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Abstract—Doing Quality Assurance work on Debian, a Linux
distribution with more than 12000 packages, requires an impres-
sive amount of computing power, which is usually not available
for its developers. In this article, we report on the development
of an infrastructure to run quality-assurance tasks on Debian
using the Grid’5000 experimental platform. In particular, we
focus on the problem of rebuilding all packages in Debian from
source. We describe the details of this task, and the infrastructure
we developed, with scalability and robustness in mind. The
results we obtained are then presented, and we discuss possible
improvements and lessons we learnt in the process, which might
be useful in the context of other large-scale experiments.

I. INTRODUCTION

The Debian project builds an operating system – Debian

GNU/Linux, usually simply called ”Debian” – by gathering

a very large amount of free software, and turning them into

packages that can easily be installed by the user. It has been

very successful since its creation in 1993, and serves as the

basis for other Linux distributions, like Ubuntu. Debian is

developed by more than 1000 volunteers, spread across the

world and communicating over the Internet. As such, it is

often regarded as one of the most important volunteer-based

and distributed organizations.

Debian is well renowned for its robustness and its stability,

and is known as a good choice for a server’s operating system.

This level of quality is mainly achieved by a great attention

to details by the developers who maintain its 12000+ source

packages. But some Quality Assurance (QA) tasks require

computing power in addition to manpower, and, since 2006,

we have used distributed computing on a Grid infrastructure

to find defects in Debian.

We worked on two classes of problems. First, we focused on

testing the installation and the removal of packages. Debian

has more than 22000 binary packages (source packages are

built to generate binary packages, which are installed by

users). Each package’s meta-data can express relationships

with other packages (depends on another package, suggests

the installation of another package, conflicts with another

package). While the installability (whether a package can be

installed) of a package can be determined statically [1], other

problems might arise during installation, which are harder

to detect without actually installing the package: a package

could contain the same file as another package without ex-

plicitly conflicting with that other package, a script executed

after the installation of the package might fail because of a

missing dependency, a programming error, or a change in

the behaviour of another package since the developer did

the initial packaging work. A tool, piuparts [2], is available

in Debian to perform tests on the installation, upgrade, and

removal of packages. Running piuparts on all packages is

an embarrassingly parallel problem: one could test each one

of Debian’s 22000 packages in parallel, and the packages

that take the longest do not take more than half an hour.

Since 2006, we ran several test campaigns using piuparts, and

reported about 250 bugs, most of them considered critical.

However, the result of those installation tests is relatively

stable: while bugs might not be easy to find, new bugs are

relatively rare, and running those tests does not need to be

done on a frequent basis.

The second class of problems we looked at is more chal-

lenging. We examined the buildability of packages (whether

packages can be built successfully). Since Debian contains

only free software, the source code for each package is avail-

able, and for various reasons, it is important to ensure that it

is possible, from a source package, to build the corresponding

binary packages. Firstly, during the lifetime of a package, it

might be necessary to change something in the source code –

to correct a mistake, like a bug or a security problem. In that

case, it will be necessary to rebuild the corresponding binary

packages after the change has been made. Secondly, for legal

reasons: the source code for programs covered by the GNU

General Public License must be made available by Debian,

and one could argue that shipping a source code that does not

allow building the corresponding packages would be a license

violation.

Debian packages can be built automatically: all source

packages provide a simple interface, based on a Make-

file named debian/rules, that hides the specifics of

each program’s build system (use of Automake or CMake,

language-specific tools like Python’s distutils or Perl’s Make-

file.pl ): each package can be built by calling one of the

targets of debian/rules, or by using a wrapper like

dpkg-buildpackage, which would use debian/rules

itself. Unfortunately, packages often become impossible to

build, for different reasons. A package needed to build another

package (called a build-dependency) could be removed from

Debian, or modified in a way that makes its reverse depen-

dencies impossible to build: a compiler could become more

strict by rejecting previously-accepted constructs, the API of

a library could change in an incompatible way, the parameters

of another program could be modified.

