
HAL Id: hal-00425661
https://hal.science/hal-00425661v1

Submitted on 22 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GraMoFoNe: a Cytoscape plugin for querying motifs
without topology in Protein-Protein Interactions

networks
Guillaume Blin, Florian Sikora, Stéphane Vialette

To cite this version:
Guillaume Blin, Florian Sikora, Stéphane Vialette. GraMoFoNe: a Cytoscape plugin for querying
motifs without topology in Protein-Protein Interactions networks. Bioinformatics and Computational
Biology (BICoB’10), Mar 2010, Honolulu, United States. pp.38-43. �hal-00425661�

https://hal.science/hal-00425661v1
https://hal.archives-ouvertes.fr

GraMoFoNe: a Cytoscape plugin for querying motifs without topology in

Protein-Protein Interactions networks

Guillaume Blin, Florian Sikora, Stéphane Vialette

Université Paris-Est, LIGM - UMR CNRS 8049, France
{gblin, sikora, vialette}@univ-mlv.fr

Abstract

During the last decade, data on Protein-Protein Inter-

actions (PPI) has increased in a huge manner. Search-

ing for motifs in PPI Network has thus became a cru-

cial problem to interpret this data. A large part of the

literature is devoted to the query of motifs with a given

topology. However, the biological data are, by now, so

noisy (missing and erroneous information) that the topol-

ogy of a motif can be unrelevant. Consequently, Lacroix

et al. [19] defined a new problem, called GRAPH MO-

TIF, which consists in searching a multiset of colors in a

vertex-colored graph. In this article, we present GraMo-

FoNe, a plugin to Cytoscape based on a Linear Pseudo-

Boolean optimization solver which handles GRAPH MO-

TIF and some of its extensions.

1. Introduction

Recent techniques increase data and knowledge about pro-

teins ([14, 15, 29]). Among others proteins properties, the

set of all their interactions for a given organism, called

Protein-Protein Interactions (PPI) network, have gained

huge interest in the last few years. A major stake of com-

parative analysis of PPI tries to determine to what extend

proteins are conserved among species. Indeed, recent re-

search suggests that proteins are functioning together into

pathways and tend to evolve in correlated fashion – being

preserved or eliminated in new species [21]. Therefore, it

has became of foremost importance to identify PPI sub-

networks that are similar to a given motif (i.e., pathway of

proteins), where similarity is measured both in terms of

protein-sequence and subnetwork topology conservation.

In this context, most tools consider topology-based

motifs (either a path [17, 27], a tree [22, 12], or a graph

[12, 8]). However, interactions data were so noisy and

incomplete that there is no need for topology information

in the motif [9]. According to this remark, Lacroix et

al. [19] have introduced the following problem named

GRAPH MOTIF.

Definition 1.1 (GRAPH MOTIF [19]). Given a vertex-

colored graph G=(V,E) and a multiset of colors M (the

motif), find a connected subset of vertices R ⊆ V whose

multiset of colors equals M (i.e., there is a bijection σ :
R → M such that σ(v) ∈ col(v) for all v ∈ R, where

col(v) is the color of v).

In our context, the graph G represents the PPI net-

work where vertices are the proteins and edges the in-

teractions. The motif is completely defined by adding a

color in M for each different requested proteins. Once

the motif is defined, a node v ∈ G is colored by a color

c ∈ M if the protein represented by v is homologous to

the protein represented by c (e.g., according to a BLASTp

[5] analysis). If the protein represented by a node v is not

homologous to any protein of the motif then v is not col-

ored.

Despite the NP-completeness of the problem [19], some

theoretical results exists [7, 13, 11]. Nevertheless, to the

best of our knowledge, there is only one implemented

tool, called Torque [9]. Torque uses either integer lin-

ear programming or dynamic programming conjugated

with color coding technique [4]. Limitations of Torque

are that it is a web service (therefore it is hard to connect

with others services, the performances only depends on

the server and it is not possible to perform batch tests),

it only give one solution (not all possibles solutions) and,

last but not least, it only deals with colorful motif (i.e., at

most one occurrence of each color).

When dealing with multiset motif – which may be

of interest – two approaches can be highlighted. (i) A

functional approach: using a Gene Ontology like clas-

sification [10], two proteins have the same color if they

belong to the same class. (ii) An evolutive approach: two

proteins have the same color in the motif if they are ho-

mologous. In our plugin, the second approach is used.

By searching for exact matches of a motif, we provide

a new tool to solve GRAPH MOTIF [19]. It is worth notic-

ing that our plugin also deals with some extensions of

this problem. Indeed, due to the huge rate of noise in PPI

Networks [14, 23], exact match are often too restrictive,

and hence one may allow deletions (i.e., proteins which

are in the motif but not in the solution). The resulting

problem is MAX MOTIF, defined by Dondi et al. [11].

