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Abstract. We pursue the study of the framework of layerwise com-

putability introduced in a preceding paper and give three applications.
(i) We prove a general version of Birkhoff’s ergodic theorem for random
points, where the transformation and the observable are supposed to
be effectively measurable instead of computable. This result significantly
improves V’yugin and Nandakumar’s ones. (ii) We provide a general
framework for deriving sharper theorems for random points, sensitive to
the speed of convergence. This offers a systematic approach to obtain
results in the spirit of Davie’s ones. (iii) Proving an effective version
of Prokhorov theorem, we positively answer a question recently raised
by Fouché: can random Brownian paths reach any random number? All
this shows that layerwise computability is a powerful framework to study
Martin-Löf randomness, with a wide range of applications.

1 Introduction

Algorithmic randomness emerged as an early achievement of Kolmogorov’s pro-
gram to base probability theory on the theory of computing. Yet a framework
allowing the combination of these two theories is still lacking: for instance, com-
putable analysis is mainly concerned with effective versions of topological no-
tions, and not probabilistic/measure-theoretic ones. For this reason, the study
of algorithmic randomness has not reached its expected range of application:
general probability theory. Let us recall the main contributions of algorithmic
randomness to probability theory developed so far.

Theorems for random points. The main novelty brought by algorithmic ran-
domness is that probabilistic laws can be strengthened in principle, holding at
every random point and not only with probability one. Classical examples can
be found in [1–3] for instance. When proving this kind of result the key hy-
pothesis is the computability of the random variables involved. However, it is
well-known that computability notions are the effective versions of topological
ones (the computable functions are precisely the effectively continuous ones, the
semi-decidable sets are precisely the effectively open sets, and so on). Hence the
computability assumption on random variables is (i) inappropriate in principle,
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as probability theory is grounded on measure theory and not on topology; (ii)
a priori too strong, as in the classical setting only properties as measurability,
integrability are required. This leads to the following:

Problem 1. Theorems for random points should hold for “effectively measur-
able” objects and not only computable ones.

This problem has already been independently investigated in [4,5] where er-
godic theorems for random points are proved for different types of “almost every-
where computable” functions. These works are, however, still far from catching
the effective version of measurable functions. For instance in Birkhoff’s ergodic
theorem, nothing can be said about the mean sojourn time of algorithmically ran-
dom points in fractal sets having effective constructions, as the Smith-Volterra-
Cantor (or fat Cantor) set A ⊆ [0, 1], which is homeomorphic to the Cantor set
and has Lebesgue measure 1

2 .

Information given by the randomness degree. A further contribution of algorith-
mic randomness to probability theory consists in making use of the “randomness
degree” of a random point x to get additional information about the way x satis-
fies a given probabilistic law. For instance in [6], the speed of convergence in the
Strong Law of Large Numbers is computed from the compressibility coefficient,
or deficiency of randomness of each random sequence. This kind of result gives
a much sharper insight into probabilistic phenomena and, we believe, new tools
are needed in order to make this approach systematic and applicable on abstract
spaces:

Problem 2. Having a general framework to get sharper theorems for random
points, using the information given by the randomness degree.

Layerwise computability. In [7], working in the context of computable probability
spaces (to which Martin-Löf randomness has been recently extended, see [8,
9]), effective versions of measure-theoretic notions were examined and another
contribution of algorithmic randomness to probability theory was developed:
the setting of a new framework for computability adapted to the probabilistic
context. This was achieved by making a fundamental use of the existence of a
universal Martin-Löf test to endow the space with what we call the Martin-Löf
layering. In this new framework, which we call layerwise computability, the
layerwise versions of virtually all computability notions can be naturally defined.
The contributions of this setting can be summarized in the following principle,
supported by the main results in [7]:

Correspondence Principle (CP). Under effectivity assumptions, measure-
theoretic notions correspond exactly to layerwise versions of topological ones.

Intuitively, this gives evidence that the layering structure grasps a large part
of the probabilistic phenomena: each probabilistic notion, that by nature inti-
mately depends on the underlying measure µ, can be expressed without referring
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to µ but only to its imprint on the space, captured by the layering. In this pa-
per, elaborating on [7] and developing layerwise computability further, we give
solutions to Problems 1 and 2. The CP is at the core of these solutions, that we
briefly present now.
Solution to Problem 1. We prove general versions of theorems for random
points and effectively measurable random variables, in particular Birkhoff’s er-
godic theorem. This is a significant improvement of [4,5] as it implies in particu-
lar a positive result for the Smith-Volterra-Cantor set. To prove these results we
develop tools allowing to adapt the existent techniques (used in the computable
context) to the layerwise computable context. Then, the results for effectively
measurable objects follow from the CP. This strategy is very general and appli-
cable in a wide range of situations.
Solution to Problem 2. As a further illustration of the CP we prove that
under effectivity assumptions, almost everywhere convergence corresponds to
the layerwise version of uniform convergence. This result gives evidence that the
layering encodes information from which sharper results can be stated, providing
a systematic approach to obtain results in the spirit of [6]. In particular, we use
it to compute the speed of convergence of random points in both the Strong
Law of Large Number and the Ergodic Theorem, in their general versions. The
explicit connection between our framework and [6] is also given.

