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Martin boundary of a killed random walk

in the Weyl chamber of the dual of SU(3)

Kilian Raschel∗

October 6, 2009

Abstract

We consider a classical random walk killed at the boundary of the quarter plane Z2
+

and with drift zero, that appears quite naturally in the study of quantum random walks
on the dual of SU(3). In [Bia91], P. Biane has computed the asymptotic of the Green
functions of this process along the paths of states (i, j) ∈ Z2

+ such that i + j → ∞
and j/i → tan(γ), for any γ ∈]0, π/2[. In this note we wish to extend his results up
to γ ∈ [0, π/2]. In particular, this will allow us to prove that the Martin boundary of
the process is reduced to one point.

Keywords : random walk, Green functions, Martin boundary, absorption probabilities.

AMS 2000 Subject Classification : primary 60G50, 31C35 ; secondary 30F10.

1 Introduction and main results

Random walks conditioned on staying in cones of Z
d attract a lot of attention in the

mathematical community, particularly since the nineties. They appear actually in several
distinct domains. An historically important example is constituted by the so-called non-
colliding random walks, in other words by the processes (Z1, . . . , Zd) composed of d
independent and identically distributed random walks conditioned on never leaving the
Weyl chamber {z ∈ R

d : z1 < · · · < zd}. These processes appeared in the eigenvalues
description of important matrix-valued stochastic processes, see [Dys62], and are recently
again very much studied, see e.g. [EK08] and the references therein.

Another important area where random processes conditioned on staying in cones of Z
d

appear is the domain of quantum random walks. We briefly recall, see e.g. [Bia08], that
they are a non-commutative generalization of classical random walks, and that it is possible
to obtain classical processes from quantum processes by restricting the latter ones, initially
defined on a non-commutative von Neumann algebra, to commutative subalgebras.

This is how that in [Bia91], P. Biane considers a quantum random walk on the dual
of SU(n), and obtains two classical processes by restricting it to the two commutative
subalgebras that are firstly the subalgebra generated by the dual of the diagonal matrices
and secondly the center of the dual of SU(n).

The first of these two classical random walks is easily described : it is the uniform n-
nearest neighbors random walk on the lattice of integral forms of SU(n). The noteworthy
Theorem 4.1 of [Bia91] states that the second of these two classical random walks is
obtained from the first by killing it at the boundary of the Weyl chamber associated with
the lattice, and then by taking the Doob h-transform of this killed process, with some
function h harmonic for the killed process and made explicit – it equals the dimension of
some representation of the Lie group SU(n).
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Moreover, P. Biane identifies this harmonic function h in the Martin boundary of the
killed process. Indeed, in Proposition 5.1 of [Bia91], he computes the exact asymptotic of
the Green kernel of the killed process along all paths of states lying in some cones, that he
supposes to be strictly included in the Weyl chamber. Unfortunately, this latter hypothesis
concerning the cones is essential, and P. Biane writes in [Bia91] that with the methods he
used there, “[he] has not been able to obtain sufficiently precise estimates on the Green
kernel” in order to remove this assumption. In particular, neither the asymptotic of the
Green kernel along paths tangent to the boundary of the Weyl chamber, nor the Martin
boundary of the process can be obtained with [Bia91].

The aim of this note is to complete the results of P. Biane in the particular case n = 3
by finding the asymptotic of the Green kernel along all paths of states, as well as the
Martin compactification of the process.

In the particular case n = 3, it is immediate from the construction that the first classical
process obtained by P. Biane in [Bia91] is the random walk spatially homogeneous on the
lattice {m+n exp(ıπ/3), (m,n) ∈ Z

2} with jump probabilities as represented at the left of
Picture 1 below. Moreover, the Weyl chamber of this lattice is {m+n exp(ıπ/3), (m,n) ∈
Z

2
+}, see [Bia91].

1/3

1/3

1/3

1/3

1/3

1/3

Figure 1: Random walk on the dual of the diagonal matrices of SU(3)

It is immediate (see Picture 1) that a suitable linear transformation maps the lattice
{m+n exp(ıπ/3), (m,n) ∈ Z

2} into Z
2. In this way, the Weyl chamber {m+n exp(ıπ/3),

(m,n) ∈ Z
2
+} becomes Z

2
+ and the new jump probabilities are represented at the right

of Picture 1. This is this latter point of view, namely the one of a random walk in the
quarter plane, that we will embrace in the sequel.

The results that we wish to complete concern the process killed at the boundary of
the Weyl chamber, this is why we are going to be interested in the random walk (X,Y )
verifying :

(H1) the jump probabilities pij = P[(X(k +1), Y (k +1)) = (i0 + i, j0 + j) | (X(k), Y (k)) =
(i0, j0)] verify p0−1 = p−11 = p10 = 1/3.

(H2) the random walk is killed at the boundary {(i, 0) : i ≥ 1} ∪ {(0, j) : j ≥ 1}.