Similarly, the resulting subnetwork may contain protein

insertions (i.e., proteins which are in the solution but not

in the motif) thats help to get the connectivity of the re-

sult. These proteins can be colored or not, as claimed in

[9]. Moreover, our plugin allows to restrict motifs to col-

orful ones. Finally, since a protein can be homologous

to more than one protein, a node v ∈ G can have more

than one color. Hence, a set of colors (instead of only one

color) can be assigned to any node in order to deal with

the LIST-COLORED GRAPH MOTIF problem settled by

Betzler et al. [7]. In this latter problem, the bijection

σ is still valid since col(v) then returns the list of colors

assigned to v.

2. Methods and implementation

Our tool, named GraMoFoNe (which stands for Graph

Motif For Networks), has been implemented as a Cy-

toscape plugin. Cytoscape [26] is a popular open-source

software platform for network visualization and analysis,

which supports the development of external plugin tools

extending its functionalities. Our plugin seeks for occur-

rences of a user defined motif into a network previously

loaded into the Cytoscape workspace (many file format

are supported). It uses an exact algorithm to perform this

task.

To this end, we choose to express our problem as a

linear pseudo-boolean optimization problem (LPB), i.e.,

as a linear program [25] whose variables are boolean. In

a LPB problem, the objective is to find an assignment

of boolean variables such that all constraints are satis-

fied and such the value of the linear objective function is

optimized. Our LPB formulation is composed of 23 con-

straints defined upon 9 domains of variables (details are

provided in the sequel). A large number of LPB solvers

– which are generalization of SAT solvers – exists. We

decided to use java SAT4JPseudo library [20] for (i) effi-

cient java integration, (ii) its good result in the PB Eval-

uation 07 [2], and (iii) its free availability (efficient pure

linear programming solver are indeed often expensive).

Our LPB program seeks for a connected occurrence

of a multiset of colors, called motif, M (with k = |M |)
into the vertex-colored edge-weighted undirected graph

G = (V,E, w), where w is a function assigning a weight

to any edge of E. Let R ⊆ V be a solution. Let N(v)
represents the set of neighbors of v (i.e., N(v) = {u :
{u, v} ∈ E}) and G[R] represents the subgraph of G
induced by the set R. In the motif M , let occM (c), c ∈ C,

denotes the number of occurrences of color c in M . Let

col : V → 2C be a function which returns the list of

colors of C associated to any node of V .

As said previously, looking for exact matching can be

too restrictive. We will allow insertions and deletions of

proteins, and then, |R| would be different of k. Indeed,

when |R| < k (resp. |R| > k), we say that there are

at least k − |R| deletions (resp. |R| − k insertions). The

maximal number of deletions (resp. insertions) is denoted

by Ndel (resp. Nins). However, comparing k and |R| is

not a sufficient condition for determining the number of

indels (i.e., insertions-deletions) in the solution. Indeed,

if there is one deletion for a color and one insertion for

another color, we certainly have |R| = k whereas R may

be not in bijection with M . To deal with this fact, we have

to consider for each color c, the difference between the

number of occurrences of c in the motif and the number

of occurrences of nodes colored by c in R. Moreover,

if a node v in the solution R is colored with more than

one color, v must match only one color of M since σ is a

bijection – other colors of v can not match other colors of

M . Our LPB program deals with these two constraints.

Hereafter, we present the variables, the objective func-

tion and the constraints of our LPB program.

Variables. For any node v ∈ V , we have a variable

xv ∈ {0, 1} to denote the presence of v in the solution R:

xv = 1 iff v ∈ R. For any edge {u, v} ∈ E, we have a

variable euv ∈ {0, 1} to denote the presence of {u, v} in

G[R]: euv = 1 iff {u, v} ∈ G[R].

As we will explain soon, there is k + Nins differ-

ent integers labels associated to nodes in R to ensure

the connectivity of G[R]. Note that a node is labeled

only if it is part of the solution. Thus, for any node

v ∈ V , we have k + Nins variables Label[v][i] ∈ {0, 1},

with 1 ≤ i ≤ k + Nins, to represent the “label” of v:

Label[v][i] = 1 iff v has the label i.

For any node v ∈ V and color c ∈ col(v), we have

variables ColV [v][c], to represent the color of v used in

the coloring function: ColV [v][c] = 1 iff v is consid-

ered to have the color c in R. These variables are used

to choose which color among the |col(v)| colors of v is

chosen in the bijection with M . In fact, by allowing a list

of colors for v, if v is in the solution, v may match up

to |col(v)| colors of the motif. Since we want a bijection

between colors of R and M , we have to choose which

unique color will be considered for a given node.

