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Introduction

Recent techniques increase data and knowledge about proteins ( [START_REF] Gavin | Functional organization of the yeast proteome by systematic analysis of protein complexes[END_REF][START_REF] Ho | Systematic identification of protein complexes in Saccharomyces cerevisae by mass spectrometry[END_REF][START_REF] Uetz | A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisae[END_REF]). Among others proteins properties, the set of all their interactions for a given organism, called Protein-Protein Interactions (PPI) network, have gained huge interest in the last few years. A major stake of comparative analysis of PPI tries to determine to what extend proteins are conserved among species. Indeed, recent research suggests that proteins are functioning together into pathways and tend to evolve in correlated fashion -being preserved or eliminated in new species [START_REF] Pellegrini | Assigning protein functions by comparative genome analysis: protein phylogenetic profiles[END_REF]. Therefore, it has became of foremost importance to identify PPI subnetworks that are similar to a given motif (i.e., pathway of proteins), where similarity is measured both in terms of protein-sequence and subnetwork topology conservation.

In this context, most tools consider topology-based motifs (either a path [START_REF] Kelley | Conserved pathways within bacteria and yeast as revealed by global protein network alignment[END_REF][START_REF] Shlomi | QPath: a method for querying pathways in a protein-protein interaction network[END_REF], a tree [START_REF] Pinter | Alignment of metabolic pathways[END_REF][START_REF] Dost | QNet: A Tool for Querying Protein Interaction Networks[END_REF], or a graph [START_REF] Dost | QNet: A Tool for Querying Protein Interaction Networks[END_REF][START_REF] Blin | Querying Protein-Protein Interaction Networks[END_REF]). However, interactions data were so noisy and incomplete that there is no need for topology information in the motif [START_REF] Bruckner | Topology-free querying of protein interaction networks[END_REF]. According to this remark, Lacroix et al. [START_REF] Lacroix | Motif search in graphs: application to metabolic networks[END_REF] have introduced the following problem named GRAPH MOTIF. Definition 1.1 (GRAPH MOTIF [START_REF] Lacroix | Motif search in graphs: application to metabolic networks[END_REF]). Given a vertexcolored graph G=(V,E) and a multiset of colors M (the motif), find a connected subset of vertices R ⊆ V whose multiset of colors equals M (i.e., there is a bijection σ : R → M such that σ(v) ∈ col(v) for all v ∈ R, where col(v) is the color of v).

In our context, the graph G represents the PPI network where vertices are the proteins and edges the interactions. The motif is completely defined by adding a color in M for each different requested proteins. Once the motif is defined, a node v ∈ G is colored by a color c ∈ M if the protein represented by v is homologous to the protein represented by c (e.g., according to a BLASTp [START_REF] Altschul | Basic local alignment search tool[END_REF] analysis). If the protein represented by a node v is not homologous to any protein of the motif then v is not colored.

Despite the NP-completeness of the problem [START_REF] Lacroix | Motif search in graphs: application to metabolic networks[END_REF], some theoretical results exists [START_REF] Betzler | Parameterized algorithms and hardness results for some graph motif problems[END_REF][START_REF] Fellows | Sharp tractability borderlines for finding connected motifs in vertex-colored graphs[END_REF][START_REF] Dondi | Maximum Motif Problem in Vertex-Colored Graphs[END_REF]. Nevertheless, to the best of our knowledge, there is only one implemented tool, called Torque [START_REF] Bruckner | Topology-free querying of protein interaction networks[END_REF]. Torque uses either integer linear programming or dynamic programming conjugated with color coding technique [START_REF] Alon | Color coding[END_REF]. Limitations of Torque are that it is a web service (therefore it is hard to connect with others services, the performances only depends on the server and it is not possible to perform batch tests), it only give one solution (not all possibles solutions) and, last but not least, it only deals with colorful motif (i.e., at most one occurrence of each color).

When dealing with multiset motif -which may be of interest -two approaches can be highlighted. (i) A functional approach: using a Gene Ontology like classification [START_REF] Consortium | Gene Ontology: tool for the unification of biology[END_REF], two proteins have the same color if they belong to the same class. (ii) An evolutive approach: two proteins have the same color in the motif if they are homologous. In our plugin, the second approach is used.