For killed processes in the quarter plane like (X,Y ), there exist methods, based
on [FIM99], in order to get explicitly the generating function of the Green functions

Gi0,j0
i,j = E(i0,j0)

[
∑

k≥0

1{(X(k),Y (k))=(i,j)}

]
, (1)

E(i0,j0) denoting the conditional expectation given (X(0), Y (0)) = (i0, j0).
Indeed, in the book [FIM99], the authors G. Fayolle, R. Iasnogorodski and V. Malyshev

elaborate a profound and ingenious analytic approach in order to obtain explicit
expressions of the stationary probabilities generating functions for some ergodic random
walks in the quarter plane. In [KR09], we have adapted this approach to the case of the

2



generating functions of Green functions and of the absorption probabilities for some walks
in the quarter plane absorbed at the boundary and having a positive drift. We will see
here that this approach can also be extended to the case of a random walk having a drift
zero : Subsection 2.1 of this paper, that leads to an explicit formulation for the generating
functions of Green functions, is strongly inspired by [FIM99].

In this way we will get an explicit expression of the Green functions and we will prove
in Section 3 the following :

Theorem 1. The Green functions (1) admit the following asymptotic as i + j → ∞ and
j/i → tan(γ), γ lying in [0, π/2] :

Gi0,j0
i,j ∼

37/2

2π
i0j0 (i0 + j0)

ij(i + j)

(i2 + ij + j2)3
. (2)

Note that for γ ∈]0, π/2[, (2) is a consequence of [Bia91], so that we will attach a
particular importance in the proof to the two cases γ = 0 and γ = π/2.

The function i0j0(i0+j0), that appears in (2), is the harmonic function used by P. Biane
in [Bia91] in order to express the second classical process as the Doob transform of the
first classical process killed at the boundary of the Weyl chamber. We will show that
the function i0j0(i0 + j0) is in fact the only harmonic function for (X,Y ), since as an
consequence of Theorem 1, we will obtain :

Corollary 2. The Martin boundary of the process is reduced to one point.

Contrary to the killed random walks in the quarter plane with non zero drift which
have often been considered and for which the Martin boundary is known, see [IRL09],
results concerning the killed random walks in the quarter plane with drift zero are very
rare ; and Corollary 2 is, up to our knowledge, only the second example of Martin boundary
for such a random walk – the first example being the one of the cartesian product of two
one-dimensional random walks, for which it is not hard to show, see e.g. [PW92], that the
Martin boundary is also reduced to one point.

Moreover, it turns out that starting from [FIM99] and [KR09] we can very easily obtain
the explicit expression of the generating functions of the absorption probabilities

hi0,j0
i = P(i0,j0) [∃k ≥ 1 : (X(k), Y (k)) = (i, 0)] ,

h̃i0,j0
j = P(i0,j0) [∃k ≥ 1 : (X(k), Y (k)) = (0, j)] ,

(3)

P(i0,j0) denoting the conditional probability given (X(0), Y (0)) = (i0, j0).
Indeed, in Sections 3 and 4 of [KR09], we have, by using some methods of [FIM99],

calculated these generating functions for the walks in the quarter plane verifying (H2) and
p0−1 + p−11 + p10 = 1, p0−1 < p−11 < p10 instead of (H1).

We will therefore immediately obtain the explicit expression of the generating functions
of the absorption probabilities in the case p0−1 = p−11 = p10 = 1/3, see (26)-(27) ; then,
by studying closely this explicit expression, notably its behavior near 1, we will prove in
Section 4 the following result :

Theorem 3. The probabilities of absorption (3) admit the following asymptotic :

hi0,j0
i ∼i→∞

35/2

2π
i0j0 (i0 + j0)

1

i4
, h̃i0,j0

j ∼j→∞
35/2

2π
i0j0 (i0 + j0)

1

j4
. (4)
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2 Meromorphic continuation of the generating functions

2.1 A functional equation between the generating functions

Subsection 2.1 consists in preliminary facts and is based on [FIM99]. Start by defining

Gi0,j0 (x, y) =
∑

i,j≥1

Gi0,j0
i,j xi−1yj−1, hi0,j0 (x) =

∑

i≥1

hi0,j0
i xi, h̃i0,j0 (y) =

∑

j≥1

h̃i0,j0
j yj, (5)

the generating functions of the Green functions (1) and of the absorption probabilities (3).
With the notations (5), we can state the following functional equation :

Q (x, y) Gi0,j0 (x, y) = hi0,j0 (x) + h̃i0,j0 (y) − xi0yj0, (6)

where Q(x, y) = xy(x + y/x + 1/y − 3)/3 – note that (x + y/x + 1/y)/3 is nothing else
but the generating function of the jump probabilities of the process.

A priori, Equation (6) has a meaning in {(x, y) ∈ C
2 : |x| < 1, |y| < 1}. The proof

of (6) is obtained exactly as in Subsection 2.1 of [KR09].
When no ambiguity on the initial state can arise, we will drop the index i0, j0 and we

will write Gi,j , G(x, y), hi, h(x), h̃j , h̃(y) for Gi0,j0
i,j , Gi0,j0(x, y), hi0,j0

i , hi0,j0(x), h̃i0,j0
j , h̃i0,j0(y).