For any color c ∈ C, we have Nins + 1 variables

ninsc[i], with 0 ≤ i ≤ Nins, to represent the number

of insertions for the color c: ninsc[i] = 1 iff there are

i insertions of nodes with the color c. Similarly, for any

color c ∈ C, we have Ndel + 1 variables ndelc[i], with

0 ≤ i ≤ Ndel, to represent the number of deletions for

the color c: ndelc[i] = 1 iff there are i deletions of nodes

with the color c.

For any color c ∈ C, we have three variables IsExactc,
IsInsc, IsDelc, to indicate if there are some nodes colored

with c in R which are inserted or deleted: IsExactc = 1
(resp. IsInsc = 1, IsDelc = 1) iff the number of nodes in

R with the color c is equal to (resp. greater than, lower

than) occM (c). These variables are used for ease of ex-

position (i.e. there is an equivalence between these vari-

ables, and ninsc[0] and ndelc[0]).

Objective. The objective of the LPB program is to

maximize the score of the solution. Our program maxi-

mizes the sum of all variables euv times their correspond-

ing edge weight. In other words, it corresponds to maxi-

mizing the sum of edge weights of the solution. Formally,

the objective is : max
∑

{u,v}∈E euvw({u, v})

Constraints. The two following constraints ensure

that the solution G[R] is a graph of correct size (accord-

ing to k, Nins and Ndel).

∀u, v ∈ V, euv ⇔ xu ∧ xv (1)

k − Ndel ≤
∑

v∈V

xv ≤ k + Nins (2)

Constraint (1) ensures that {u, v} ∈ G[R] iff both u
and v ∈ R. Constraint (2) controls the number of nodes

in the solution. When no indels are allowed, the size of

the solution must be equal to k, the number of elements

in the motif. When allowing insertions (resp. deletions),

the size of the solution can be larger (resp. smaller) than

k.

The four following constraints ensure the connectiv-

ity of G[R].

∀v ∈ V, xv ⇒

(

k+Nins
∑

i=1

Label[v][i] = 1

)

(3)

∀v ∈ V, ¬xv ⇒

(

k+Nins
∑

i=1

Label[v][i] = 0

)

(4)

∀1 ≤ i ≤ k + Nins,
∑

v∈V

Label[v][i] ≤ 1 (5)

∀v ∈ V,∀1 ≤ i < k + Nins,

Label[v][i] ⇒

∑

u∈N(v)

∑

j>i

Label[u][j] ≥ 1

(6)

Constraint (3) ensures that if v ∈ R, then v has ex-

actly one label, an integer between 1 and k + Nins. Con-

straint (4) ensures that if v /∈ R, then v is unlabeled.

Constraint (5) ensures that any label is attributed to at

most one node. Due to deletions, some labels may be

not attributed. Constraint (6) ensures the connectivity of

G[R]: any node of R, except the one with the maximal

label, must have a neighbor in G[R] with a label greater

than its own.

The two following constraints ensure that G[R] has

enough colored vertex according to occM (c) for any c ∈
C, Nins and Ndel.

∀c ∈ C, occM (c)−Ndel ≤
∑

v∈V

c∈col(v)

xv ≤ occM (c)+Nins

(7)

∀v ∈ V,
∑

c∈col(v)

ColV [v][c] = xv (8)

Constraint (7) ensures that for any color c in M , there

is enough vertices colored with c in G[R]. Where no in-

dels are allowed, a solution must contain occM (c) occur-

rences of c, for each color c. Since insertions of colored

nodes (resp. deletions) are allowed, the number of occur-

rences of a color can be larger (resp. smaller). Constraint

(8) ensures that a unique color for any node v in R is

selected among its |col(v)| associated colors.

The three following constraints ensure that either all

occurrences of a color c ∈ C in M are matched, or at least

one of them is inserted or deleted.

∀c ∈ C, IsExactc + IsInsc + IsDelc = 1 (9)

∀c ∈ C,
∑

v∈V

ColV [v][c]−occM (c) ≤ IsInsc .Nins−IsDelc

(10)

∀c ∈ C,
∑

v∈V

ColV [v][c] − occM (c) ≥

¬ IsExactc − IsDelc − IsDelc .Ndel

(11)

Constraint (9) ensures the above assertion whereas

constraints (10) and (11) ensure the consistency between

ColV, IsExact, IsIns, IsDel: ∀c ∈ C, IsExactc (resp. IsInsc,

IsDelc) = 1 iff
∑

v∈V ColV [v][c] − occM (c) = 0 (resp.

> 0, < 0).

