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A note on the acyclic 3-choosability of some planar graphs

An acyclic coloring of a graph G is a coloring of its vertices such that : (i) no two adjacent vertices in G receive the same color and (ii) no bicolored cycles exist in G. A list assignment of G is a function L that assigns to each vertex v ∈ V (G) a list L(v) of available colors. Let G be a graph and L be a list assignment of G. The graph G is acyclically L-list colorable if there exists an acyclic coloring

In this paper, we prove that every planar graph with neither cycles of lengths 4 to 7 (resp. to 8, to 9, to 10) nor triangles at distance less 7 (resp. 5, 3, 2) is acyclically 3-choosable.

Introduction

A proper coloring of a graph is an assignment of colors to the vertices of the graph such that two adjacent vertices do not use the same color. A k-coloring of G is a proper coloring of G using k colors ; a graph admitting a k-coloring is said to be k-colorable. An acyclic coloring of a graph G is a proper coloring of G such that G contains no bicolored cycles ; in other words, the graph induced by every two color classes is a forest. A list assignment of G is a function L that assigns to each vertex v ∈ V (G) a list L(v) of available colors. Let G be a graph and L be a list assignment of G. The graph G is acyclically L-list colorable if there is an acyclic coloring φ of G such that φ(v) ∈ L(v) for all v ∈ V (G). If G is acyclically L-list colorable for any list assignment L with |L(v)| ≥ k for all v ∈ V (G), then G is acyclically k-choosable. The acyclic choice number of G, χ l a (G), is the smallest integer k such that G is acyclically k-choosable. Borodin et al. [START_REF] Borodin | Acyclic list 7-coloring of planar graphs[END_REF] first investigated the acyclic choosability of planar graphs proving that:

Theorem 1 [START_REF] Borodin | Acyclic list 7-coloring of planar graphs[END_REF] Every planar graph is acyclically 7-choosable. and put forward to the following challenging conjecture:

Conjecture 1 [START_REF] Borodin | Acyclic list 7-coloring of planar graphs[END_REF] Every planar graph is acyclically 5-choosable.

This conjecture if true strengthens Borodin's Theorem [START_REF] Borodin | On acyclic colorings of planar graphs[END_REF] on the acyclic 5-colorability of planar graphs and Thomassen's Theorem [START_REF] Thomassen | Every planar graph is 5-choosable[END_REF] on the 5-choosability of planar graphs.

Theorem 2 Let G be a planar graph. Moreover, if G satisfies one of the following conditions, then G is acyclically 3-choosable Notations Let G be a planar graph. We use V (G), E(G) and F (G) to denote the set of vertices, edges and faces of G respectively. Let d(v) denote the degree of a vertex v in G and r(f ) the length of a face f in G. A vertex of degree k (resp. at least k, at most k) is called a k-vertex (resp. ≥ kvertex, ≤ k-vertex). We use the same notations for faces : a k-face (resp. ≥ k-face, ≤ k-face) is a face of length k (resp. at least k, at most k).

Proof of Theorem 2.1 Preliminaries

Let G be a counterexample to Theorem 2 with the minimun order and L be a list assignment such that there does not exist an acyclic L-coloring of G.

Claim 1 The counterexample G satisfies the following properties:

1. G does not contain 1-vertices. 

G does not contain two adjacent 2-vertices.

G does not contain 3-vertices adjacent to two

Proof

1. Suppose that G contains a 1-vertex u adjacent to a vertex v. By minimality of G, the graph G ′ = G\{u} is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of G ′ . To extend this coloring to G we just color u with c(u) ∈ L(u)\{c(v)}. The obtained coloring is acyclic, a contradiction.

2. Suppose that G contains a 2-vertex u adjacent to a 2-vertex v. Let t and w be the other neighbors of u and v respectively. By minimality of G, the graph G ′ = G\{u} is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of G ′ . We show that we can extend this coloring to G. Assume first that c(t) = c(v). Then we just color u with c(u

) ∈ L(u)\{c(t), c(v)}. Now, if c(t) = c(v), we color u with c(u) ∈ L(u)\{c(v), c(w)}.
In the two cases, the obtained coloring is acyclic, a contradiction.