By searching for exact matches of a motif, we provide a new tool to solve GRAPH MOTIF [START_REF] Lacroix | Motif search in graphs: application to metabolic networks[END_REF]. It is worth noticing that our plugin also deals with some extensions of this problem. Indeed, due to the huge rate of noise in PPI Networks [START_REF] Gavin | Functional organization of the yeast proteome by systematic analysis of protein complexes[END_REF][START_REF] Reguly | Comprehensive curation and analysis of global interaction networks in saccharomyces cerevisiae[END_REF], exact match are often too restrictive, and hence one may allow deletions (i.e., proteins which are in the motif but not in the solution). The resulting problem is MAX MOTIF, defined by Dondi et al. [START_REF] Dondi | Maximum Motif Problem in Vertex-Colored Graphs[END_REF]. Similarly, the resulting subnetwork may contain protein insertions (i.e., proteins which are in the solution but not in the motif) thats help to get the connectivity of the result. These proteins can be colored or not, as claimed in [START_REF] Bruckner | Topology-free querying of protein interaction networks[END_REF]. Moreover, our plugin allows to restrict motifs to colorful ones. Finally, since a protein can be homologous to more than one protein, a node v ∈ G can have more than one color. Hence, a set of colors (instead of only one color) can be assigned to any node in order to deal with the LIST-COLORED GRAPH MOTIF problem settled by Betzler et al. [START_REF] Betzler | Parameterized algorithms and hardness results for some graph motif problems[END_REF]. In this latter problem, the bijection σ is still valid since col(v) then returns the list of colors assigned to v.

Methods and implementation

Our tool, named GraMoFoNe (which stands for Graph Motif For Networks), has been implemented as a Cytoscape plugin. Cytoscape [START_REF] Shannon | Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks[END_REF] is a popular open-source software platform for network visualization and analysis, which supports the development of external plugin tools extending its functionalities. Our plugin seeks for occurrences of a user defined motif into a network previously loaded into the Cytoscape workspace (many file format are supported). It uses an exact algorithm to perform this task.

To this end, we choose to express our problem as a linear pseudo-boolean optimization problem (LPB), i.e., as a linear program [START_REF] Schrijver | Theory of Linear and Integer Programming[END_REF] whose variables are boolean. In a LPB problem, the objective is to find an assignment of boolean variables such that all constraints are satisfied and such the value of the linear objective function is optimized. Our LPB formulation is composed of 23 constraints defined upon 9 domains of variables (details are provided in the sequel). A large number of LPB solvers -which are generalization of SAT solvers -exists. We decided to use java SAT4JPseudo library [START_REF] Berre | On extending sat solvers for pb problems[END_REF] for (i) efficient java integration, (ii) its good result in the PB Evaluation 07 [START_REF]Pb evaluation 07 -special event of the sat 2007 conference[END_REF], and (iii) its free availability (efficient pure linear programming solver are indeed often expensive).

Our LPB program seeks for a connected occurrence of a multiset of colors, called motif, M (with k = |M |) into the vertex-colored edge-weighted undirected graph G = (V, E, w), where w is a function assigning a weight to any edge of E. Let R ⊆ V be a solution. Let N (v) represents the set of neighbors of v (i.e., N (v) = {u : {u, v} ∈ E}) and G[R] represents the subgraph of G induced by the set R. In the motif M , let occ M (c), c ∈ C, denotes the number of occurrences of color c in M . Let col : V → 2 C be a function which returns the list of colors of C associated to any node of V .

As said previously, looking for exact matching can be too restrictive. We will allow insertions and deletions of proteins, and then, |R| would be different of k. Indeed, when |R| < k (resp. |R| > k), we say that there are at least k -|R| deletions (resp. |R| -k insertions). The maximal number of deletions (resp. insertions) is denoted by N del (resp. N ins ). However, comparing k and |R| is not a sufficient condition for determining the number of indels (i.e., insertions-deletions) in the solution. Indeed, if there is one deletion for a color and one insertion for another color, we certainly have |R| = k whereas R may be not in bijection with M . To deal with this fact, we have to consider for each color c, the difference between the number of occurrences of c in the motif and the number of occurrences of nodes colored by c in R. Moreover, if a node v in the solution R is colored with more than one color, v must match only one color of M since σ is a bijection -other colors of v can not match other colors of M . Our LPB program deals with these two constraints.