The six following constraints ensure that the number

of insertions is less than Nins.

∀c ∈ C,

Nins
∑

i=0

ninsc[i] = 1 (12)

∀c ∈ C, IsInsc ⇒ ninsc[0] = 0 (13)

∀c ∈ C, ¬ IsDelc +ninsc[0] ≥ 1 (14)

∀c ∈ C,∀0 ≤ i ≤ Nins,
∑

v∈V

ColV [v][c] − occM (c) ≤ i.ninsc[i] + ¬ninsc[i].Nins

(15)

∀c ∈ C,∀0 ≤ i ≤ Nins,

¬ninsc[i] +
∑

v∈V

ColV [v][c] − occM (c) + Ndel. IsDelc ≥

i.ninsc[i]

(16)

∑

c∈C

Nins
∑

i=1

i.ninsc[i] +
∑

v∈V

col(v)=∅

xv ≤ Nins (17)

Constraint (12) ensures that, for a given color c ∈ C,

there is a unique variable ninsc that corresponds to the

number of insertions of nodes with color c. Constraint

(13) ensures that variables ninsc and IsInsc are consis-

tent. Constraint (14) ensures that for a color c ∈ C there

are either insertions or deletions. Constraint (15) and

(16) ensure that ninsc[i] = 1 iff there are i insertions of

nodes with the color c ∈ C (i.e. if the difference between
∑

v∈V ColV [v][c] and occM (c) is equal to i). Constraint

(17) ensures that the number of insertions is bounded by

Nins. The sum of all the insertions for a given color in

addition to insertions of not colored nodes have to be less

than Nins.

We also give six constraints, which are built similarly

to constraints (12)-(17).

Lemma 2.1 Our LPB program correctly solves GRAPH

MOTIF.
Proof omitted dur to space constraints.

Let us now defined two preprocessing steps to speedup

our LPB program.

First, let us remark that a protein in the motif without

any homologous protein in the network will be consid-

ered as a deletion in any feasible result. Let D be the set

of all colors corresponding to such proteins in the motif

M . If the size of D exceeds Ndel, then no solution is pos-

sible for this motif. Otherwise, we already know that all

proteins corresponding to colors in D will be deleted in

any solution. Thus, we launch the LPB program over the

motif M \ D, with Ndel − |D| allowed deletions.

Then, we prune the network and run the LPB solver

on each connected component as shown in [9]. Indeed, an

not colored node of G can be too “far” from any colored

node, in terms of shortest path length, to be inserted in the

solution in regards to the maximum number of allowed

insertions (i.e., Nins). According to this remark, we only

keep a colored node u in G if there exist two colored

nodes v1 and v2 such that dist(u, v1) + dist(u, v2) ≤
Nins + 1, where dist(u, v) is the length of the shortest

path between u and v. Otherwise, u would never be part

of a solution, and hence can be safely deleted from G.

Once G is pruned, the LPB program is used on each

valid connected component of G. A component is said

to be valid if it contains at least k − Ndel colored nodes.

Otherwise, a connected solution would never be found in

this component, and hence there is no need to consider it.

As stated in [9], there is in practice only 5% of colored

nodes in G.

3. GraMoFoNe Functionalities

Screenshots of our plugin can be seen on the GraMoFoNe

website 1. The user can provide input data and parameters

on the left sidebar, networks are drawn in the center and

results are presented on the right panel. We now describe

inputs and outputs of GraMoFoNe.

Inputs

The network and the motif. The network has to be

loaded into the Cytoscape environment. The motif is ei-

ther (1) a predefined motif, (2) or given manually in a

textbox, (3) or loaded as a FASTA file.

1http://igm.univ-mlv.fr/AlgoB/gramofone/

BLASTp. Since we consider two proteins as homolo-

gous according to their sequence similarity by a BLASTp

analysis, we need FASTA files of the motif and the net-

work. These last can be provided by the user; other-

wise, our plugin tries to retrieve them from the Uniprot

database Archive (Uniparc) [6] using EBI Web Services

[18]. The user has also to provide the BLASTp threshold

value : two proteins are homologous if their -log(eV alue)
value is above this threshold.

Indels. The user can provide a maximum number of

deletions and insertions allowed in a solution, and the cor-

responding penalty costs used to compute the score of a

result.

Outputs

Once GraMoFoNe routine is launched, the plugin pro-

vides the potential subnetworks list, ordered by their scores,

while Torque only provides the best solution. The user

may see each of these subnetworks highlighted in the full

network. The plugin also provides the correspondence

between proteins in the result and the motif. Finally, the

plugin allows an exportation of any such subnetwork as a

new network .