By rebuilding all packages in Debian, we not only ensure

that Debian is self-contained (that all Debian packages can be
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Fig. 1. Distribution of the size of source packages: most packages are quite
small.

rebuilt from Debian), we also stress-test the whole toolchain –

the packages that are used to build other packages. This second

role is at least as important as the first one: most packages

in Debian lack a test suite, and using them to rebuild other

packages often serves as some kind of automated test suite.

In the remainder of this paper, we report on the execution

of rebuilds of the Debian archive using distributed computing,

by providing feedback on improvements implemented since

[3]. In section II, we give some information on our workload.

In section III, we present Grid’5000, which is the platform

that we used to perform those rebuilds, and the specific

infrastructure we developed to be able to run those tasks

efficiently on Grid’5000. We then present the results we

obtained in section IV and discuss possible optimizations in

section V, before concluding in section VI.

II. WORKLOAD ANALYSIS

The implementation decisions that we will have to make

depend greatly on the workload we would like to process with

our application. In this section, we describe the characteristics

of the Debian source packages set. We use Debian 5.0 ’Lenny’,

released in February 2009, on the i386 architecture, as the

basis for our study. Previous releases of Debian do not differ

significantly from those results, and it can be expected that

future releases will not fundamentally differ either, except by

increasing the number of packages.

Debian lenny is composed of 12123 source packages, of

which about 12000 can be built on the i386 architecture (De-

bian supports 12 different architectures, and some packages

provide functionality that is specific to some architectures, due

to specific hardware, for example). The total size of the source

packages is 16.3 GB (compressed using gzip).

Figure 1 shows the distribution of the size of packages. A lot

of the packages are relatively small (44% smaller than 128 kB,

82% smaller than 1 MB, 99% smaller than 20 MB). How-

ever, a few packages are much larger (openoffice.org

- 346 MB, nexuiz-data - 377 MB). As one can see on
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Fig. 2. Distribution of the space used in the archive by packages: the few
biggest packages account for a very large part of the archive’s size.

figure 2, the few largest packages are responsible for most of

the archive’s size.

Building source packages into binary packages requires

several steps. First, a clean build environment is needed. It

consists of a minimal chroot in which are installed the Debian

packages that are always expected to be present when building.

This includes the GCC compiler, binutils, and Debian-

specific tools. In our setup, this chroot is stored as a tar

archive, taking 73 MB compressed (200 MB uncompressed).

Each source package can also specify other packages that

must be installed before building. For example, a Fortran pro-

gram will require the Fortran compiler to be installed, as this

package is not expected to be installed by default in the build

environment. The installation of those build-dependencies can

take a significant amount of time, as some packages require

the installation of a lot of them: openoffice.org requires

485 additional build-dependencies, and linphone requires

392 of them. Of the 22311 binary packages in Debian lenny,

5723 are build-dependencies of other packages. Also, those

packages have to be fetched from a local mirror before they

are installed.

III. SOFTWARE INFRASTRUCTURE

A. Grid’5000

Grid’5000 [4], [5] is an experimental platform for research

on large-scale parallel and distributed systems. Grid’5000 is

being developed under the INRIA ALADDIN development

action, with support from CNRS, RENATER, and several

universities as well as other funding bodies.

Grid’5000 consists of about 2000 compute nodes, split in

a dozen of clusters, located in 9 locations in France. Those 9

sites are connected with a dedicated 10 Gbps backbone (see

figure 3).

Grid’5000 aims at providing a reconfigurable, controllable,

and monitorable experimental platform. As such, once com-

pute nodes have been reserved, it is possible to deploy one’s



Fig. 3. Grid’5000 sites on top of the Renater 5 network infrastructure.
10 Gbps links connect the various Grid’5000 sites together.

own work environment using Kadeploy [6]. This allows in-

stalling specific software (including kernel) and to get admin-

istrator (root) access on the nodes.