3. Suppose that G contains a 3-vertex u adjacent to two 2-vertices v and y. Let x, w, z be the other neighbors of u, v, y respectively. By minimality of G, the graph G ′ = G \ {u, v, y} is acyclically 3-choosable. Hence, there exists an acyclic L-coloring c of G ′ . We show that we can extend this coloring to G. We first assign to u a color, different from c(x), that appears at most once on w and z. If this color is different from c(w) and c(z), we just proper color v and y. The obtained coloring is acyclic, a contradiction. If the color assigned to u appears once on w and z, say w, then we color properly y and assign to v a color different from c(w) and c(x).

The obtained coloring is acyclic, a contradiction.

4. Suppose that G contains a 4-vertex u adjacent to three 2-vertices v, y, and s. Let x, w, z, t be the other neighbors of u, v, y, s respectively. By minimality of G, the graph G ′ = G \ {u, v, y, s} is acyclically 3-choosable. Hence, there exists an acyclic L-coloring c of G ′ . We show that we can extend this coloring to G. We first assign to u a color, different from c(x), that appears at most once on w, z, and t. If this color is different from c(w), c(z) and c(t), we just proper color v, y, and s. The obtained coloring is acyclic, a contradiction. If the color assigned to u appears once on w, z and t, say w, then we color properly y, s and assign to v a color different from c(w) and c(x). The obtained coloring is acyclic, a contradiction.

5. Suppose that G contains a 2-vertex u incident to a 3-face uvw. By minimality of G, the graph G ′ = G\{u} is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of G ′ . We can extend this coloring to G by coloring u with c(u) ∈ L(u)\{c(v), c(w)}, a contradiction.

6. Suppose that G contains a 3-face xyz with d(x) = d(y) = 3. Moreover x (resp. y) is adjacent to a 2-vertex v (resp. s). Finally let u (resp. t) be the other neighbor of v (resp. s).

By minimality of G, the graph G ′ = G \ v is acyclically 3-choosable. Hence, there exists an acyclic L-coloring c of G ′ . If c(u) = c(x), we just color properly v and the obtained coloring is acyclic, a contradiction. Assume that c(u

) = c(x). If L(v) = {c(x), c(y), c(z)},
we color v with a color different from c(x), c(y), c(z) and the obtained coloring is acyclic, a contradiction. Suppose that

L(v) = {c(x), c(y), c(z)}. If (c(x), c(y)) = (c(s), c(t))
, we color v with c(y) and the coloring obtained is acyclic. Suppose that (c(x), c(y)) = (c(s), c(t)).

Observe now that L(x) = {c(x), c(y), c(z)} ; otherwise, we recolor x with a color different from c(x), c(y), c(z) and proper color v. Similarly, L(y) = {c(x), c(y), c(z)} ; otherwise, we recolor y with a color different from c(x), c(y), c(z) and color v with a color different from c(x) and c(z). Finally we exchange the colors on x and y and proper color the vertices v and s. The obtained coloring is acyclic, a contradiction.

7. Suppose that G contains a path xyz with d(x) = d(y) = d(z) = 3, and x, y, z are adjacent to 2-vertices, u, v, w, respectively. Let p, q, r, s, t be the other neighbors of x, u, v, w, z, respectively. By minimality of G, the graph G ′ = G\{x, y, z, u, v, w} is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of G ′ . We show that we can extend this coloring to G.