4. Results and comparison

To validate our plugin on real data, we launched a batch

mode of our plugin (not available through Cytoscape)

which tries to retrieve motifs (protein complexes) of six

different species in three large different PPI networks.

Data acquisition and parameters

The PPI networks of Saccharomyces cerevisiae (Yeast,

about 5.500 proteins and 40.000 interactions), Drosophila

melanogaster (Fly, about 6.500 proteins and 21.000 in-

teractions) and Homo sapiens (about 8.000 proteins and

29.000 interactions) were downloaded from the Torque

website. They obtain these data from recent papers and

public databases.

The motifs data for Yeast, Fly, Human, Mouse, Bovine

and Rat were kindly supplied by Torque authors which

obtained them from the databases SGD [3], AmiGo[1]

and Corum[24].

Fasta files for Yeast, Fly and Human were downloaded

from the Torque website, while data for Mouse, Bovine

and Rat were downloaded from Biomart [28]. Missing

informations have been manually added from Uniprot [6]

and Ensembl [16] databases.

The parameters have been set as similar as possible

as in Torque. Therefore, the threshold value for BLASTp

has been set to -log(10−7) ≃ 16.1. Two insertions (Nins)

and deletions (Ndel) were allowed for small motifs (size

< 7), three for medium motifs (size 8-14), four for larger

ones. The timeout for the LPB program was set to 500
seconds.

Experiments

Our tests were done on a 3GHz Personal Computer,

with 2Go RAM memory. Torque values were not com-

Figure 1: Comparison of the number of matches between our software (GM) and Torque [9]. Each histogram labeled

by X/Y corresponding to retrieving a list of motif of specie X in the network of specie Y . White (resp. grey) bars

corresponds to feasible motifs founded (resp. not founded) in the network. Black bars correspond to motifs where the

timeout limit has been reached before any result. Hence, the whole bar correspond to feasible motifs.

puted by ourself since there is only a web service for

Torque. We obtained values (number of matches) from

the Torque paper. Values for GraMoFoNe were computed

as follows.

From the list of motifs of a given species, we kept

only feasible ones. We performed preprocessing on mo-

tif and network as described previously. Then, we con-

sidered a motif as feasible when, (i) its size was between

4 and 25, (ii) there were less than Ndel proteins in the

motif without homologous proteins in the network, and

(iii) there was at least one connected component in the

network with enough colors to match the motif.

Afterwards, for a feasible motif, the LPB program

could found a solution (True in Figure 1), or found that

this motif can not be matched in this network (False in

Figure 1), or not finish under the time limit (Timeout in

Figure 1).

Results

Comparisons between our plugin GraMoFoNe and Tor-

que are given in Figure 1. For most experiments, our plu-

gin finds more feasible motifs (i.e., the sum of “true”,

“timeout” and “false” in the figure, or the height of each

whole bar) and also more matches (i.e., height of white

bars) than Torque. These results can be due to differences

in our preprocessing methods and to our manual addition

of missing information in Fasta files.

As Torque, we can query motifs where there is no in-

formation about the motif topology (Bovine, Mouse and

Rat). Also as in Torque, we had more unmatched feasible

motifs when they are requested in the fly network. Ac-

cording to Torque authors, this is because the fly data is

more noisy, with a high rate of false negatives. A motif

can not be found if a false negative disconnects a poten-

tial solution. Conversely, false positives does not disturb

the connectivity, but can create “bad” solutions.

With the set of parameters defined previously, there is

no significant differences in terms of number of matches

when we use a motif as a multiset (i.e. when two homol-

ogous proteins in the motif has the same color) or not.

Knowing if there is a match can be computed in sec-

onds (5-20 for small motifs, 40-60 for larger ones), but

the time to found the best solution can be longer. But,

due to the use of a LPB solver as a “black box”, it is very

hard to predict times.

5. Conclusion

In this paper, we presented GraMoFoNe, a new tool to re-

quest motifs (multiset of proteins without topology) into

Protein-Protein Interactions network by solving GRAPH

MOTIF and some of its extensions, to increase knowledge

about biological network. This tool is given as a plugin

for Cytoscape, a popular software to manage such net-

works. GraMoFoNe use the free Linear Pseudo Boolean

solver Sat4JPseudo to give all possible solutions, includ-

ing the best one.

Since giving all solution can take time, our tool can

also give the first solution founded by the LPB solver in

short time. However, in this case, we do not know the

quality of this solution compared to the best one (i.e. if

there is another solution with less indels). A future work

could be to find a fast heuristic to find a “good” solution

in most case, and to compare this last with GraMoFoNe.

Our coloration method is only given in terms of se-

quence similarity. Therefore, it would be interesting to

extend it to other measures. In the same way, our thresh-

old for homologies is fixed. It would be also interesting

to have a variable threshold.