The polynomial Q can be written alternatively :

Q (x, y) = a (x) y2 + b (x) y + c (x) = ã (y) x2 + b̃ (y)x + c̃ (y) , (7)

where a(x) = 1/3, b(x) = x2/3−x, c(x) = x/3, ã(y) = y/3, b̃(y) = −y+1/3, c̃(y) = y2/3.
We define also d(x) = b(x)2 −4a(x)c(x) and d̃(y) = b̃(y)2−4ã(y)c̃(y). Note that we have :

d(x) = (1/9)x(x − 4)(x − 1)2, d̃(y) = −(4/9)(y − 1/4)(y − 1)2. (8)

In order to be consistent with the notations of [FIM99], we will note x1 = 0, x4 = 4,
y1 = 1/4 and y4 = ∞.

2.2 Uniformization and meromorphic continuation

Notation. Throughout the whole paper, ı denotes the complex number : ı2 = −1.

Let us now have a look to the surface defined by {(x, y) ∈ (C ∪ {∞})2 : Q(x, y) = 0},
that we will note {Q = 0} for the sake of briefness. Note first that with (7), Q(x, y) = 0
is equivalent to (b(x) + 2a(x)y)2 = d(x) or to (b̃(y) + 2ã(y)x)2 = d̃(y). In particular, it
follows from the particular form of d (two simple roots at x1 and x4, a double root at 1)
or of d̃ (a simple root at y1, a double root at 1), see (8), that the surface {Q = 0} has
genus zero, and is thus homeomorphic to a sphere. Therefore, this Riemann surface can
be rationally uniformized, in the sense that it is possible to find two rational functions
x(z) and y(z), such that {Q = 0} = {(x(z), y(z)) : z ∈ C ∪ {∞}}. Moreover, we easily
verify that we can chose :

x (z) =
(z − 1)2

(z − exp (2ıπ/3)) (z − exp (−2ıπ/3))
, y (z) =

(z − 1)(z − exp (−2ıπ/3))

(z − exp (2ıπ/3))2
. (9)

For more details about Riemann surfaces and uniformization, see for instance [SG69].
For a better understanding of the surface {Q = 0} as well as for a coming use, we

are now going to be interested in the transformations through the uniformization (x, y)
of some important cycles, namely the branch cuts [x1, x4], [y1, y4] and the unit circles
{|x| = 1}, {|y| = 1}. Using (9) we easily obtain :

x−1([x1, x4]) = R ∪ {∞}, y−1([y1, y4]) = exp (2ıπ/3) R ∪ {∞}. (10)

As for the cycles x−1({|x| = 1}) and y−1({|y| = 1}), their explicit expression (calculated
starting from (9)) shows that they are real elliptic curves, which are located as in the
middle of Picture 2 below.
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Figure 2: The uniformization space C∪ {∞}, with at the left some important elements of
it, in the middle the corresponding elements through the uniformization (x, y), and at the
right the images of the cone F = {x exp(ıθ), x ≥ 0, −π/3 ≤ θ ≤ 0} through the elements
(12) of the group of the random walk

Let us now be interested in some automorphisms naturally attached to the surface
{Q = 0}. To begin with, we remark that it follows from (7) that Q(x, y) = 0 entails
Q(x, x/y) = 0 and Q(y/x, y) = 0 ; it is therefore natural to consider the group generated
by the two bilinear transformations ξ̂(x, y) = (x, x/y) and η̂(x, y) = (y/x, y), noted 〈ξ̂, η̂〉.
The authors of [FIM99] call this group 〈ξ̂, η̂〉 the group of the random walk, and they show
that in the particular case of the process we are considering in this note, it is of order six.

These automorphisms ξ̂ and η̂ define two automorphisms ξ and η of the uniformization
space C ∪ {∞}, characterized by :

ξ ◦ ξ = id, x ◦ ξ = x, y ◦ ξ = x/y, η ◦ η = id, y ◦ η = y, x ◦ η = y/x. (11)

Using the well-known characterization of the automorphisms of the Riemann sphere, (9)
and (11), we obtain that ξ and η have the following expressions :

ξ(z) = 1/z, η(z) = exp(−2ıπ/3)/z. (12)

In particular, it is immediate that the group W = 〈ξ, η〉 generated by ξ and η is isomorphic
to the dihedral group of order six, i.e. the group of symmetries of a triangle, ξ and η playing
the role of the two reflections.

Note also that (12) immediately yields ξ(exp(ıθ)R+) = exp(−ıθ)R+ and η(exp(ıθ)R+) =
exp(−ı(θ + 2π/3))R+. In particular, if F denotes {x exp(ıθ), x ≥ 0, −π/3 ≤ θ ≤ 0}, then

⋃

w∈W

w (F ) = C, (13)

see at the right of Picture 2.
Thanks to the group W = 〈ξ, η〉 and to (13), we are now going to continue the functions

H(z) = h(x(z)) and H̃(z) = h̃(y(z)), what will be of the highest importance in Section 3,
where we will prove Theorem 1.

Note that in the sequel, we will often write xi0yj0(z) instead of x(z)i0y(z)j0 .