Hereafter, we present the variables, the objective function and the constraints of our LPB program.

Variables. For any node v ∈ V , we have a variable x v ∈ {0, 1} to denote the presence of v in the solution R:

x v = 1 iff v ∈ R. For any edge {u, v} ∈ E, we have a variable e uv ∈ {0, 1} to denote the presence of {u, v} in G[R]: e uv = 1 iff {u, v} ∈ G[R].
As we will explain soon, there is k + N ins different integers labels associated to nodes in R to ensure the connectivity of G[R]. Note that a node is labeled only if it is part of the solution. Thus, for any node v ∈ V , we have k

+ N ins variables Label[v][i] ∈ {0, 1}, with 1 ≤ i ≤ k + N ins , to represent the "label" of v: Label[v][i] = 1 iff v has the label i.
For any node v ∈ V and color c ∈ col(v), we have variables

ColV [v][c], to represent the color of v used in the coloring function: ColV [v][c] = 1 iff v is consid- ered to have the color c in R.
These variables are used to choose which color among the |col(v)| colors of v is chosen in the bijection with M . In fact, by allowing a list of colors for v, if v is in the solution, v may match up to |col(v)| colors of the motif. Since we want a bijection between colors of R and M , we have to choose which unique color will be considered for a given node.

For any color c ∈ C, we have N ins + 1 variables nins c [i], with 0 ≤ i ≤ N ins , to represent the number of insertions for the color c: nins c [i] = 1 iff there are i insertions of nodes with the color c. Similarly, for any color c ∈ C, we have N del + 1 variables ndel c [i], with 0 ≤ i ≤ N del , to represent the number of deletions for the color c: ndel c [i] = 1 iff there are i deletions of nodes with the color c.

For any color c ∈ C, we have three variables IsExact c , IsIns c , IsDel c , to indicate if there are some nodes colored with c in R which are inserted or deleted: IsExact c = 1 (resp. IsIns c = 1, IsDel c = 1) iff the number of nodes in R with the color c is equal to (resp. greater than, lower than) occ M (c). These variables are used for ease of exposition (i.e. there is an equivalence between these variables, and nins c [0] and ndel c [0]).

Objective. The objective of the LPB program is to maximize the score of the solution. Our program maximizes the sum of all variables e uv times their corresponding edge weight. In other words, it corresponds to maximizing the sum of edge weights of the solution. Formally, the objective is : max {u,v}∈E e uv w({u, v})

Constraints. The two following constraints ensure that the solution G[R] is a graph of correct size (according to k, N ins and N del ).

∀u, v ∈ V, e uv ⇔ x u ∧ x v (1) k -N del ≤ v∈V x v ≤ k + N ins (2) 
Constraint (1) ensures that {u, v} ∈ G[R] iff both u and v ∈ R. Constraint (2) controls the number of nodes in the solution. When no indels are allowed, the size of the solution must be equal to k, the number of elements in the motif. When allowing insertions (resp. deletions), the size of the solution can be larger (resp. smaller) than k.

The four following constraints ensure the connectiv-

ity of G[R]. ∀v ∈ V, x v ⇒ k+Nins i=1 Label[v][i] = 1 (3) ∀v ∈ V, ¬x v ⇒ k+Nins i=1 Label[v][i] = 0 (4) ∀1 ≤ i ≤ k + N ins , v∈V Label[v][i] ≤ 1 (5) ∀v ∈ V, ∀1 ≤ i < k + N ins , Label[v][i] ⇒   u∈N (v) j>i Label[u][j] ≥ 1   (6) 
Constraint (3) ensures that if v ∈ R, then v has exactly one label, an integer between 1 and k + N ins . Constraint (4) ensures that if v / ∈ R, then v is unlabeled. Constraint [START_REF] Altschul | Basic local alignment search tool[END_REF] ensures that any label is attributed to at most one node. Due to deletions, some labels may be not attributed. Constraint [START_REF] Bairoch | The universal protein resource (UniProt)[END_REF] ensures the connectivity of G[R]: any node of R, except the one with the maximal label, must have a neighbor in G[R] with a label greater than its own.