B. Infrastructure for Debian rebuilds

To rebuild all Debian packages efficiently on Grid’5000, we

developed our own software infrastructure (figure 4). We had

the following goals in mind:

• most of the infrastructure should be deployed dynami-

cally during the rebuilds, using Kadeploy;

• it should be robust. The rebuilds are supposed to be run

unattended, and should not fail;

• it should be scalable. As we will see in section IV, we

will be able to run the rebuild on 50 to 100 compute

nodes at the same time.

Our infrastructure is composed of two parts: a static part,

located in the Grenoble Grid’5000 site, and a dynamic part

that can be deployed on any Grid’5000 site, depending on

where resources are available.

The static part of the infrastructure consists of an NFS server

hosting all the necessary data:

• A full Debian mirror internal to Grid’5000;

• The scripts and configuration files, as well as some data

files needed by the compute nodes;

• The logs generated by the builds.

An Apache web server is also configured next to the NFS

server, and serves the Debian mirror over HTTP. This proved

to be more efficient than distributing the packages directly

using NFS, and also provides an opportunity for caching, thus

reducing the load on the NFS server.

Fig. 4. Software infrastructure

The deployment of the dynamic part of the infrastructure is

done in several steps.

1) Nodes are reserved using the OAR Batch Scheduler;

2) The reserved nodes are deployed using Kadeploy. A

standard environment, available on all Grid’5000 clus-

ters, is used. The deployment is managed by Katapult,

to allow the failed nodes to be re-deployed if necessary.

This takes 3 to 5 minutes;

3) From the frontend, a script is executed (over SSH) on

one of the deployed nodes (the master node). Basic

configuration is done on the node (like the mounting

of a shared NFS directory);

4) From the frontend, a script located on the shared NFS

directory is executed on the master node to continue the

configuration of the nodes;

5) From the frontend, a last script located on the shared

NFS directory is executed. This script will control the

rest of the operations;

6) The script running on the master node executes the same

process on the other nodes: it first copies a script to the

nodes, executes it to mount the shared NFS directory,

then run another script to finish the preparation of the

nodes;

7) When all the nodes are properly prepared, the master

node starts scheduling and executing tasks on them. At

the beginning of each build, the chroot is uncompressed

from a tar archive, to ensure that the build environment

is always clean. The build log is stored locally until the

end of the build, and is then copied to the NFS directory.



8) After all the tasks have been executed, all the nodes are

given back to the batch scheduler. It is possible that, at

the end of the rebuild, there are no remaining tasks to

run on some nodes, which could therefore be freed. But

the OAR batch scheduler does not allow releasing some

nodes earlier than others, which can lead to a waste of

resources in this case.

While NFS is not efficient over high-latency networks, it

proved to be an easy way to push configuration files and scripts

to the nodes. Also, we made sure not to use the NFS server

for performance-critical steps during the process.

We also chose to use a standard deployment environment,

instead of a customized one. This allows us to use an envi-

ronment maintained by Grid’5000’s system administrators, and

available everywhere. After deployment, we install the neces-

sary software packages, like sbuild (the Debian tool used

to build packages in a chroot) and approx, a Debian mirror

proxy. Installed on each node, it allows caching locally build-

dependencies that are frequently downloaded, and alleviate the

load on the central Debian mirror.

Finally, our infrastructure has obvious reliability issues: both

the master node and the static part of the infrastructure (NFS

server, Debian mirror) are single points of failure. However,

due to the length of full Debian rebuilds on Grid’5000 (less

than 10 hours in practice), we do not consider this to be an

important issue: if a grave problem occurs during a rebuild,

it is still possible and relatively cheap to restart the whole

rebuild. Regarding compute nodes, the script responsible of

running the tasks on them tries to detect problems that might

arise during a build. When they occur, the failed build is

restarted on another node, and the compute node is removed

from the list of nodes used in the rebuild.

IV. RESULTS

Using our architecture, we rebuilt all the packages in Debian

lenny using 49 nodes of the azur Grid’5000 cluster in Sophia.