Proposition 4. The functions H(z) = h(x(z)) and H̃(z) = h̃(y(z)) can be continued
meromorphically from respectively {z ∈ C : |x(z)| ≤ 1} and {z ∈ C : |y(z)| ≤ 1} to
respectively C \ exp(ıπ)[0,∞] and C \ exp(2ıπ/3)[0,∞]. These continuations verify

∀z ∈ C : H (z) = H (ξ (z)) , H̃ (z) = H̃ (η (z)) , (14)

and

H (z) + H̃ (z) − xi0yj0 (z) =





0 if z ∈ C \ D (15a)

−
∑

w∈W

(−1)l(w) xi0yj0 (w(z)) if z ∈ D (15b)

where we have set D = {x exp(ıθ), x ≥ 0, 2π/3 ≤ θ ≤ π} and l(w) for the length of w,
i.e. the smallest r for which we can write w = w1 · · ·wr, with w1, . . . , wr equal to ξ or η.

5



Remark 5. In {z : |x(z)| ≤ 1, |y(z)| ≤ 1} ⊂ C \ D, (15a) follows immediately from (6).

Remark 6. As a consequence of Proposition 4, the generating functions h and h̃, see (5),
can be continued into meromorphic functions on C \ [1, x4] and C \ [1, y4] respectively.

Proof of Proposition 4. In order to prove Proposition 4, we will strongly use the
decomposition (13), and more precisely we will define H and H̃ piecewise, by defining
them on each of the six domains w(F ) that appear in the decomposition (13), to be equal
to some functions Hw and H̃w ; it will then suffice to show that the functions H and H̃
so defined verify the conclusions of Proposition 4.

• In F = {x exp(ıθ), x ≥ 0, −π/3 ≤ θ ≤ 0} ⊂ {z ∈ C : |x(z)| ≤ 1, |y(z)| ≤ 1}, see
Picture 1, we are going to use the most natural way to define H1 and H̃1, i.e. their power
series. So we set, for z ∈ F : H1(z) = h(x(z)) and H̃1(z) = h̃(y(z)) – the subscript 1 in
H1 and H̃1 stands for the identity element of the group W .

• Next we define Hξ, H̃ξ on ξ(F ) and Hη, H̃η on η(F ) by

∀z ∈ ξ (F ) : Hξ (z) = H1 (ξ (z)) , H̃ξ (z) = −Hξ (z) + xi0yj0 (z) ,

∀z ∈ η (F ) : H̃η (z) = H̃1 (η (z)) , Hη (z) = −H̃η (z) + xi0yj0 (z) .

• Then we define Hξη, H̃ξη on ξη(F ) and Hηξ, H̃ηξ on ηξ(F ) by

∀z ∈ ξη (F ) : Hξη (z) = Hη (ξ (z)) , H̃ξη (z) = −Hξη (z) + xi0yj0 (z) ,

∀z ∈ ηξ (F ) : H̃ηξ (z) = H̃ξ (η (z)) , Hηξ (z) = −H̃ηξ (z) + xi0yj0 (z) .

• At last we define Hξηξ and H̃ξηξ on ξηξ(F ) = ηξη(F ) by

∀z ∈ ξηξ (F ) : Hξηξ (z) = Hηξ (ξ (z)) , H̃ξηξ (z) = H̃ξη (η (z)) .

Therefore we have, for each of the six domains w(F ) of the decomposition (13),
defined two functions Hw and H̃w. Then, as said at the beginning of the proof, we
set H(z) = Hw(z) and H̃(z) = H̃w(z) for all z ∈ w(F ) and for all automorphisms w ∈ W .

With this construction, (14) and (15a) are immediately obtained. To prove (15b), we
can use the fact that it is possible to express all the functions Hw, H̃w, in terms only of
H1, H̃1 and xi0yj0 : we give, as examples, the expressions of Hξηξ and H̃ξηξ on ξηξ(F ) :

Hξηξ (z) = H1

(
ξηξ(z)

)
− xi0yi0

(
ηξ(z)

)
+ xi0yi0

(
ξ(z)

)
,

H̃ξηξ (z) = H̃1

(
ξηξ(z)

)
− xi0yi0

(
ξη(z)

)
+ xi0yi0

(
η(z)

)
.

We therefore obtain (15b), since with (15a) we get H1

(
ξηξ(z)

)
+ H̃1

(
ξηξ(z)

)
=

xi0yj0
(
ξηξ(z)

)
for z ∈ ξηξ(F ), and since W = {1, ξ, η, ηξ, ξη, ξηξ}. �

3 Asymptotic of the Green functions and Martin boundary

Proof of Theorem 1. Equation (6) yields immediately that the generating function of
the Green functions G, defined in (5), is holomorphic in {(x, y) ∈ C

2 : |x| < 1, |y| < 1}. As
a consequence and using again (6), the Cauchy formulas allow us to write its coefficients
Gi,j as the following double integrals :

Gi,j =
1

(2πı)2

∫∫

|x|=|y|=1

G (x, y)

xiyj
dxdy =

1

(2πı)2

∫∫

|x|=|y|=1

h (x) + h̃ (y) − xi0yj0

Q (x, y) xiyj
dxdy.