The two following constraints ensure that G[R] has enough colored vertex according to occ M (c) for any c ∈ C, N ins and N del .

∀c ∈ C, occ M (c) -N del ≤ v∈V c∈col(v) x v ≤ occ M (c) + N ins (7) ∀v ∈ V, c∈col(v) ColV [v][c] = x v (8) 
Constraint [START_REF] Betzler | Parameterized algorithms and hardness results for some graph motif problems[END_REF] ensures that for any color c in M , there is enough vertices colored with c in G[R]. Where no indels are allowed, a solution must contain occ M (c) occurrences of c, for each color c. Since insertions of colored nodes (resp. deletions) are allowed, the number of occurrences of a color can be larger (resp. smaller). Constraint [START_REF] Blin | Querying Protein-Protein Interaction Networks[END_REF] ensures that a unique color for any node v in R is selected among its |col(v)| associated colors.

The three following constraints ensure that either all occurrences of a color c ∈ C in M are matched, or at least one of them is inserted or deleted.

∀c ∈ C, IsExact c + IsIns c + IsDel c = 1 (9) ∀c ∈ C, v∈V ColV [v][c]-occ M (c) ≤ IsIns c .N ins -IsDel c ( 10 
)
∀c ∈ C, v∈V ColV [v][c] -occ M (c) ≥ ¬ IsExact c -IsDel c -IsDel c .N del (11) 
Constraint (9) ensures the above assertion whereas constraints [START_REF] Consortium | Gene Ontology: tool for the unification of biology[END_REF] and [START_REF] Dondi | Maximum Motif Problem in Vertex-Colored Graphs[END_REF] ensure the consistency between ColV, IsExact, IsIns, IsDel:

∀c ∈ C, IsExact c (resp. IsIns c , IsDel c ) = 1 iff v∈V ColV [v][c] -occ M (c) = 0 (resp. > 0, < 0).
The six following constraints ensure that the number of insertions is less than N ins .

∀c ∈ C,

Nins i=0 nins c [i] = 1 (12) ∀c ∈ C, IsIns c ⇒ nins c [0] = 0 (13) ∀c ∈ C, ¬ IsDel c +nins c [0] ≥ 1 (14) ∀c ∈ C, ∀0 ≤ i ≤ N ins , v∈V ColV [v][c] -occ M (c) ≤ i.nins c [i] + ¬nins c [i].N ins ( 15 
) ∀c ∈ C, ∀0 ≤ i ≤ N ins , ¬nins c [i] + v∈V ColV [v][c] -occ M (c) + N del . IsDel c ≥ i.nins c [i] ( 16 
) c∈C Nins i=1 i.nins c [i] + v∈V col(v)=∅ x v ≤ N ins (17) 
Constraint [START_REF] Dost | QNet: A Tool for Querying Protein Interaction Networks[END_REF] ensures that, for a given color c ∈ C, there is a unique variable nins c that corresponds to the number of insertions of nodes with color c. Constraint [START_REF] Fellows | Sharp tractability borderlines for finding connected motifs in vertex-colored graphs[END_REF] ensures that variables nins c and IsIns c are consistent. Constraint [START_REF] Gavin | Functional organization of the yeast proteome by systematic analysis of protein complexes[END_REF] ensures that for a color c ∈ C there are either insertions or deletions. Constraint ( 15) and ( 16) ensure that nins c [i] = 1 iff there are i insertions of nodes with the color c ∈ C (i.e. if the difference between v∈V ColV [v][c] and occ M (c) is equal to i). Constraint [START_REF] Kelley | Conserved pathways within bacteria and yeast as revealed by global protein network alignment[END_REF] ensures that the number of insertions is bounded by N ins . The sum of all the insertions for a given color in addition to insertions of not colored nodes have to be less than N ins .

