1 gives 2 -α to each adjacent 2-vertex.
R2. Every weak vertex gets α from its adjacent senior vertex.

R3. Every non-weak 2-vertex gets 1 from each neighbor.

R4. Every minor non-light vertex gets γ from each non-soft adjacent (k + 2)-vertex, ǫ from each soft adjacent (k + 2)-vertex and 2 -α from each adjacent (k + 3) + -vertex.

We now show that µ * (v) ≥ 0 for all v in V (G). Let v be a d-vertex, where d ≥ 2. Set

µ d = 3(k + 3) 2(k + 1) d - 5k + 11 k + 1
In particular, µ 2 = -2 and -1 2 < µ 3 ≤ 1 2 .

Case 1. d ≥ k + 3.

Claim 6 If d ≥ k + 3, then µ d ≥ α(d -2) + 2; in particular, µ k+3 = α(k + 1) + 2.
PROOF.

µ d -α(d -2) -2 = 3(k + 3) 2(k + 1) d - 5k + 11 k + 1 - 3k + 1 2(k + 1) (d -2) -2 = 4(d -(k + 3)) k + 1 ≥ 0 2 By Claim 3, v is adjacent to at most d -1 weak vertices. If v is adjacent to at most d -2 weak vertices, then µ * (v) ≥ µ d -α(d -2) -2 × 1 ≥ 0 by R1-R4 due to Claim 6. Suppose now that v is adjacent to exactly d -1 weak vertices. By Claim 3, v is adjacent to a non light vertex. So we have µ * (v) ≥ µ d -α(d -1) -(2 -α) ≥ 0 by R1-R4 due to Claim 6. Case 2. d = k + 2.
By Corollary 2, the vertex v is adjacent to at most k + 1 light vertices. By Claim 6, we have

µ k+2 = µ k+3 - 3(k + 3) 2(k + 1) = α(k + 1) + 2 - 3(k + 3) 2(k + 1) = αk + 2γ
If v is adjacent to at most k light vertices, then this implies µ * (v) ≥ 0 by R1-R4. If v is adjacent to exactly k + 1 light vertices, then v is soft. By Claim 3 and R1-R4, we have

µ * (v) ≥ αk + 2γ -α(k + 1) -ǫ = 2γ -α -ǫ = 0. Case 3. 2 ≤ d ≤ k + 1.
By Claim 1, a 2-vertex is adjacent to 3 + -vertices. By Claim 2, a d-vertex with 3 ≤ d ≤ k + 1 is adjacent to at most d -1 vertices of degree 2, each of which gets 2 -α from v by R1. Subcase 3.1. v is weak.

If d = 2, then µ * (v) = -2 + (2 -α) + α = 0 by R1 and R3. Suppose d(v) ≥ 3. Claim 7 For each d ≥ 3, it holds µ d -(d -1)(2 -α) + α = (k+3)(d-3) k+1 . PROOF. µ d -(d -1)(2 -α) + α = 3(k + 3) 2(k + 1) d - 5k + 11 k + 1 -(d -1) k + 3 2(k + 1) + 3k + 1 2(k + 1) = (k + 3)(d -3) k + 1 2
The vertex v is weak. By R2, it gets α from its adjacent senior vertex and gives 2 -α to at most d -1 adjacent 2-vertices, it follows from Claim 7 that µ * (v) ≥ (k+3)(d-3) k+1 ≥ 0, when d ≥ 3.

Subcase 3.2. v is not weak.

The vertex v is adjacent to two senior vertices.

If d = 2, then µ * (v) = -2 + 2 • 1 = 0 by R3. If d = 3, then µ 3 = 5-k 2(k+1)
. Assume that v is adjacent to 2-vertex. Then v gives 2 -α by R1. By Claim 4, v is adjacent to a non soft (k + 2) + -vertex. Note that γ ≥ 2 -α > ǫ. By R1 and R4, we have µ

* (v) ≥ µ 3 -(2 -α) + 2 -α + ǫ = 0. Assume that v is not adjacent to a 2-vertex. Then µ * (v) ≥ µ 3 + 2ǫ = ǫ ≥ 0. If d ≥ 4, then by R1, µ * (v) ≥ µ d -(d -2)(2 -α) = k(d-4)+3d-8 k+1 ≥ 0.
3.3 Discharging procedure when 2 ≤ k ≤ 4