7.1 Suppose L(y)\{c(p), c(r), c(t)} = ∅. We assign to y a color c(y) different from c(p), c(r), c(t).

7.1.1 If L(x) = {c(p), c(y), c(q)}, then we assign to x a color different from c(p), c(y) and c(q). Then, we color u with a color different from c(q) and c(x), and we assign to z a color different from c(y) and c(t). If c(z) = c(s), then we just color w with a color different from c(s) and c(z) ; otherwise, we color w with a color different from c(s) and c(t). Finally we color v with a color different from c(r) and c(y), and the coloring obtained is acyclic, a contradiction. 7.1.2 Suppose now, L(x) = {c(p), c(y), c(q)} with c(p) = c(y) = c(q) = c(p) and, by symmetry, L(z) = {c(y), c(t), c(s)} with c(y) = c(t) = c(s) = c(y). We first assign to x the color c(q) and we color z with the color c(s). We can observe that, if c(s) = c(q), then we assign to u a color different from c(q) and c(p), we color w with a color different from c(s) and c(t) and we color v with a color different from c(r) and c(y). The coloring obtained is acyclic, a contradiction. So assume that c(s) = c(q), then we have two cases: 7.1.2.1 If L(u) = {c(p), c(y), c(q)}, then we assign to u a color different from c(p), c(y) and c(q). We color properly the vertex v. We color w with a color different from c(s) and c(t). The coloring obtained is acyclic, a contradiction. 7.1.2.2 Suppose now, L(u) = {c(p), c(y), c(q)} and, by symmetry, 

L(w) = {c(s), c(y), c(t)}. Set c(q) = 1 and c(y) = 2. We have c(q) = c(x) = c(z) = c(s) = 1, c(y) = 2, L(u) = L(x) = {1, 2, c(p)},
.2 Assume that L(y) = {c(p), c(r), c(t)}. Set c(r) = 1, c(p) = 2, c(t) = 3.
We first assign to the vertex y the color 1.

7.2.1 If L(x) = {1, 2, c(q)}, then we assign to x a color different from 1, 2 and c(q). We color properly u and z, and we color v with a color different from 1 and c(z). Then, we color properly w if c(z) = c(s) ; otherwise, we choose for w a color different from 3 and c(z). The coloring obtained is acyclic, a contradiction. 7.2.2 Finally assume L(x) = {1, 2, c(q)} and, by symmetry, L(z) = {1, 3, c(s)}. First, we assign the color 1 to the vertices x and z, and we recolor y properly. Finally we color properly u, v, and w. The coloring obtained is acyclic, a contradiction.
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Lemma 1 Let G be a connected plane graph with n vertices, m edges and r faces. Let k ≥ 2, we have the following:

v∈V (G) ((k -2)d(v) -2k) + f ∈F (G) (2r(f ) -2k) = -4k (1) 

Proof

Euler's formula nm + f = 2 can be rewritten as

((2k -4)m -2kn) + (4m -2kf )) = -4k. The relation v∈V (H) d(v) = f ∈F (H) r(f ) = 2m completes the proof. 2

Proof of Theorem 2.1

Let G be a counterexample to Theorem 2.1 with the minimum order. The graph G satisfies Claim 1 and Equation (2) (given by Equation ( 1) for k = 11):

v∈V (G) (9d(v) -22) + f ∈F (G) (2r(f ) -22) = -44 (2) 
We apply now a discharging procedure. We define the weight function ω :

V (G) ∪ F (G) → R by ω(x) = 9d(x) -22 if x ∈ V (G) and ω(x) = 2r(x) -22 if x ∈ F (G).
It follows from Equation (2) that the total sum of weights is equal to -44. In what follows, we will define discharging rules and redistribute weights accordingly. Once the discharging is finished, a new weight function ω * is produced. However, the total sum of weights is kept fixed when the discharging is achieved. Nevertheless, we will show that ω * (x) ≥ 0 for all x ∈ V (G) ∪ F (G). This leads to the following obvious contradiction:

0 ≤ x ∈ V (G) ∪ F (G) ω * (x) = x ∈ V (G) ∪ F (G) ω(x) = -44 < 0 (3) 
and hence demonstrates that no such counterexample can exist.

We make the discharging procedure in two steps:

Step 1. Every ≥ 3-vertex gives 2 to each adjacent 2-vertex.

We denote by ω ′ (x) the new charge of x ∈ V (G) ∪ F (G) after Step 1. By n T (v) denote the number of triangles at distance exactly one from v.

When Step 1 is finished, we proceed with Step 2:

Step 2. Every ≥ 3-vertex v incident to a triangle T gives ω ′ (v) to T . Every ≥ 3vertex v at distance exactly one to triangles gives ω ′ (v)/n T (v) to each triangle.

Let v be a k-vertex. Hence, after Steps 1 and 2, we have: ∀v ∈ V (G), ω * (v) ≥ 0. Observe now that, after Step 1, all ≥ 3-vertex can give at least 3 2 to each triangle at distance exactly one during Step 2. Let f be a k-face.