The GraMoFoNe plugin and batch program are under

GPL license and available at the website http://igm.

univ-mlv.fr/AlgoB/gramofone/

6. Acknowledgement

The authors would like to thank Anne Parrain for her help

and her quick response to our requests for SAT4JPseudo.

We also thanks Sharon Bruckner for providing motifs data,

Fasta files and Torque technical details. We thanks Vin-

cent Lacroix for his ideas about using multiset motif.

7. References

[1] Go consortium. amigo. http://amigo.geneontology.org,

sept 2008.

[2] Pb evaluation 07 – special event of the sat 2007 confer-

ence. http://www.cril.univ-artois.fr/PB07/.

[3] Sgd project. ”saccharomyces genome database”.

http://www.yeastgenome.org, sept 2008.

[4] N. Alon, R. Yuster, and U. Zwick. Color coding. JACM,

42(4):844–856, 1995.

[5] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman.

Basic local alignment search tool. JMB, 215(3):403–410,

1990.

[6] A. Bairoch, R. Apweiler, et al. The universal protein re-

source (UniProt). NAR, 33:D154, 2005.

[7] N. Betzler, M. Fellows, C. Komusiewicz, and R. Nieder-

meier. Parameterized algorithms and hardness results for

some graph motif problems. In CPM, volume 5029 of

LNCS, pages 31–43, 2008.

[8] G. Blin, F. Sikora, and S. Vialette. Querying Protein-

Protein Interaction Networks. In ISBRA, volume 5542 of

LNBI, pages 52–62, 2009.

[9] S. Bruckner, F. Hüffner, R. M. Karp, R. Shamir, and

R. Sharan. Topology-free querying of protein interaction

networks. In RECOMB. Springer, 2009.

[10] T. G. O. Consortium. Gene Ontology: tool for the unifica-

tion of biology. Nature Genet, 25:25–29, 2000.

[11] R. Dondi, G. Fertin, and S. Vialette. Maximum Motif

Problem in Vertex-Colored Graphs. In CPM, 2009.

[12] B. Dost, T. Shlomi, N. Gupta, E. Ruppin, V. Bafna, and

R. Sharan. QNet: A Tool for Querying Protein Interaction

Networks. RECOMB, pages 1–15, 2007.

[13] M. Fellows, G. Fertin, D. Hermelin, and S. Vialette. Sharp

tractability borderlines for finding connected motifs in

vertex-colored graphs. In ICALP, volume 4596 of LNCS,

pages 340–351, 2007.

[14] A. Gavin, M. Boshe, et al. Functional organization of

the yeast proteome by systematic analysis of protein com-

plexes. Nature, 414(6868):141–147, 2002.

[15] Y. Ho, A. Gruhler, et al. Systematic identification of pro-

tein complexes in Saccharomyces cerevisae by mass spec-

trometry. Nature, 415(6868):180–183, 2002.

[16] T. Hubbard, B. Aken, et al. Ensembl 2009. NAR, 37:D690,

2009.

[17] B. Kelley, R. Sharan, R. Karp, T. Sittler, D. E. Root,

B. Stockwell, and T. Ideker. Conserved pathways within

bacteria and yeast as revealed by global protein network

alignment. PNAS, 100(20):11394–11399, 2003.

[18] A. Labarga, F. Valentin, M. Anderson, and R. Lopez. Web

services at the European bioinformatics institute. NAR,

35:W6, 2007.

[19] V. Lacroix, C. Fernandes, and M.-F. Sagot. Motif search

in graphs: application to metabolic networks. TCBB,

3(4):360–368, 2006.

[20] D. Le Berre and A. Parrain. On extending sat solvers for

pb problems. In RCRA, 2007.

[21] M. Pellegrini, E. Marcotte, M. Thompson, D. Eisenberg,

and T. Yeates. Assigning protein functions by comparative

genome analysis: protein phylogenetic profiles. PNAS,

96(8):4285–4288, 1999.

[22] R. Pinter, O. Rokhlenko, E. Yeger-Lotem, and M. Ziv-

Ukelson. Alignment of metabolic pathways. Bioinformat-

ics, 21(16):3401–3408, 2005.

[23] T. Reguly, A. Breitkreutz, et al. Comprehensive cura-

tion and analysis of global interaction networks in saccha-

romyces cerevisiae. Journal of Biology, 2006.

[24] A. Ruepp, B. Brauner, I. Dunger-Kaltenbach, et al. CO-

RUM: the comprehensive resource of mammalian protein

complexes. NAR, 2007.

[25] A. Schrijver. Theory of Linear and Integer Programming.

John Wiley and Sons, 1998.