Then, using the uniformization (9), the location of the cycles {|x| = 1} and {|y| = 1}, see
Picture 2, the residue theorem at infinity and the Cauchy theorem, we obtain that :

Gi,j =
1

2πı

∫

exp(ıθ)[0,∞]

H (z) + H̃ (z) − xi0yj0 (z)

∂yQ (x(z), y(z)) x(z)iy(z)j
x′ (z) dz,

6



θ being any angle in [2π/3, π] – [2π/3, π] because on the one hand, it is not possible to take
θ > π, since exp(ıπ)[0,∞] is a singular curve for H, and on the other hand it is not allowed
to have θ < 2π/3, since exp(2ıπ/3)[0,∞] is a singular curve for H̃, see Proposition 4.

Then, by using the equality x′(z)/∂yQ(x(z), y(z)) = −ı31/2/z as well as (15b) we get :

Gi,j =
31/2

2π

∫

exp(ıθ)[0,∞]

[
1

z

∑

w∈W

(−1)l(w) xi0yj0 (w (z))

]
1

x (z)i y (z)j dz. (16)

For any θ ∈ [2π/3, π], the function x(z)iy(z)j is, on exp(ıθ)[0,∞], larger than 1 in
modulus, see Picture 2. Moreover, it goes to 1 when (and only when) z goes to 0 or to
∞. This is why it seems natural to decompose the contour exp(ıθ)[0,∞] into a part near
0, an other near ∞ and the remaining part, and to think that the parts near 0 and ∞
will lead to the asymptotic of Gi,j, and that the remaining part will lead to a negligible
contribution. But how to find the best contour in order to achieve this idea ? In other
words, how to find the value of θ for which the calculation of the asymptotic of (16) on
exp(ıθ)[0,∞] will be the easiest, among all the possibilities θ ∈ [2π/3, π] ?

For this, we are going to consider with details the function x(z)iy(z)j , or, equivalently,
the function χj/i(z) = ln(x(z)) + (j/i) ln(y(z)). Incidentally, this is why from now on we
will suppose that j/i ∈ [0,M ], for some M < ∞. Indeed, the function χj/i is manifestly
not adapted to the values j/i going to ∞ ; for such j/i we will consider later the function
(i/j)χj/i(z) = (i/j) ln(x(z)) + ln(y(z)). Nevertheless, M can be so large as wished, and,
in what follows, we will suppose that some M > 0 is fixed.

Now we set χj/i(z) =
∑∞

p=0 νp(j/i)z
p for z in the neighborhood of 0. With (9) we

obtain that ν3p(j/i) = 0 and that :

ν3p+1(j/i) =
−3

3p + 1

[
1+(j/i) exp(ıπ/3)

]
, ν3p+2(j/i) =

−3

3p + 2

[
1+(j/i) exp(−ıπ/3)

]
. (17)

Likewise, we easily prove by using (9) that for z near ∞, χj/i(z) =
∑∞

p=0 νp(j/i)1/z
p.

Consider now the steepest descent path associated to χj/i, that is the function zj/i(t)
defined by χj/i(zj/i(t)) = t. By inverting this latter equality, we immediately obtain that
the half-line (1/ν1(j/i))[0,∞] is tangent at 0 and at ∞ to the steepest descent path.

Now we set, for the sake of briefness,

ρj/i = 1/ν1 (j/i) =
−1

3
[
1 + (j/i) exp (ıπ/3)

] . (18)

With this notation, we now answer the question asked above, that concerned the fact
of finding the value of θ for which the asymptotic of the Green functions (16) will be the
most easily calculated : we will chose θ = arg(ρj/i) and the decomposition of the contour
exp(ıθ)[0,∞] will be :

exp (ıθ) [0,∞] =
(
ρj/i/|ρj/i|

)(
[0, ǫ] ∪ ]ǫ, 1/ǫ[ ∪ [1/ǫ,∞]

)
.

According to this decomposition and to (16), we consider now that Gi,j is the sum of three
terms, and we are going to study successively the contribution of each of these terms.

Contribution of the neighborhood of 0. In order to evaluate the asymptotic of the
integral (16) on the contour (ρj/i/|ρj/i|)[0, ǫ], we will use the expansion of the function

(1/z)
∑

w∈W (−1)l(w)xi0yj0(w(z)) in the neighborhood of 0, see (22) below. This is why we
begin by studying the asymptotic of the following integral, for any non-negative integer k :

∫

(ρj/i/|ρj/i|)[0,ǫ]

zk

x (z)i y (z)j
dz. (19)

Using the equality 1/(x(z)iy(z)j) = exp(−iχj/i(z)) and the expansion (17) of χj/i near 0,
and then making the change of variable z = ρj/it, we obtain that (19) is equal to :

ρk+1
j/i

∫ ǫ/|ρj/i|

0
tk exp (−it) exp

(
−iν2 (j/i)

(
ρj/it

)2)
exp

(
− i

∞∑

p=3

νp (j/i)
(
ρj/it

)p
)

dt. (20)
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But with (17) we get |νp(j/i)| ≤ 3(1+M), and, therefore, for all t ∈ [0, ǫ/|ρj/i|] we have |−
i
∑∞

p=3 νp(j/i)(ρj/it)
p| ≤ iǫ33(1 + M)/(1− ǫ). This is why exp(−i

∑∞
p=3 νp(j/i)(ρj/it)

p) =

1+O(iǫ3), the O being independent of j/i ∈ [0,M ] and of t ∈ [0, ǫ/|ρj/i|]. The integral (20)
can thus be calculated as

(
ρj/i/i

)k+1 [
1 + O

(
iǫ3
)] ∫ iǫ/|ρj/i|

0
tk exp (−t)

[
1 − ν2 (j/i) ρ2

j/it
2/i + O

(
t4/i2

)]
dt.