By Claim 1.1, k ≥ 2. Case k = 2 Observe that ω(v) = -4. By Claim 1.2, v is adjacent to ≥ 3-vertices. Hence, ω ′ (v) = - 4 
Clearly, if k ≥ 11, then ω * (f ) = ω(f ) = 2r(f ) -22 ≥ 0. Now, suppose that f is a 3-face xyz with d(x) ≤ d(y) ≤ d(z). By claim 1.5, d(x) ≥ 3. Initially, ω(f ) = -16. If d(z) ≥ 4,
then the vertices x, y, z gives at least 3 + 3 + 10 to f and so ω * (f ) ≥ 0. Assume now that d(x) = d(y) = d(z) = 3. By Claim 1.6, at most one of the vertices x, y, z is adjacent to a 2-vertex. If one of these vertices is adjacent to a 2-vertex, say x, then x gives 3 to f , and the vertices y and z give each 5 to f . Now y and z are adjacent to two distinct vertices, say y 1 and z 1 (different from x, y, z), which give each at least 3 2 to f . Hence ω * (f ) ≥ -16

+ 3 + 2 • 5 + 2 • 3 2 ≥ 0.
If none of the vertices x, y, z is adjacent to a 2-vertex, we have similarly ω * (f ) ≥ -16 + 3 • 5 + 3 • 3 2 ≥ 0. Hence, after Steps 1 and 2, we have: ∀x ∈ V (G)∪F (G), ω * (x) ≥ 0. The contradiction obtained by Equation (3) completes the proof.

Proof of Theorem 2.2

Let G be a counterexample to Theorem 2.2 with the minimum order. The graph G satisfies Claim 1 and Equation (4) (given by Equation (1) for k = 10):

v∈V (G) (4d(v) -10) + f ∈F (G) (r(f ) -10) = -20 (4) 
As for the proof of Theorem 2.1, we apply now a discharging procedure. We define the weight function ω : V (G)∪F (G) → R by ω(x) = 4d(x)-10 if x ∈ V (G) and ω(x) = r(x)-10 if x ∈ F (G). It follows from Equation ( 4) that the total sum of weights is equal to -20. In what follows, we will define discharging rules and redistribute weights accordingly. Once the discharging is finished, a new weight function ω * is produced. However, the total sum of weights is kept fixed when the discharging is achieved. Nevertheless, we will show that ω * (x) ≥ 0 for all x ∈ V (G) ∪ F (G). This leads to the following obvious contradiction:

0 ≤ x ∈ V (G) ∪ F (G) ω * (x) = x ∈ V (G) ∪ F (G) ω(x) = -20 < 0 (5)
and hence demonstrates that no such counterexample can exist.

We make the discharging procedure in two steps:

Step 1. Every ≥ 3-vertex gives 1 to each adjacent 2-vertex.

When

Step 1 is finished, we proceed with Step 2:

Step 2. Every ≥ 3-vertex v at distance at most one to a triangle T gives ω ′ (v) to T .

Notice that a vertex can be at distance one to at most one triangle. Let v be a k-vertex. Hence, after Steps 1 and 2, we have: ∀v ∈ V (G), ω * (v) ≥ 0. Observe now that, after Step 1, all ≥ 3-vertex can give at least 1 to the triangle (if any) at distance exactly one during Step 2.

By Claim 1.1, k ≥ 2. Case k = 2 Observe that ω(v) = -2. By Claim 1.2, v is adjacent to ≥ 3-vertices. Hence, ω ′ (v) = -2 + 2 • 1 =
Let f be a k-face.

Clearly, if k ≥ 10, then ω * (f ) = ω(f ) = r(f ) -10 ≥ 0. Now, suppose that f is a 3-face xyz with d(x) ≤ d(y) ≤ d(z). Initially, ω(f ) = -7. By claim 1.5, d(x) ≥ 3.
Moreover by Claim 1.6, it follows that if x and y are 3-vertices, at most once of x and y is adjacent to a

2- vertex. If d(z) ≥ 4, then ω * (f ) ≥ -7 + 1 + 2 + 4 = 0. Assume now that d(x) = d(y) = d(z) = 3.
W.l.o.g., we consider two cases: [START_REF] Borodin | On acyclic colorings of planar graphs[END_REF] x is adjacent to a 2-vertex, (2) x is not adjacent to a 2-vertex.