We also give six constraints, which are built similarly to constraints ( 12)-( 17). Lemma 2.1 Our LPB program correctly solves GRAPH MOTIF.

Proof omitted dur to space constraints.

Let us now defined two preprocessing steps to speedup our LPB program.

First, let us remark that a protein in the motif without any homologous protein in the network will be considered as a deletion in any feasible result. Let D be the set of all colors corresponding to such proteins in the motif M . If the size of D exceeds N del , then no solution is possible for this motif. Otherwise, we already know that all proteins corresponding to colors in D will be deleted in any solution. Thus, we launch the LPB program over the motif M \ D, with N del -|D| allowed deletions.

Then, we prune the network and run the LPB solver on each connected component as shown in [START_REF] Bruckner | Topology-free querying of protein interaction networks[END_REF]. Indeed, an not colored node of G can be too "far" from any colored node, in terms of shortest path length, to be inserted in the solution in regards to the maximum number of allowed insertions (i.e., N ins ). According to this remark, we only keep a colored node u in G if there exist two colored nodes v 1 and v 2 such that dist(u, v 1 ) + dist(u, v 2 ) ≤ N ins + 1, where dist(u, v) is the length of the shortest path between u and v. Otherwise, u would never be part of a solution, and hence can be safely deleted from G.

Once G is pruned, the LPB program is used on each valid connected component of G. A component is said to be valid if it contains at least k -N del colored nodes. Otherwise, a connected solution would never be found in this component, and hence there is no need to consider it. As stated in [START_REF] Bruckner | Topology-free querying of protein interaction networks[END_REF], there is in practice only 5% of colored nodes in G.

GraMoFoNe Functionalities

Screenshots of our plugin can be seen on the GraMoFoNe website 1 . The user can provide input data and parameters on the left sidebar, networks are drawn in the center and results are presented on the right panel. We now describe inputs and outputs of GraMoFoNe.

Inputs

The network and the motif. The network has to be loaded into the Cytoscape environment. The motif is either (1) a predefined motif, [START_REF]Pb evaluation 07 -special event of the sat 2007 conference[END_REF] or given manually in a textbox, [START_REF]saccharomyces genome database[END_REF] or loaded as a FASTA file.

1 http://igm.univ-mlv.fr/AlgoB/gramofone/ BLASTp. Since we consider two proteins as homologous according to their sequence similarity by a BLASTp analysis, we need FASTA files of the motif and the network. These last can be provided by the user; otherwise, our plugin tries to retrieve them from the Uniprot database Archive (Uniparc) [START_REF] Bairoch | The universal protein resource (UniProt)[END_REF] using EBI Web Services [START_REF] Labarga | Web services at the European bioinformatics institute[END_REF]. The user has also to provide the BLASTp threshold value : two proteins are homologous if their -log(eV alue) value is above this threshold.

Indels. The user can provide a maximum number of deletions and insertions allowed in a solution, and the corresponding penalty costs used to compute the score of a result.

Outputs Once GraMoFoNe routine is launched, the plugin provides the potential subnetworks list, ordered by their scores, while Torque only provides the best solution. The user may see each of these subnetworks highlighted in the full network. The plugin also provides the correspondence between proteins in the result and the motif. Finally, the plugin allows an exportation of any such subnetwork as a new network .

Results and comparison

To validate our plugin on real data, we launched a batch mode of our plugin (not available through Cytoscape) which tries to retrieve motifs (protein complexes) of six different species in three large different PPI networks.

Data acquisition and parameters

The PPI networks of Saccharomyces cerevisiae (Yeast, about 5.500 proteins and 40.000 interactions), Drosophila melanogaster (Fly, about 6.500 proteins and 21.000 interactions) and Homo sapiens (about 8.000 proteins and 29.000 interactions) were downloaded from the Torque website. They obtain these data from recent papers and public databases.

The motifs data for Yeast, Fly, Human, Mouse, Bovine and Rat were kindly supplied by Torque authors which obtained them from the databases SGD [START_REF]saccharomyces genome database[END_REF], AmiGo [START_REF]amigo[END_REF] and Corum [START_REF] Ruepp | CO-RUM: the comprehensive resource of mammalian protein complexes[END_REF].