Preliminaries

A weak edge between vertices x and y is either an ordinary edge xy, or a path xzy with 3 ≤ d(z) ≤ k + 1, where z is called the intermediate vertex of the weak edge xy. A feeding area, abbreviated to F A, is a maximal subgraph of G consisting of (k + 2)-vertices mutually accessible from each other along weak edges and of their intermediate vertices. An edge xy with x ∈ F A and y / ∈ F A is a link. By Claim 5, at least one of links for F A is not soft (such links will be called rigid). A FA is a weak feeding area, denoted by W F A, if it has just one rigid link xy; in this case, the vertex y is called the sponsor of W F A. See Figure 2.

Sometimes a W F A with d(y) = i will be denoted by W F A(i), where 3 ≤ i ≤ k + 2. A F A with at least two rigid links is strong and denoted by SF A. By definition, no W F A(k + 2) can be joined by its rigid link to a F A, and no W F A((k + 1) -) can be joined by its rigid link to a (k + 2)-vertex in a F A. An immediate consequence of Claim 5 is that no two W F A((k + 1) -)'s can be joined by their rigid link. By the definition of F A, a minor vertex can belong to at most one of them. We cannot prove that each v ∈ F A has µ * (v) ≥ 0; however, it turns out that the total new charge µ * (F A) := v∈V (F A) µ * (v) of each F A is nonnegative (see Lemma 1 below). This is also a way to arrive at a contradiction with [START_REF] Appel | Every planar map is four colorable[END_REF].

Discharging for 2 ≤ k ≤ 4 and its consequences

Set α = 3k+1 2(k+1) , γ = k-1 k+1 , β = 5-k 2(k+1) . Observe that 2 -α = k+3 2(k+1) , α > 1 > 2 -α > β,
We now prove µ * (v) ≥ 0 assuming v / ∈ F A. Step 4. (Reducing pendant vertices other than the root.) Suppose our alternating tree F A has |V (F A)| > 1; then there is a path zyx, where z is a pendant (k + 2)-vertex different from the root of F A. We make the choice to transfer a charge α from x to y and z. It follows that : Then we delete z and y and add a loose 3 2 -vertex adjacent to x (by R2, x gives α to this new vertex). We obtain a new feeding area ϕ(F A) of the same type (strong or weak) and µ * (ϕ(F A)) ≤ µ * (F A).

Step 5. (Counting µ * (F A) for terminal F A's.) Recall that each W F A gets β from its sponsor by R5, and in each SF A, no charge β is transfered along the special rigid link. It follows: 

1 Figure 1 :

 11 Figure 1: An example of G n,k with n = 3 and k = 3.

Figure 2 :

 2 Figure 2: Examples of feeding areas for k = 2.

and 2 -

 2 α ≥ γ. Moreover, µ 2 = -2 and µ 3 = β. A 3 * -vertex is a 3-vertex adjacent to exactly one minor vertex. The discharging rules for 2 ≤ k ≤ 4 are almost the same as Subsection 3.2. Our rules of discharging are as follows: R1. Every d-vertex with 3 ≤ d ≤ k + 1 gives 2 -α to each adjacent 2-vertex. R2. Every weak vertex gets α from its adjacent senior vertex. R3. Every non-weak 2-vertex gets 1 from each neighbor. R4. Every 3 * -vertex gets 2 -α from each adjacent (k + 3) + -vertex. R5. Every W F A gets β along the rigid link from its sponsor.

Case 1 .

 1 d = d(v) ≥ k + 3.By Claim 3, the vertex v is adjacent to at most d -1 weak vertices. If v is adjacent to exactly d -1 weak vertices z 1 , . . . z d-1 , then its d th neighor z d (which is not a 2-vertex by Claim 3) may be a 3 * -vertex or a vertex belonging to a WFA. Hence v gives α to each adjacent weak vertex by R2 and may give 2 -α by R4 and R5 (2-α > β) ; it follows that µ * (v) ≥ µ d -(d -1)α -(2 -α) = µ d -(d -2)α-2 ≥ 0 by Claim 6. Now if v is adjacent to at most d -2 weak vertices, then its two last neighbors may be 2-vertices and so µ * (v) ≥ µ d -(d -2)α -2 ≥ 0 by Claim 6 and R2-R5 (α > 1 > 2 -α > β).