Each compute node is a server with 2 Opteron 246 (2.0 GHz)

CPUs, and 2 GB of RAM. It took a total of 9 hours and

20 mins, of which 13 minutes where spent deploying the

infrastructure. The sum of the build time of all packages

(sequential time) is 17 days and 4 hours. The logs generated

by all builds use 2.0 GB on the NFS directory.

Figure 5 shows the distribution of the packages’ build time.

One can see that most packages take a very short time to

build – 62% take less than a minute, while 90% take less than

3 minutes. However, a few packages take a lot more time

(table I). Those packages also are responsible for the majority

of the build time (figure 6): the 5% longest packages account

for 50% of the build time.

Looking at various system counters during the builds, we

could determine that the tasks are both CPU- and I/O-bound.

Memory usage generally stays quite low (but may vary greatly

between packages). Network does not play an important role:

common build-dependencies are cached on the node, and it is

only used for control besides that.
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Fig. 5. Distribution of the build time of packages. Most packages are fast
to build.
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Fig. 6. Share of the build time taken by each package. The few longest
packages account for a large part of the archive’s build time.

TABLE I
PACKAGES THAT TAKE MORE THAN 2 HOURS TO BUILD

Package Time

openoffice.org 7 h 33 m

openjdk-6 5 h 42 m

insighttoolkit 5 h 38 m

gecode 4 h 51 m

latex-cjk-chinese-arphic 4 h 38 m

linux-2.6 4 h 33 m

gcc-4.3 4 h 21 m

gcc-4.2 3 h 38 m

installation-guide 3 h 28 m

qt4-x11 2 h 12 m

V. OPTIMIZATIONS

Two objectives can be targeted when trying to improve the

process:

• Reduce the makespan, possibly increasing the number of



necessary machines. The main reason for this is that, if

possible, we could use a lot more machines on Grid’5000:

it is generally considered less disturbing to use more

nodes during a shorter period of time, than to use less

nodes during a longer period. To reduce the makespan,

the main problem to address is the build time of the

longest packages;

• Reduce the number of machines without increasing the

makespan. This requires making the build process more

efficient for all packages.

A. Scheduling of the tasks: longest-first

There are huge differences between the build time of all

the packages. While most packages are extremely fast to

build, a few packages take a very long time. To minimize

the makespan, it is important to schedule those long packages

early in the rebuild process: if we schedule them too late, we

might reach a point where we all tasks are finished except one,

and we are only waiting for that (long) task to finish.

A simple optimization is therefore, after we have determined

the time taken to build each package, to schedule them starting

with the longest packages.

Using this scheduling, and the results described in section

IV, we can estimate that the optimal scheduling of the rebuild

of all packages would take 7 h 33 m (time taken to build

openoffice.org), using 55 compute nodes (this does not

include the time needed to configure the environment at the

start of the job): with more nodes, some nodes would be idle at

the end of the process while we wait for openoffice.org;

with less nodes, we would still have some tasks to process after

openoffice.org is finished.

B. Adding parallel building support to long packages

The makespan is limited by the time taken by the longest

package – openoffice.org. An interesting way to reduce

its build time is to make use of parallel building (often known

as make -j). This consists in running several steps of the

build process in parallel to make use of several CPUs or to

allow to continue to perform CPU-intensive operations in some

threads while other threads are blocked on I/O [7].

Unfortunately, most Debian packages lack support for build-

ing using several threads. An interface for that was recently

added to Debian’s build system, and we worked together with

some package maintainers to help them implement it. The

results presented in section IV include results obtained with

parallel builds for some packages, like openoffice.org

(where only a small part of the build process can be done in

parallel), linux-2.6 or latex-cjk-chinese-arphic.