Fasta files for Yeast, Fly and Human were downloaded from the Torque website, while data for Mouse, Bovine and Rat were downloaded from Biomart [START_REF] Smedley | BioMart -biological queries made easy[END_REF]. Missing informations have been manually added from Uniprot [START_REF] Bairoch | The universal protein resource (UniProt)[END_REF] and Ensembl [16] databases.

The parameters have been set as similar as possible as in Torque. Therefore, the threshold value for BLASTp has been set to -log(10 -7 ) ≃ 16.1. Two insertions (N ins ) and deletions (N del ) were allowed for small motifs (size < 7), three for medium motifs (size 8-14), four for larger ones. The timeout for the LPB program was set to 500 seconds.

Experiments Our tests were done on a 3GHz Personal Computer, with 2Go RAM memory. Torque values were not com-Figure 1: Comparison of the number of matches between our software (GM) and Torque [START_REF] Bruckner | Topology-free querying of protein interaction networks[END_REF]. Each histogram labeled by X/Y corresponding to retrieving a list of motif of specie X in the network of specie Y . White (resp. grey) bars corresponds to feasible motifs founded (resp. not founded) in the network. Black bars correspond to motifs where the timeout limit has been reached before any result. Hence, the whole bar correspond to feasible motifs. puted by ourself since there is only a web service for Torque. We obtained values (number of matches) from the Torque paper. Values for GraMoFoNe were computed as follows.

From the list of motifs of a given species, we kept only feasible ones. We performed preprocessing on motif and network as described previously. Then, we considered a motif as feasible when, (i) its size was between 4 and 25, (ii) there were less than N del proteins in the motif without homologous proteins in the network, and (iii) there was at least one connected component in the network with enough colors to match the motif.

Afterwards, for a feasible motif, the LPB program could found a solution (True in Figure 1), or found that this motif can not be matched in this network (False in Figure 1), or not finish under the time limit (Timeout in Figure 1).

Results

Comparisons between our plugin GraMoFoNe and Torque are given in Figure 1. For most experiments, our plugin finds more feasible motifs (i.e., the sum of "true", "timeout" and "false" in the figure, or the height of each whole bar) and also more matches (i.e., height of white bars) than Torque. These results can be due to differences in our preprocessing methods and to our manual addition of missing information in Fasta files.

As Torque, we can query motifs where there is no in-formation about the motif topology (Bovine, Mouse and Rat). Also as in Torque, we had more unmatched feasible motifs when they are requested in the fly network. According to Torque authors, this is because the fly data is more noisy, with a high rate of false negatives. A motif can not be found if a false negative disconnects a potential solution. Conversely, false positives does not disturb the connectivity, but can create "bad" solutions. With the set of parameters defined previously, there is no significant differences in terms of number of matches when we use a motif as a multiset (i.e. when two homologous proteins in the motif has the same color) or not.

Knowing if there is a match can be computed in seconds (5-20 for small motifs, 40-60 for larger ones), but the time to found the best solution can be longer. But, due to the use of a LPB solver as a "black box", it is very hard to predict times.

Conclusion

In this paper, we presented GraMoFoNe, a new tool to request motifs (multiset of proteins without topology) into Protein-Protein Interactions network by solving GRAPH MOTIF and some of its extensions, to increase knowledge about biological network. This tool is given as a plugin for Cytoscape, a popular software to manage such networks. GraMoFoNe use the free Linear Pseudo Boolean solver Sat4JPseudo to give all possible solutions, including the best one.

Since giving all solution can take time, our tool can also give the first solution founded by the LPB solver in short time. However, in this case, we do not know the quality of this solution compared to the best one (i.e. if there is another solution with less indels). A future work could be to find a fast heuristic to find a "good" solution in most case, and to compare this last with GraMoFoNe.

Our coloration method is only given in terms of sequence similarity. Therefore, it would be interesting to extend it to other measures. In the same way, our threshold for homologies is fixed. It would be also interesting to have a variable threshold.