[26] P. Shannon, A. Markiel, O. Ozier, et al. Cy-

toscape: A Software Environment for Integrated Models

of Biomolecular Interaction Networks. Genome Research,

13:2498–2504, 2003.

[27] T. Shlomi, D. Segal, E. Ruppin, and R. Sharan. QPath: a

method for querying pathways in a protein-protein inter-

action network. BMC Bioinformatics, 7:199, 2006.

[28] D. Smedley, S. Haider, et al. BioMart – biological queries

made easy. volume 10, page 22. BioMed Central Ltd,

2009.

[29] P. Uetz, L. Giot, et al. A comprehensive analysis of

protein-protein interactions in Saccharomyces cerevisae.

Nature, 403(6770):623–627, 2000.

8. Appendix

8.1. Constraints to bound the number of deletions

The six following constraints ensure that the number of deletions is lower than Ndel.

∀c ∈ C,

Ndel
∑

i=0

ndelc[i] = 1 (18)

∀c ∈ C, IsDelc ⇒ ndelc[0] = 0 (19)

∀c ∈ C, ¬ IsInsc +ndelc[0] ≥ 1 (20)

∀c ∈ C,∀0 ≤ i ≤ Ndel,

−
∑

v∈V

ColV [v][c] + occM (c) ≤ i.ndelc[i] + ¬ndelc[i].Ndel
(21)

∀c ∈ C,∀0 ≤ i ≤ Ndel,

¬ndelc[i] −
∑

v∈V

ColV [v][c] + occM (c) + Nins. IsInsc ≥ i.ndelc[i]
(22)

∑

c∈C

Ndel
∑

i=1

i.ndelc[i] ≤ Ndel (23)

Constraint (18) ensures that, for a given color c ∈ C, there is a unique variable ndelc that corresponds to the number

of deletions for c. Constraint (19) ensures that variables ndelc and IsDelc are consistent. Constraint (20) ensures that for

a color c ∈ C there are either deletions or insertions. Constraint (21) and (22) ensure that ndelc[i] = 1 iff there are i
deletions for the color c ∈ C (i.e. if the difference between occM (c) and

∑

v∈V ColV [v][c] is equal to i). Constraint (23)

ensures that the number of deletions is bounded by Ndel. The sum of all the deletions for a given color have to be less

than Ndel.

8.2. Proof of Lemma 2.1

Proof We first prove the Lemma considering that no indels are allowed. The extension to the case allowing indels is

straightforward and is given afterwards.

Let us first prove that a solution to GRAPH MOTIF can be found by our LPB program i.e. that it has a corresponding

variables assignment that respects all the LPB constraints previously defined.

Given a solution G[R] to GRAPH MOTIF, set xv = 1 if v ∈ R;xv = 0 otherwise and eu,v = 1 if u and v ∈ R,

eu,v = 0 otherwise. Find a spanning tree T of G[R] (this tree exists since G[R] is connected) and label the nodes of G[R]
according to a postorder traversal of T .

Since no indels are allowed, |R| = k. By definition, exactly k variables xv are equal to 1 and thus constraints (1) and

(2) hold. The labeling induced by the postorder traversal of T ensures that all variables of R have a unique and distinct

label. Therefore, constraints (3) and (5) hold. Since no label are given in nodes not belonging to R, Constraint (4) holds.

Moreover, in T , according to the postorder traversal, the father of any node v, except the root, has a label greater than v.

Therefore, in G[R], any node has at least one neighbor with a greater label. Thus, Constraint (6) holds. Since σ : R → M
is a bijection, there is exactly occM (c) occurrences of each color c ∈ C in R, and hence, Constraint (7) holds. Moreover,

there is only one image σ(v) associated to any v ∈ R, thus the sum in (8) is equal to 1 and the Constraint holds when

xv = 1. By the bijection σ : R → M , any element in M is associated to an element in R. Thus, no node v /∈ R has

an image in M , the sum in (8) is equal to 0 and the Constraint holds also when xv = 0. Since no indels are allowed,

any color c is matched. Thus, Constraint (9) holds. Moreover,
∑

v∈V ColV [v][c] − occM (c) is equal to 0. Constraints

(10) and (11) hold iff IsExactc = 1. Indeed, if IsInsc = 1, Constraint (11) does not hold (0 ≥ 1), and if IsDelc = 1,

Constraint (10) does not hold (0 ≤ −1). For each color c, constraints (12) to (23) hold if ninsc[0] = 1 and ndelc[0] = 1,

which is the case when no indels are allowed.

Let us now prove that a solution to our LPB program corresponds to a solution to GRAPH MOTIF.