In the sequel we will chose ǫ = 1/i3/4, so that iǫ/|ρj/i| → ∞ and O(iǫ3) = O(1/i5/4)
– we could have thought that having O(iǫ3) = o(1) would suffice in order to obtain the
asymptotic of the Green functions (16), but we will see in the forthcoming paragraph called
“Conclusion” that for the calculation along the paths of states (i, j) such that j/i → 0, it
is in fact necessary to have O(iǫ3) = o(1/i), what affords the choice ǫ = 1/i3/4.

Finally, we obtain that for this choice of ǫ, the integral (19) can be written as

(
ρj/i/i

)k+1
[
1 + O

(
1/i5/4

)] [
k! − ν2 (j/i) ρ2

j/i (k + 2)!/i + O
(
1/i2

)]
, (21)

where the two O above are independent of j/i ∈ [0,M ].
We are now ready to find the asymptotic of the integral (16) on the contour

(ρj/i/|ρj/i|)[0, ǫ]. To begin with, we have the following expansion in the neighborhood
of 0 (directly obtained from (9) and (12)) :

∑

w∈W

(−1)l(w) xi0yj0 (w(z)) = −ı
39/2

2
i0j0 (i0 + j0) z3 + O

(
z6
)
. (22)

Equation (22) implies then that the integral (16) on the contour (ρj/i/|ρj/i|)[0, ǫ] equals

31/2

2π

∫

(ρj/i/|ρj/i|)[0,ǫ]

−ı
(
39/2/2

)
i0j0 (i0 + j0) z2 + O

(
z5
)

x (z)i y (z)j
dz.

So, with (19) and (21) applied for k = 2 and k = 5, we obtain that the integral (16) on
the contour (ρj/i/|ρj/i|)[0, ǫ] is equal to

−ı35

4π
i0j0 (i0 + j0)

(
ρj/i/i

)3 [
2 − 24ν2 (j/i) ρ2

j/i/i + O
(
1/i5/4

)]
. (23)

We will see in the paragraph called “Conclusion” that the expansion −(ı35/(4π))i0j0(i0 +
j0)(ρj/i/i)

3[2 + o(1)] is accurate enough in order to find the asymptotic of the Green
functions along the paths of states (i, j) such that j/i → tan(γ) ∈]0,∞[, but not for the
paths such that j/i → 0.

Contribution of the neighborhood of ∞. The part of the contour close to ∞,
(ρj/i/|ρj/i|)[1/ǫ,∞], is related to the part (ρj/i/|ρj/i|)[0, ǫ] by the transformation z 7→ 1/z.

Moreover, it is immediate from (9) that for f = x, f = y, or f =
∑

w∈W (−1)l(w)xi0yj0(w),

f (1/z) = f (z). Therefore, the change of variable z 7→ 1/z immediately entails that the
contribution of the integral (16) near ∞ is the complex conjugate of its contribution near 0.

Contribution of the intermediate part. We first recall a notation of Proposition 4 :
D = {x exp(ıθ), x ≥ 0, 2π/3 ≤ θ ≤ π}. Let us also define Aǫ to be the annular domain
{z ∈ C : ǫ ≤ |z| ≤ 1/ǫ}. According to Picture 2, there exist ηx,ǫ > 0 and ηy,ǫ > 0, such
that for all z ∈ D ∩Aǫ, |x(z)| ≥ 1 + ηx,ǫ and |y(z)| ≥ 1 + ηy,ǫ. In fact, since x′(0) 6= 0 and
y′(0) 6= 0, it is possible to take ηx,ǫ ≥ ηǫ and ηy,ǫ ≥ ηǫ for some η > 0 independent of ǫ
small enough.

Let us now consider the function s(z) =
[∑

w∈W (−1)l(w)xi0yj0(w(z))
]/[

xi0yj0(z)
]
,

and let us show that supz∈D |s(z)| is finite. For this, it is sufficient to prove that s has
no pole in the closed domain D ∪ {∞}. But using (9) and (12), we see that the only
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poles of the numerator of s, as well as the only zeros of the denominator of s, are at
1 and exp(±2ıπ/3). Among these points, only exp(2ıπ/3) belongs to D. But, in s, we
have taken care of dividing by xi0yj0(z), so that s is in fact holomorphic near exp(2ıπ/3).
Moreover, it is easily shown that s is holomorphic at ∞. Finally, we have proved that the
meromorphic function s has no pole in the closed domain D ∪ {∞}, hence s is bounded
in D ∪ {∞}, in other words supz∈D |s(z)| is finite.