The GraMoFoNe plugin and batch program are under GPL license and available at the website http://igm. univ-mlv.fr/AlgoB/gramofone/ 6. Acknowledgement 8. Appendix

Constraints to bound the number of deletions

The six following constraints ensure that the number of deletions is lower than N del . ∀c ∈ C,

N del i=0 ndel c [i] = 1 (18) ∀c ∈ C, IsDel c ⇒ ndel c [0] = 0 (19) ∀c ∈ C, ¬ IsIns c +ndel c [0] ≥ 1 (20) ∀c ∈ C, ∀0 ≤ i ≤ N del , - v∈V ColV [v][c] + occ M (c) ≤ i.ndel c [i] + ¬ndel c [i].N del (21) ∀c ∈ C, ∀0 ≤ i ≤ N del , ¬ndel c [i] - v∈V ColV [v][c] + occ M (c) + N ins . IsIns c ≥ i.ndel c [i] ( 22 
) c∈C N del i=1 i.ndel c [i] ≤ N del (23) 
Constraint [START_REF] Labarga | Web services at the European bioinformatics institute[END_REF] ensures that, for a given color c ∈ C, there is a unique variable ndel c that corresponds to the number of deletions for c. Constraint [START_REF] Lacroix | Motif search in graphs: application to metabolic networks[END_REF] ensures that variables ndel c and IsDel c are consistent. Constraint [START_REF] Berre | On extending sat solvers for pb problems[END_REF] ensures that for a color c ∈ C there are either deletions or insertions. Constraint ( 21) and ( 22) ensure that ndel c [i] = 1 iff there are i deletions for the color c ∈ C (i.e. if the difference between occ M (c) and v∈V ColV [v][c] is equal to i). Constraint [START_REF] Reguly | Comprehensive curation and analysis of global interaction networks in saccharomyces cerevisiae[END_REF] ensures that the number of deletions is bounded by N del . The sum of all the deletions for a given color have to be less than N del .

Proof of Lemma 2.1

Proof We first prove the Lemma considering that no indels are allowed. The extension to the case allowing indels is straightforward and is given afterwards.

Let us first prove that a solution to GRAPH MOTIF can be found by our LPB program i.e. that it has a corresponding variables assignment that respects all the LPB constraints previously defined.

Given a solution G[R] to GRAPH MOTIF, set x v = 1 if v ∈ R; x v = 0 otherwise and e u,v = 1 if u and v ∈ R, e u,v = 0 otherwise. Find a spanning tree T of G[R] (this tree exists since G[R] is connected) and label the nodes of G[R] according to a postorder traversal of T .

Since no indels are allowed, |R| = k. By definition, exactly k variables x v are equal to 1 and thus constraints (1) and (2) hold. The labeling induced by the postorder traversal of T ensures that all variables of R have a unique and distinct label. Therefore, constraints (3) and (5) hold. Since no label are given in nodes not belonging to R, Constraint (4) holds. Moreover, in T , according to the postorder traversal, the father of any node v, except the root, has a label greater than v. Therefore, in G[R], any node has at least one neighbor with a greater label. Thus, Constraint (6) holds. Since σ : R → M is a bijection, there is exactly occ M (c) occurrences of each color c ∈ C in R, and hence, Constraint (7) holds. Moreover, there is only one image σ(v) associated to any v ∈ R, thus the sum in ( 8) is equal to 1 and the Constraint holds when x v = 1. By the bijection σ : R → M , any element in M is associated to an element in R. Thus, no node v / ∈ R has an image in M , the sum in ( 8) is equal to 0 and the Constraint holds also when x v = 0. Since no indels are allowed, any color c is matched. Thus, Constraint (9) holds. Moreover, v∈V ColV [v][c] -occ M (c) is equal to 0. Constraints [START_REF] Consortium | Gene Ontology: tool for the unification of biology[END_REF] and [START_REF] Dondi | Maximum Motif Problem in Vertex-Colored Graphs[END_REF] hold iff IsExact c = 1. Indeed, if IsIns c = 1, Constraint [START_REF] Dondi | Maximum Motif Problem in Vertex-Colored Graphs[END_REF] does not hold (0 ≥ 1), and if IsDel c = 1, Constraint [START_REF] Consortium | Gene Ontology: tool for the unification of biology[END_REF] does not hold (0 ≤ -1). For each color c, constraints [START_REF] Dost | QNet: A Tool for Querying Protein Interaction Networks[END_REF] to [START_REF] Reguly | Comprehensive curation and analysis of global interaction networks in saccharomyces cerevisiae[END_REF] hold if nins c [0] = 1 and ndel c [0] = 1, which is the case when no indels are allowed.