Case 2 .

 2 d = k + 2.

µ

  * (z) + µ * (y) ≥ µ(z) -(d(z) -1)α + µ(y) -(d(y) -2)(2 -α) + α ≥ αk + 2γ -(k + 1)α + µ(y) -(d(y) -2)(2 -α) + α ≥ k(d(y) -4) + 3d(y)

µ

  * (W F A) = µ k+2 -(k + 1)α + β = αk + 2γ -(k + 1)α + β = 2γ -α + β = 0 µ * (SF A) ≥ µ k+2 -kα -β ≥ αk + 2γ -kα -βThis completes the proofs of Lemma 1 and Theorem 1.2
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  Every minor vertex in G is adjacent to at least one senior vertex.PROOF. Suppose G has a minor vertex x adjacent only to minor vertices. Take a (k, 1)-coloring c of G \ x. If none of the neighbors of x has color 1, then we simply color x with 1. So suppose that at least one neighbor of x is colored with 1. We then color x with k. There is now a problem only if there exists a neighbor of x, say y, colored with k and surrounded by k + 1 neighbors colored with

k. In this case, we recolor y with 1. We iterate this operation while a such y exists. The coloring obtained is a (k, 1)-coloring of G, a contradiction. 2 Claim 3 If a senior d-vertex is adjacent to d -1 weak vertices, then it is adjacent to a non-light vertex. PROOF. Suppose G has a d-vertex x adjacent to vertices x 1 , . . . , x d , where x 1 , . . . , x d-1 are weak while x d is either weak or has d(x d ) = 2. We take a (k, 1)-coloring of G \ x and recolor each weak neighbor x i with color k (followed by recoloring if necessary the neighbors of x i 's in any order). If x d is a 2-vertex, then we recolor it properly. Now it suffices to color x with 1; a contradiction. 2 Claim 4 No 3-vertex is adjacent to two soft vertices and to a minor vertex. PROOF. Suppose G has a 3-vertex x adjacent to vertices x 1 , x 2 , x 3 , where x 1 and x 2 are (k + 2) +vertices while d(x 3 ) ≤ k + 1. Let y 1 1 , . . . , y 1 d(x1)-1 (resp. y 2 1 , . . . , y 2 d(x2)-1
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Since every (k + 2)-vertex belongs to a FA by definition, this case does not occur.

We consider two cases: v is weak or not. Subcase 3.1. v is weak.

If d = 2, then by R1 and R2, it receives 2 -α from its minor neighbor and α from its senior neighbor and µ * (v) = -2 + 2 -α + α = 0.

Suppose that d ≥ 3. The vertex v is adjacent to d -1 minor vertices, say z 1 , . . . , z d-1 , and to a senior vertex, say z d . By Claim 5, the edge vz d cannot be the rigid link of a WFA. By R2, v receives α from z d . Now, each edge vz i may lead to a 2-vertex, and in this case, v gives 2 -α to z i , or, may lead to a l-vertex with 3 ≤ l ≤ k +1 belonging to a WFA (vz i is a rigid link), and in this case, v gives

Observe that v is adjacent to at least two senior vertices (v is not weak) and at most one of them belongs to a FA (otherwise, v would belong to a FA, contradicting our assumption).

Suppose 

Hence we proved that ∀v / ∈ F A, µ * (v) ≥ 0. Since the F A's in G are disjoint, to complete the proof of Theorem 1 it suffices to prove the following:

PROOF. We define now the special rigid edge of a FA. For a weak feading area W F A, the special rigid edge is its unique rigid edge and observe that by R5 a charge β is transfered inside W F A along this edge. Now, for a strong feading area SF A, we are sure that at least one rigid link does not lead to a WFA by Claim 5 ; we choose one of them as the special rigid edge of SF A. Observe that no charge is transfered along this link by R5.