The modulus of the contribution of the integral (16) on the intermediate part
(ρj/i/|ρj/i|)]ǫ, 1/ǫ[⊂ D ∩ Aǫ can be bounded from above by

31/2

2π

1

ǫ2

supz∈D |s (z)|

(1 + ηǫ)i−i0(1 + ηǫ)j−j0
. (24)

Note that the presence of the term 1/ǫ2 in (24) is due to : one 1/ǫ appears as an upper
bound of the length of the contour, the other 1/ǫ comes from a upper bound of the modulus
of the term 1/z present in the integrand of (16).

Then we take, as before, ǫ = 1/i3/4, and we use the following straightforward upper
bound, valid for i large enough : 1/(1 + η/i3/4)i ≤ exp(−(η/2)i1/4). We finally obtain
that, for i large enough, (24) is equal to O(i3/2 exp(−(η/2)i1/4)). We will see soon that
this contribution is negligible w.r.t. the sum of the contribution of the integral (16) in the
neighborhoods of 0 and ∞.

Conclusion. We have seen that the contribution of the integral (16) in the neighborhood
of 0 is given by (23), that the contribution of (16) in the neighborhood of ∞ is equal
to the complex conjugate of (23), and that the contribution of the remaining part
is equal to O(i3/2 exp(−(η/2)i1/4)). Moreover, starting from (18) we easily get that
(ρj/i/i)

3 − (ρj/i/i)
3 = ı3−3/2ij(i + j)/(i2 + ij + j2)3 ; we thus obtain that Gi,j equals

i0j0 (i0 + j0)

[
37/2

2π

ij(i + j)

(i2 + ij + j2)3
+ 2ı

36

π

1

i4
(
ν2(j/i)ρj/i

5 − ν2(j/i)ρj/i
5
)

+ O
(
1/i3+5/4

)
]

.

(25)
If γ ∈]0, π/2[ and j/i → tan(γ) then ij(i + j)/(i2 + ij + j2)3 ∼ Cγ/i3 with Cγ > 0 :

Theorem 1 for γ ∈]0, π/2[ is an immediate consequence of (25). In that case, there was in
fact no need to make an expansion with two terms in (23) and in (25) above, one single
term would have been accurate enough.

If γ = 0 and j/i → 0, then ij(i + j)/(i2 + ij + j2)3 ∼ (j/i)/i3 . By using the explicit
expressions of ν2(j/i) and ρj/i, see respectively (17) and (18), we easily obtain that
ν2(j/i)ρj/i

5 − ν2(j/i)ρj/i
5 = O(j/i). So the sum of the two last terms in (25) equals

O((j/i)/i4) + O(1/i3+5/4), which is obviously negligible w.r.t. (j/i)/i3 . Theorem 1 is
therefore also proved in the case γ = 0.

In order to prove Theorem 1 in the case γ = π/2, we would consider (i/j)κj/i rather
than κj/i, and we would use then exactly the same analysis ; we omit the details.

Proof of Corollary 2. It follows from Theorem 1 that the limit of the Green kernel
Gi0,j0

i,j /G1,1
i,j as i, j > 0, i+j → ∞ and j/i → tan(γ) is equal to i0j0(i0 +j0)/2, in particular

it does not depend on γ ∈ [0, π/2].
Moreover, the limits of the ratio of the absorption probabilities hi0,j0

i /h1,1
i and h̃i0,j0

j /h̃1,1
j

(see (3) for their definition) as respectively i and j go to infinity are also equal to
i0j0(i0 + j0)/2 : indeed, starting from

hi0,j0
i = P(i0,j0) [to hit (i, 1)] /3, Gi0,j0

i,1 = P(i0,j0) [to hit (i, 1)]Gi,1
i,1,

we obtain hi0,j0
i /h1,1

i = Gi0,j0
i,1 /G1,1

i,1 . And, likewise, we have h̃i0,j0
j /h̃1,1

j = Gi0,j0
1,j−1/G

1,1
1,j−1.

For these reasons and by using the classical theory of Martin boundary, see e.g. [Dyn69],
we obtain that the Martin boundary of the process is reduced to one point, which proves
Corollary 2.
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4 Absorption probabilities

All the facts and results written in Section 4 will concern the function h, we would obtain
similar ones for h̃ by making exactly the same analysis.

In Sections 3 and 4 of [KR09] we have, by using ideas of [FIM99], made explicit the
generating function of absorption probabilities h for the absorbed random walks having
the same non-zero jump probabilities as here, but with a positive drift, i.e. verifying
p0−1 + p−11 + p10 = 1 and p0−1 < p−11 < p10 instead of (H1). There we have found a
function w (page 15 of [KR09]) such that if we set a(t) = p−11, b(t) = p10t

2−t, c(t) = p0−1t,
d(t) = b(t)2 − 4a(t)c(t) and

µj0 (t) =
1

(2a (t))j0

⌊(j0−1)/2⌋∑

k=0

(
j0

2k + 1

)
d (t)k (−b (t))j0−(2k+1) ,

then h can be written as the sum h1 + h2 + h3, where (below, 0 = x1 < x2 < 1 < x3 < x4

denote the four real roots of d)

h1 (x) =
1

π

∫ x4

x3

ti0µj0 (t)
1

t − x
(−d (t))1/2 dt, (26)

h2 (x) =
1

π

∫ x2

x1

ti0µj0 (t)

[
w′ (t)

w (t) − w (x)
−

1

t − x

]
(−d (t))1/2 dt, (27)

and h3 is a polynomial, that could also be made explicit, see [KR09].
By making precisely the same analysis in the case p0−1 = p−11 = p10 = 1/3, we

obtain that the explicit integral representation of h written in (26)-(27) still holds, with
the function w(t) = t/(t − 1)3.