(1) The vertex x gives 1 to f ; the vertices y and z gives 2 to f . Moreover, the neighbors y 1 , z 1 ( = x, y, z) of y, z respectively are distinct and give each at least 1 to f . Hence ω * (f ) ≥

-7 + 1 + 2 • 2 + 2 • 1 = 0.
(2) The vertices x, y, z give each 2 to f . Moreover, the neighbors x 1 , y 1 , z 1 ( = x, y, z) of x, y, z respectively are distinct and give each at least 1 to f . Hence ω * (f ) ≥ -7

+ 3 • 2 + 3 • 1 ≥ 0.
Hence, after Steps 1 and 2, we have: ∀x ∈ V (G)∪F (G), ω * (x) ≥ 0. The contradiction obtained by Equation ( 5) completes the proof.

Proof of Theorem 2.3

Let G be a counterexample to Theorem 2.3 with the minimum order. The graph G satisfies Claim 1 and Equation ( 6) (given by Equation (1) for k = 9):

v∈V (G) (7d(v) -18) + f ∈F (G) (2r(f ) -18) = -36 (6) 
As for the proof of Theorem 2.2, we apply now a discharging procedure. We define the weight function ω : 6) that the total sum of weights is equal to -36. In what follows, we will define discharging rules and redistribute weights accordingly. Once the discharging is finished, a new weight function ω * is produced. However, the total sum of weights is kept fixed when the discharging is achieved. Nevertheless, we will show that ω * (x) ≥ 0 for all x ∈ V (G) ∪ F (G). This leads to the following obvious contradiction:

V (G)∪F (G) → R by ω(x) = 7d(x)-18 if x ∈ V (G) and ω(x) = 2r(x)-18 if x ∈ F (G). It follows from Equation (
0 ≤ x ∈ V (G) ∪ F (G) ω * (x) = x ∈ V (G) ∪ F (G) ω(x) = -36 < 0 (7) 
and hence demonstrates that no such counterexample can exist.

We make the discharging procedure in two steps:

Step 1. Every ≥ 3-vertex gives 2 to each adjacent 2-vertex.

When

Step 1 is finished, we proceed with Step 2:

Step 2. Each ≥ 3-vertex v at distance at most two to a triangle T gives ω ′ (v) to T .

Let v be a k-vertex. By Claim 1.1, k ≥ 2. Hence, after Steps 1 and 2, we have: ∀v ∈ V (G), ω * (v) ≥ 0. Observe now that, after Step 1, all ≥ 3-vertex can give at least 1 to the triangle (if any) at distance at most 2 in Step 2.

Case

Let f be a k-face. Clearly, if k ≥ 9, then ω * (f ) = ω(f ) = 2r(f ) -18 ≥ 0. Now, suppose that f is a 3-face xyz with d(x) ≤ d(y) ≤ d(z). Let xx 1 x 2 , yy 1 y 2 , and zz 1 z 2 be three vertex-disjoint 2-paths starting from x, y, z respectively (these paths exist since there are no cycles of length 4 to 8). Initially, ω(f ) = -12. By claim 1.5, d(x) ≥ 3. Moreover by Claim 1.6, it follows that if x and y are 3-vertices, at most once of x and y is adjacent to a 2-vertex. If d(z) ≥ 4, then the vertices x, y, z give at least 1, 3, 10 respectively, and the vertices x 1 , y 1 , z 1 give at least 2 • 1; hence, ω * (f ) ≥ -12 + 1 + 3 + 6 + 2 • 1 ≥ 0. Assume now that d(x) = d(y) = d(z) = 3. W.l.o.g., we consider two cases: [START_REF] Borodin | On acyclic colorings of planar graphs[END_REF] x is adjacent to a 2-vertex, (2) x is not adjacent to a 2-vertex.

(1) The vertex x gives 1 to f ; the vertices y and z give 3 to f . Moreover, the vertices x 2 , y 1 , y 2 , z 1 , z 2 give each at least 1. Hence ω * (f ) ≥ -12 + 1 + 2 • 3 + 5 • 1 = 0.