Let us now prove that a solution to our LPB program corresponds to a solution to GRAPH MOTIF.
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Given a LPB solution, for any v ∈ V , add v to R if x v = 1. Constraint (2) ensures that we have |R| = k. According to constraints (2) and [START_REF] Betzler | Parameterized algorithms and hardness results for some graph motif problems[END_REF], R and M are finite sets with exactly the same number of elements (i.e., |R| = |M |). By Constraint [START_REF] Blin | Querying Protein-Protein Interaction Networks[END_REF], if σ(v) is defined, then v ∈ R (otherwise, x v = 0 and all variables ColV [v][c] are equal to 0 for this v and for all c ∈ col(v)). By constraints [START_REF] Betzler | Parameterized algorithms and hardness results for some graph motif problems[END_REF] and [START_REF] Blin | Querying Protein-Protein Interaction Networks[END_REF], for any c ∈ M , there is only one v ∈ R such that σ(v) = c (a node v can match at most one color and there are exactly the same number of elements in R and M ). Thus, on the whole, σ : R → M is a bijection. It remains to show that G[R] is connected.

By Constraint (3), every node in R has a label. Let r be the node with the greatest label. By Constraint [START_REF] Altschul | Basic local alignment search tool[END_REF], this label is unique. Let us show that there exists a path in R connecting any node v ∈ R to r. To do so, let us prove by induction that there is a path from v to r with increasing labels. The case v = r is trivial. Suppose there exists a path p in R of length l starting from v with increasing labels. Let s p be the sink of p (i.e. the last node in p). If s p = r, then we are done. Otherwise, by Constraint (6), s p has at least one neighbor u with a label greater than its own. Then, there is a path p ∪ {u} of length l + 1 with increasing labels.

Let us prove Lemma 2.1 when indels are allowed.

Let first show that constraints [START_REF] Bruckner | Topology-free querying of protein interaction networks[END_REF] to [START_REF] Dondi | Maximum Motif Problem in Vertex-Colored Graphs[END_REF] are consistent when indels are allowed. We already have shown that these constraints hold if there is no indels.

• If there are i insertions for a color c, then 9) ensure that only one variable among IsExact c , IsIns c and IsDel c is equal to 1.

-If IsExact c = 1, then constraints (10) (i ≤ 0) and ( 11) (i ≥ 0) are both true iff i = 0.

-If IsIns c = 1, then constraints (10) (i ≤ N ins ) and ( 11) (i ≥ 0) are both true iff 0 ≤ i ≤ N ins , which is the case here.

-If IsDel c = 1, then Constraint (10) (i ≤ -1) does not hold since the number of insertions is positive (i > 0).

• Let us now show that constraints [START_REF] Dost | QNet: A Tool for Querying Protein Interaction Networks[END_REF] to (16) and constraints [START_REF] Labarga | Web services at the European bioinformatics institute[END_REF] to [START_REF] Pinter | Alignment of metabolic pathways[END_REF] are consistent with the number of indels for a given color in a solution of GRAPH MOTIF.

• If there are i insertions for a color c, then, v∈V ColV [v][c] -occ M (c) = i and IsIns c = 1, IsDel c = IsExact c = 0. Constraints ( 12) and ( 13) ensure that there is one i = 0 s.t. nins c [i] = 1. Constraint ( 14) holds since IsDel c = 0. Constraints ( 15) and ( 16) both hold iff nins c

and ( 16) hold iff we have j ≤ i ≤ j (i ≤ j and i ≥ j), which is impossible since j = i. In both case, constraints ( 17) and ( 23) hold iff the overall number of insertions and deletions are respectively less than N ins and N del .

Since IsIns