In order to compute the new charge of F A, we perform now a series of operations, split in four steps, which transform F A into a feeding area F A 4 consisting of just one vertex. Each operation ϕ transforms a feeding area F A into a feeding area ϕ(F A) of the same nature (strong or weak) preserving the special rigid edge such that µ * (ϕ(F A)) ≤ µ * (F A). During some of these operations we will simplify and modify the structure of F A by eliminating some parts RP of F A and adding some "loose vertices". For each removed part RP of F A, we may change locally the discharging process to be sure that µ * (RP ) ≥ 0. The role of the loose vertices is to retain these changements.

The resulting F A of Step i is denoted by F A i . We will easily see at Step 5 that µ * (F A 4 ) ≥ 0, which will complete the proof of Theorem 1.

Step 1. (Eliminating edges between two minor vertices and subdividing (k + 2, k + 2)-edges.) Suppose xy is an edge between two vertices of F A. If both x and y are minor, then we delete xy and add a loose adjacent 2-vertex to each of x and y. This implies µ * (ϕ

So, our F A 1 is bipartite, every edge of F A 1 joins a (k + 2)-vertex with a minor 3 + -vertex, and µ * (F A 1 ) ≤ µ * (F A).

Step 2. (Breaking cycles.) Suppose a cycle C in F A contains a path yxz with d(x) ≤ k + 1 and

If x has a neighbor t such that t / ∈ {y, z} and d(t) = k+2, then we delete edge yx and add a loose 3 2 -vertex adjacent to y and also add a loose 2-vertex adjacent to x. This yields V (ϕ(F A)) = V (F A) and this does not change the type (strong or weak) of F A since this operation does not create or destroy rigid links. By R1 and R2, we have µ

Now suppose all neighbors of x other than y and z have a degree different from k + 2, and let r (resp. s) be the number of rigid (respectively, special) links associated to F A going out of x. We consider several cases according to the value of r:

Case r = 0. We make the choice to transfer a charge α from y and a charge α from z to x. Hence,

Moreover to retain the fact that we have given α twice from y and z, we add a loose adjacent 3 2 -vertex to y and a loose adjacent 3 2 -vertex to z (by R2, y and z give each α to these "virtual" 3 2 -vertices).

We obtain a new feeding area ϕ(F A) of the same type (strong or weak) and µ * (ϕ

Case r = 1. We make the choice to transfer a charge α from y to x.

≥ 0 (the rigid link incident to x may lead to a WFA). Now we remove x from F A, we add a loose 3 2 -vertex adjacent to y (by R2, y gives α to this added vertex) and a rigid link incident to z, namely a special link if s = 1 and nonspecial otherwise. We obtain a new feeding area ϕ(F A) of the same type (strong or weak) and µ * (ϕ

Case r ≥ 2. We remove x from F A (d(x) ≥ 4). We have µ

≥ 0. We add a rigid link to each of y and z and make one of these links special if and only if s = 1. We obtain a new feeding area ϕ(F A) of the same type (strong or weak) and µ

Thus, µ * (F A 2 ) ≤ µ * (F A 1 ) and F A 2 is a ((k + 1) -, (k + 2))-alternating tree with all pendant vertices having degree (k + 2).

Step 3. (Deleting and moving rigid links.) We want to leave a SF A with just two rigid links and then we want to move all links of a F A (strong or weak) to a pendant (k + 2)-vertex.

Suppose xy is a non-special rigid link, where x ∈ SF A (and y / ∈ SF A). We delete xy and join x to a loose 2-vertex if d(x) ≤ k + 1 or to a loose 3 2 -vertex if d(x) = k + 2. We obtain µ * (ϕ(SF A)) = µ * (SF A)-(2-α) or µ * (SF A)-α by R1 and R2 ; so µ * (ϕ(SF A)) ≤ µ * (SF A). Thus, starting with a SF A we can get an SF A with just two rigid links, one of which is special.

Note that replacing a rigid link rooted at a minor vertex of F A by a rigid link of the same kind (special or not) at a (k + 2)-vertex yields µ * (ϕ(F A)) = µ * (F A) + (2 -α) -α < µ * (F A).

Thus, we arrive at a µ * -minimal F A whose all rigid links are adjacent to a pendant vertex of F A, called a root. in particular, a SF A has one special and one non-special rigid links.