C. Reducing the local I/O bottleneck

Building packages is I/O intensive, especially for small

packages where the build time is dominated by the creation

of the chroot, and the installation of build-dependencies. We

investigated ways to alleviate this problem. First, the EXT3 file

system used on the compute nodes issues a sync() every 5

seconds by default, to ensure that all the data and meta-data
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Fig. 7. Distribution of the packages’ build time on tmpfs. Most packages
reduce their build time, but short builds benefit more than long builds.

is written to disk. We modified that parameter by re-mounting

the build partition with the commit=86400 option to delay

syncs. Unfortunately, it seems that sync() system calls are

also issued by some applications during the build process. As

a consequence, we didn’t notice any improvement.

Since the data written during the build is only used tem-

porarily, we investigated another solution: building in memory,

using Linux’s tmpfs file system, which stores its content in

virtual memory (RAM or swap). As our compute nodes have

at least 2 GB of RAM, most packages could be built without

ever swapping some memory pages to disk.

This approach has some drawbacks. Firstly, We needed to

add more swap space to the compute nodes by adding a swap

file, and creating such a file takes a long time during node

preparation. We chose to create a 32 GB swap file, and this

file is not allowed to contain holes – it cannot be a sparse

file. Creating and writing a 32 GB file takes 12 minutes on

our compute nodes – limited by the disk writing speed, since

the file has to be filled with zeroes. It is possible that the new

EXT4 file system will solve this problem by implementing the

fallocate() system call.

Secondly, some packages failed to build on tmpfs, for

various reasons that still need to be investigated. However, this

approach is promising: the build time (when comparing only

packages that built fine with both configurations) was reduced

by 13%. But some packages took more time to build on tmpfs,

as seen on figure 7. Also, it seems that this optimization mainly

benefits packages that are quick to build, while packages that

take a long time to build do not benefit as much.

D. Building several packages concurrently

Since most packages lack support for building using several

parallel threads (”make -j”), another solution is to build

several packages concurrently, on the same compute node:

for example, the same compute node would build 4 different

packages concurrently. This allows to reduce the total number

of compute nodes used for the rebuild, without increasing
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the makespan. One problem with this approach, however, is

that the individual packages take more time to build. While

computing power can be shared equally between tasks, the

concurrent tasks on the same node will be fighting for the

I/O bandwidth. This is not a problem for small packages, but

might be a problem for packages that already take a very long

time to build: slowing down those packages would result in

an increase of the makespan.

We mitigated this issue by setting process priorities based

on the duration of the build: long builds get an higher priority

than short builds.

Figure 8 describes the overall build time (number of

compute nodes used, multiplied by walltime) when running

several concurrent builds on the same compute nodes. Running

one build per compute nodes, 14 days of compute time on

Grid’5000 was used (which could translate into using 42

nodes for 8 hours, for example). Running 4 concurrent builds,

the total time decreases to about 4 days (12 nodes for 8

hours). However, in practice, the slowdown caused by I/O

concurrency is a major problem: even after having added

processes priorities based on the duration of the build, the long

packages still take more time when they are built concurrently

with other packages (figure 9). A solution could be to schedule

long packages alone on a compute nodes, while the shorter

packages would be built concurrency with others. This has

not been implemented yet.

VI. CONCLUSION

With this infrastructure, we performed several full rebuilds

of Debian during the lenny development cycle, and reported

more than 2300 critical bugs on packages that failed to build

from source.

In addition to that, this work was the basis of a small shift in

the Debian development processes: since it was easy to rebuild

the Debian archive with a custom setup, we performed some

builds with custom environments to evaluate the consequences

of proposed changes to build tools. In the same spirit, several

rebuilds were also performed with newer development versions

of base software, like the GCC compiler: rebuilding all

packages in Debian with a beta version of GCC allowed to

find several important regressions that were fixed before the

final GCC release. We think that there are other opportunities

where such environments could be helpful for the free software

community.

This work would not have been possible without the flexi-

bility offered by Grid’5000. This application has very specific

and demanding requirements, like the fact that a special envi-

ronment has to be deployed on the nodes, and that root access

is required for several steps. Despite being ”experimental” in

terms of software used, Grid’5000 proved reliable enough to

fully automate the complex processes needed by this work.
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