In order to prove Theorem 3, we will study closely the explicit expression of h obtained
just above, and more precisely we will show that h is holomorphic in the unit disc,
continuable holomorphically through every point of the unit circle except 1 and we will
prove that in the neighborhood of 1,

h (x) = −
33/2

4π
i0j0 (i0 + j0) (x − 1)3 ln (1 − x) [1 + O (x − 1)] + h0 (x) , (28)

where h0 is holomorphic at 1. Then (5), (28) and the well-known Pringsheim’s theorem
(recalled in Lemma 7 below) will immediately entail Theorem 3.

Lemma 7 (Pringsheim’s Theorem). Let l(x) =
∑∞

i=0 lix
i be a function holomorphic in

the unit disc. Suppose in addition that l is continuable holomorphically through every
point of the unit circle except 1, in the neighborhood of which it can be written as
l(x) = (x − 1)q ln(1 − x)[1 + O(x − 1)] + l0(x), where l0 is holomorphic at 1 and q is
some integer. Then li ∼i→∞ −q!/iq+1.

Now we begin the proof of Theorem 3. First, note that as a generating function of
probabilities, it is clear that h is holomorphic in the unit disc. Moreover, from (26)-(27)
and the expression of w given above it is manifest that h is continuable holomorphically
through every point of the unit circle except 1 ; so it remains to prove (28). For this we
will need the following result :

Lemma 8. Let k be a non-negative integer. There exist two functions fk and gk

holomorphic at 1, such that in the neighborhood of 1 we have :

∫ x4

1

(t − 1)k

t − s
dt = − (s − 1)k ln (1 − s)+fk (s) ,

∫ 1

x1

(t − 1)k

t − s
dt = (s − 1)k ln (s − 1)+gk (s) .

Note that the proof of Lemma 8 is straightforward, since the integrals that appear in
its statement are easily explicitly calculated.

10



Now we set ti0µj0(t)(t(4 − t)/9)1/2 =
∑∞

k=0 αk(i0, j0)(t − 1)k. With this notation, (8),
(26) and Lemma 8, we obtain that in the neighborhood of 1, h1 has the following behavior :

h1 (x) = −
ln (1 − x)

π

∞∑

k=0

αk (i0, j0) (x − 1)k+1 + h3 (x) , (29)

where h3 can be written in terms of the fk of Lemma 8 and is thus holomorphic at 1.
As for h2, we first simplify its explicit expression (27). For this we use the partial

fraction expansion of w′(t)/(w(t)−w(x)), namely w′(t)/(w(t)−w(x)) = 1/(t−x)+1/(t−
u+(x)) + 1/(t − u−(x)) − 3/(t − 1), with u±(t) = [−t2 + 3t ± d(t)1/2]/[2t], and we get :

h2 (x) = C +
1

π

∫ 1

x1

ti0µj0 (t)

[
1

t − u+(x)
+

1

t − u−(x)

]
(−d (t))1/2 dt,

where C is some constant. In particular, with (8) and Lemma 8, we obtain that

h2 (x) = −
ln (1 − x)

π

∞∑

k=0

αk (i0, j0)
[
(u+(x) − 1)k+1 + (u−(x) − 1)k+1

]
+ h4 (x) , (30)

where h4 can be written in terms of the gk of Lemma 8 and of C, and is thus holomorphic in
the neighborhood of 1. Note that (u+−1)k+1 +(u−−1)k+1, as any symmetric polynomial
in u+ and u−, is a rational function. Note also that to obtain (30) we have used the fact
that ln(u±(x) − 1) has the same logarithmic singularity as ln(1 − x).

Finally, with (29) and (30), we obtain that h equals

−
ln (1 − x)

π

∞∑

k=0

αk (i0, j0)
[
(x − 1)k+1+(u+(x) − 1)k+1+(u−(x) − 1)k+1

]
+h3 (x)+h4 (x).

But as an immediate consequence of the explicit expression of the αk(i0, j0), it turns
out that

∑2
k=0 αk(i0, j0)[(x − 1)k+1 + (u+(x) − 1)k+1 + (u−(x) − 1)k+1] = ((x −

1)3/x)(33/2/4)i0j0(i0+j0). Moreover, it is straightforward that
∑∞

k=3 αk(i0, j0)[(x−1)k+1+
(u+(x) − 1)k+1 + (u−(x) − 1)k+1] = O(x − 1)4, so that (28) is proved, and therefore also
Theorem 3.
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