Given a LPB solution, for any v ∈ V , add v to R if xv = 1. Constraint (2) ensures that we have |R| = k. According to

constraints (2) and (7), R and M are finite sets with exactly the same number of elements (i.e., |R| = |M |). By Constraint

(8), if σ(v) is defined, then v ∈ R (otherwise, xv = 0 and all variables ColV [v][c] are equal to 0 for this v and for all

c ∈ col(v)). By constraints (7) and (8), for any c ∈ M , there is only one v ∈ R such that σ(v) = c (a node v can match

at most one color and there are exactly the same number of elements in R and M). Thus, on the whole, σ : R → M is a

bijection. It remains to show that G[R] is connected.

By Constraint (3), every node in R has a label. Let r be the node with the greatest label. By Constraint (5), this label

is unique. Let us show that there exists a path in R connecting any node v ∈ R to r. To do so, let us prove by induction

that there is a path from v to r with increasing labels. The case v = r is trivial. Suppose there exists a path p in R of

length l starting from v with increasing labels. Let sp be the sink of p (i.e. the last node in p). If sp = r, then we are

done. Otherwise, by Constraint (6), sp has at least one neighbor u with a label greater than its own. Then, there is a path

p ∪ {u} of length l + 1 with increasing labels.

Let us prove Lemma 2.1 when indels are allowed.

Let first show that constraints (9) to (11) are consistent when indels are allowed. We already have shown that these

constraints hold if there is no indels.

• If there are i insertions for a color c, then,
∑

v∈V ColV [v][c] − occM (c) = i. Constraint (9) ensure that only one

variable among IsExactc, IsInsc and IsDelc is equal to 1.

– If IsExactc = 1, then constraints (10) (i ≤ 0) and (11) (i ≥ 0) are both true iff i = 0.

– If IsInsc = 1, then constraints (10) (i ≤ Nins) and (11) (i ≥ 0) are both true iff 0 ≤ i ≤ Nins, which is the

case here.

– If IsDelc = 1, then Constraint (10) (i ≤ −1) does not hold since the number of insertions is positive (i > 0).

• If there are d deletions for a color c, then,
∑

v∈V ColV [v][c] − occM (c) = −d.

– If IsExactc = 1, then constraints (10) (−d ≤ 0) and (11) (−d ≥ 0) are both true iff d = 0.

– If IsInsc = 1, then Constraint (11) (−d ≥ 1) does not hold since the number of deletions is positive (d > 0).

– If IsDelc = 1, constraints (10) (−d ≤ −1) and (11) (−d ≥ 1−1−Ndel) are both true iff −Ndel ≤ −d ≤ −1,

which is the case here.

Let us now show that constraints (12) to (16) and constraints (18) to (22) are consistent with the number of indels for

a given color in a solution of GRAPH MOTIF.

• If there are i insertions for a color c, then,
∑

v∈V ColV [v][c]− occM (c) = i and IsInsc = 1, IsDelc = IsExactc =
0. Constraints (12) and (13) ensure that there is one i 6= 0 s.t. ninsc[i] = 1. Constraint (14) holds since IsDelc = 0.

Constraints (15) and (16) both hold iff ninsc[i] = 1 (i ≤ i and i ≥ i). Otherwise, if ninsc[j] = 1, j 6= i, constraints

(15) and (16) hold iff we have j ≤ i ≤ j (i ≤ j and i ≥ j), which is impossible since j 6= i.

Since IsInsc = 1, Constraint (20) holds iff ndelc[0] = 1. Then, Constraint (18) holds. Variable IsDelc = 0, thus

Constraint (19) holds. Hereafter, constraints (21) (−i ≤ 0) and (22) (−i + Nins ≥ 0) hold when ndelc[0] = 1.

• If there are d deletions for a color c, then
∑

v∈V ColV [v][c]−occM (c) = −d and IsDelc = 1, IsInsc = IsExactc =
0. Thus, Constraint (13) holds. Since IsDel = 1, Constraint (14) holds iff ninsc[0] = 1. Thus, Constraint (12)

holds. Hereafter, constraints (15) (−d ≤ Nins) and (16) (−d + Ndel ≥ 0) hold when ninsc[0] = 1.

Constraints (20) holds since IsInsc = 1. Constraints (18) and (19) ensure that there is one i 6= 0 s.t. ndelc[i] = 1.

Constraints (21) and (22) both holds iff ndelc[d] = 1 (d ≤ d and d ≥ d). Otherwise, if ndelc[j] = 1, j 6= d,

constraints (21) and (22) hold iff we have j ≤ d ≤ j (d ≤ j and d ≥ j), which is impossible since j 6= d.

In both case, constraints (17) and (23) hold iff the overall number of insertions and deletions are respectively less than

Nins and Ndel.