(2) The vertices x, y, z give each 3 to f . The vertices x 1 , x 2 , y 1 , y 2 , z 1 , z 2 give each at least 1.

Hence ω * (f ) ≥ -12

+ 3 • 3 + 6 • 1 ≥ 0.
Hence, after Steps 1 and 2, we have: ∀x ∈ V (G)∪F (G), ω * (x) ≥ 0. The contradiction obtained by Equation ( 7) completes the proof.

Proof of Theorem 2.4

Let G be a counterexample to Theorem 2.4 with the minimum order. The graph G satisfies Claim 1 and Equation (8) (given by Equation (1) for k = 9):

v∈V (G) (3d(v) -8) + f ∈F (G) (r(f ) -8) = -16 (8) 
As for the proof of Theorem 2.2, we apply now a discharging procedure. We define the weight function 8) that the total sum of weights is equal to -16. In what follows, we will define discharging rules and redistribute weights accordingly. Once the discharging is finished, a new weight function ω * is produced. However, the total sum of weights is kept fixed when the discharging is achieved. Nevertheless, we will show that ω * (x) ≥ 0 for all x ∈ V (G) ∪ F (G). This leads to the following obvious contradiction:

ω : V (G) ∪ F (G) → R by ω(x) = 3d(x) -8 if x ∈ V (G) and ω(x) = r(x) -8 if x ∈ F (G). It follows from Equation (
0 ≤ x ∈ V (G) ∪ F (G) ω * (x) = x ∈ V (G) ∪ F (G) ω(x) = -16 < 0 (9) 
and hence demonstrates that no such counterexample can exist.

We make the discharging procedure in two steps:

Step 1. Every ≥ 3-vertex gives 1 to each adjacent 2-vertex.

When

Step 1 is finished, we proceed with Step 2:

Step 2. Each Let f be a k-face. Clearly, if k ≥ 8, then ω * (f ) = ω(f ) = r(f ) -8 ≥ 0. Now, suppose that f is a 3-face xyz with d(x) ≤ d(y) ≤ d(z). Let xx 1 x 2 x 3 , yy 1 y 2 y 3 , and zz 1 z 2 z 3 be three vertex-disjoint 3-paths starting from x, y, z respectively (these paths exist since there are no cycles of length 4 to 7). Initially, ω(f ) = -5.

We consider several cases according to the degrees of x, y, and z:

1 .

 1 G contains no cycles of length 4 to 10, and d ∆ (G) ≥ 2 2. G contains no cycles of length 4 to 9, and d ∆ (G) ≥ 3 3. G contains no cycles of length 4 to 8, and d ∆ (G) ≥ 5 4. G contains no cycles of length 4 to 7, and d ∆ (G) ≥ 7

  2-vertices. 4. G does not contain 4-vertices adjacent to three 2-vertices. 5. G does not contain triangles xyz with d(x) = 2. 6. G does not contain triangles xyz such that d(x) = d(y) = 3, and x and y are adjacent to 2-vertices. 7. G does not contain paths xyz with d(x) = d(y) = d(z) = 3, and x, y, z are adjacent to 2-vertices.

  and L(w) = L(z) = {1, 2, c(t)}. Now we recolor x and z with 2. If c(p) = c(t), then we assign to y a color different from 2 and c(r), and we color properly v. If c(p) = c(t), then we color y with a color different from 2 and c(p), and we color properly v. The coloring obtained is acyclic.
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  + 2 • 2 = 0 by Step 1. By Step 2, ω * (v) ≥ 0. Case k = 3 Initially, ω(v) = 5. By Claim 1.3, v is adjacent to at most one 2-vertex. Hence, if v is adjacent to a 2-vertex, then ω ′ (v) = 5 -2 = 3 and ω ′ (v) = 5 otherwise. By Step 2, ω * (v) ≥ 0. Case k = 4 Initially, ω(v) = 14. By Claim 1.4, v is adjacent to at most two 2-vertices. So if v is adjacent to two (resp. one, zero) 2-vertices, then ω ′ (v) = 14 -2 • 2 = 10 (resp. 12, 14). And by Step 2, ω * (v) ≥ 0. Case k ≥ 5 Initially, ω(v) = 9k -22. The vertex v gives 2 to each adjacent 2-vertex in Step 1. So ω ′ (v) ≥ 9k -22 -2k = 7k -22 ≥ 13. And, by Step 2, ω * (v) ≥ 0.

0 by Step 1 .

 1 By Step 2, ω * (v) ≥ 0. Case k = 3 Initially, ω(v) = 2. By Claim 1.3, v is adjacent to at most one 2-vertex. Hence, if v is adjacent to a 2-vertex, then ω ′ (v) = 2 -1 = 1 and ω ′ (v) = 2 otherwise. By Step 2, ω * (v) ≥ 0. Case k = 4 Initially, ω(v) = 6. By Claim 1.4, v is adjacent to at most two 2-vertices. So if v is adjacent to two (resp. one, zero) 2-vertices, then ω ′ (v) = 6 -2 • 1 = 4 (resp. 5, 6). And by Step 2, ω * (v) ≥ 0. Case k ≥ 5 Initially, ω(v) = 4k -10. The vertex v gives 1 to each adjacent 2-vertex in Step 1. So ω ′ (v) ≥ 4k -10k = 3k -10 ≥ 5. And, by Step 2, ω * (v) ≥ 0.

k = 2

 2 Observe that ω(v) = -4. By Claim 1.2, v is adjacent to ≥ 3-vertices. Hence, ω ′ (v) = -4 + 2 • 2 = 0 by Step 1. By Step 2, ω * (v) ≥ 0. Case k = 3 Initially, ω(v) = 3. By Claim 1.3, v is adjacent to at most one 2-vertex. Hence, if v is adjacent to a 2-vertex, then ω ′ (v) = 3 -2 = 1 and ω ′ (v) = 3 otherwise. By Step 2, ω * (v) ≥ 0. Case k = 4 Initially, ω(v) = 10. By Claim 1.4, v is adjacent to at most two 2-vertices. So if v is adjacent to two (resp. one, zero) 2-vertices, then ω ′ (v) = 10 -2 • 2 = 6 (resp. 8, 10). And by Step 2, ω * (v) ≥ 0. Case k ≥ 5 Initially, ω(v) = 7k -18. The vertex v gives 2 to each adjacent 2-vertex in Step 1. So ω ′ (v) ≥ 7k -18 -2k = 5k -18 ≥ 7. And, by Step 2, ω * (v) ≥ 0.

≥ 3 - 7 : 1

 371 vertex v at distance at most three to a triangle T gives ω ′ (v) to T .Let v be a k-vertex. By Claim 1.1, k ≥ 2.Case k = 2 Observe that ω(v) = -2. By Claim 1.2, v is adjacent to ≥ 3-vertices. Hence, ω ′ (v) = -2 + 2 • 1 = 0 by Step 1. By Step 2, ω * (v) ≥ 0. Case k = 3 Initially, ω(v) = 1. By Claim 1.3, v is adjacent to at most one 2-vertex. Hence, if v is adjacent to a 2-vertex, then ω ′ (v) = 1 -1 = 0 and ω ′ (v) = 1 otherwise. By Step 2, ω * (v) ≥ 0. Case k = 4 Initially, ω(v) = 4. By Claim 1.4, v is adjacent to at most two 2-vertices. So if v is adjacent to two (resp. one, zero) 2-vertices, then ω ′ (v) = 4 -2 • 1 = 2 (resp. 3, 4). By Step 2, ω * (v) ≥ 0. Case k ≥ 5 Initially, ω(v) = 3k -8. The vertex v gives 1 to each adjacent 2-vertex in Step 1. So ω ′ (v) ≥ 3k -8k = 2k -8 ≥ 2. By Step 2, ω * (v) ≥ 0.Hence, after Steps 1 and 2, we have: ∀v ∈ V (G), ω * (v) ≥ 0. Observe now that, after Step 1, (1) all ≥ 4-vertex can give at least 2 to the triangle (if any) at distance at most 4 in Step 2, (2) a 3-vertex not adjacent to a 2-vertex can give 1 to the triangle (if any) at distance at most 4 in Step 2, and (3) the unique kind of vertices which cannot give anything is a 3-vertex adjacent to a 2-vertex. It follows by Claim 1.Observation If rst is 2-path composed of ≥ 3-vertices, then at least one of these vertices has a weight at least 1 after Step 1.

Consider the case d(x) = 3, d(y) = 3, d(z) ≥ 4, and d(x 1 ) = 2. During Step 2, y and z give 1 and at least 2 respectively. If at least one of the vertices y 1 , y 2 , y 3 has degree at least 4. Then ω * (f ) = -5 + 1 + 2 + 2 = 0. Assume now that d(y i ) ≤ 3 for i = 1, 2, 3. By Claims 1.2, 1.3, 1.5, and 1.6, we can choose the vertices y i such that that d(y i ) = 3 for i = 1, 2, 3. Hence by Observation 1, we are sure that at least one vertex of y 1 , y 2 , y 3 has a weight at least one after Step 1. This weight is transfered to f during Step 2. Similarly, by Claims 1.2, x 2 is of degree at least 3.

3 the third neighbor of x 2 (since there are no cycles of length 4 to 7, x ′ 3 is distinct to x, y, z, x 1 , x 2 , x 3 , y 1 , y 2 , y 3 , z 1 , z 2 , z 3 ). By Claim 1.3, we have d(x 3 ) ≥ 3 and d(x ′

3 ) ≥ 3. So by Obervation 1, at least one vertex of x 2 , x 3 , x ′ 3 has a weight at least one after Step 1. This weight is transfered to f during Step 2. Hence

During Step 2, x, y and z give 1, 1, and at least 2 respectively. If at least one of the vertices x 1 , x 2 , x 3 , y 1 , y 2 , y 3 has degree at least 4. Then ω * (f ) = -5 + 1 + 1 + 2 + 2 ≥ 0. Assume now that d(x i ) ≤ 3 and d(y i ) ≤ 3 for i = 1, 2, 3. By Claims 1.2, 1.3, 1.5, and 1.6, we can choose x i an y i such that d(x i ) = 3 and d(y i ) = 3 for i = 1, 2, 3. Hence by Observation 1, we are sure that at least one vertex of x 1 , x 2 , x 3 (resp. y 1 , y 2 , y 3 ) has a weight at least one after Step 1. This weight is transfered to f during Step 2. Hence ω * (f ) = -5

Consider the case d(x) = d(y) = d(z) = 3, and d(x 1 ) = 2. During Step 2, f receives 1 from y and 1 from z. We first show that each path of y 1 y 2 y 3 and z 1 z 2 z 3 gives at least 1 to f . Consider y 1 y 2 y 3 . If one of y 1 , y 2 , y 3 is of degree at least 4, then this path will give at least 1 to f . Otherwise, by Claims 1.2, 1.3, 1.5, and 1.6, we can assume that d(y i ) ≥ 3 for i = 1, 2, 3. Hence by Observation 1, we are sure that at least one vertex of y 1 , y 2 , y 3 has a weight at least one after Step 1. Similarly, the path z 1 z 2 z 3 gives at least 1 to f . Now, by Claims 1.2, x 2 is of degree at least 3.

3 the third neighbor of x 2 (since there are no cycles of length 4 to 7, Hence, after Steps 1 and 2, we have: ∀x ∈ V (G)∪F (G), ω * (x) ≥ 0. The contradiction obtained by Equation ( 9) completes the proof.

Conclusion

We conclude with some specific problems. It was recently proved by Borodin et al. [START_REF] Borodin | Acyclic 3-choosability of sparse graphs with girth at least 7[END_REF] that every planar graph with girth at least 7 is acyclically 3-choosable. (We recall that the girth of graph G is the length of a shortest cycle of G.) Problem 1 Prove that:

1. Every planar graph with girth at least 6 is acyclically 3-choosable.

2. Every planar graph without cycles of length 4 to i is acyclically 3-choosable with 6 ≤ i ≤ 11.

3. There exists a constant d such that every planar graph G without cycles of length 4 to 6 and d ∆ (G) ≥ d is acyclically 3-choosable.