Our framework also enables us to give a simple answer to a question raised
in [10] for algorithmically random Brownian motion (see Sect. 5.3).

In Sect. 2 we recall the background on computable probability spaces and
Martin-Löf randomness and prove the effective version of a Prokhorov’s result.
In Sect. 3 we set the framework for layerwise computability and state the results
relating it to effective measurability. In Sect. 4 we study the convergence of
random variables from the effective point of view. We finish in Section 5 by
applying all this machinery to obtain the general results announced above, giving
solutions to Problems 1 and 2.

2 Preliminaries

2.1 Computable probability spaces

We work on the well-studied computable metric spaces (see [11]).

Definition 1. A computable metric space is a triple (X, d,S) where:

1. (X, d) is a separable metric space,
2. S = {si : i ∈ IN} is a countable dense subset of X with a fixed numbering,
3. d(si, sj) are uniformly computable real numbers.

S is called the set of ideal points. If x ∈ X and r > 0, the metric ball B(x, r)
is defined as {y ∈ X : d(x, y) < r}. The set B := {B(s, q) : s ∈ S, q ∈ Q, q > 0}
of ideal balls has a canonical numbering B = {Bi : i ∈ IN}. An effectively

open set is an open set U such that there is a r.e. set E ⊆ IN with U =
⋃

i∈E Bi.
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A compact set K is effectively compact if the set {〈i1, . . . , in〉 : K ⊆ Bi1 ∪
. . .∪Bin

} ⊆ IN is r.e. Let K ⊂ X. A set V is effectively open in K if there is
an effective open set U such that V ∩K = U ∩K. A set V is decidable in K if
V and X \V are effectively open in K. A function f : X → Y is computable on

K if the preimages of effectively open sets are effectively open in K, in a uniform
way. A real function f : X → [−∞,+∞] is lower semi-computable if the sets
f−1(qi,+∞) are uniformly effectively open, it is upper semi-computable if −f
is lower semi-computable. Any object that has some effectivity can be naturally
encoded into a (possible more than one) integer, called its Gödel number.

Remark 1. Let K be effectively compact. It is not difficult to see that the com-
plement X \ K is an effective open set, uniformly in K, and that if U is an
effective open set, then K \ U is effectively compact, uniformly in U, K.

Several approaches to the computability of Borel probability measures have
been proposed and happen to give the same notion, which can then be considered
as a robust one.

Definition 2 (from [9,12,13]). Let (X, d,S) be a computable metric space. A
Borel probability measure µ on X is computable if µ(Bi1 ∪ . . .∪Bin

) are lower
semi-computable, uniformly in i1, . . . , in.

A computable probability space is a pair (X, µ) where X is a computable
metric space and µ is a computable Borel probability measure on X.

Algorithmic randomness. Martin-Löf randomness was first defined in [1] on
the space of infinite symbolic sequences. Its generalization to abstract spaces has
been investigated in [8, 9, 14, 15]. We follow the approaches [8, 9] developed on
any computable probability space (X, µ).

Definition 3. A Martin-Löf test (ML-test) V is a sequence of uniformly
effective open sets Vn such that µ(Vn) < 2−n. A point x passes a ML-test V
if x /∈

⋂

n Vn. A point is Martin-Löf random (ML-random) if it passes all
ML-tests. The set of ML-random points is denoted by MLµ.

Theorem 1 (adapted from [1]). Every computable probability space (X, µ)
admits a universal Martin-Löf test, i.e. a ML-test U such that for all x ∈ X, x
is ML-random ⇐⇒ x passes the test U . Moreover, for each ML-test V there
is a constant c (computable from any Gödel number of V ) such that Vn+c ⊆ Un

for all n.

From now and beyond, we fix a particular universal ML-test U . One can
assume w.l.o.g. that Un+1 ⊆ Un. When the underlying space is complete, even
if it is unbounded the finite character of probability measures makes the proba-
bilistic phenomena concentrate in a small region. This is formally expressed by
Prokhorov’s theorem: on a complete separable metric every Borel probability
measure is tight. We prove its effective version:

Theorem 2 (Effective Prokhorov theorem). On a complete computable
metric space, every computable Borel probability measure is effectively tight: the
sets Kn := X \ Un are uniformly effective compact sets and µ(Kn) > 1 − 2−n.
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Effective measurability. The following is an adaptation of [7] to complete
spaces.

Definition 4. A set A is effectively µ-measurable if there are uniformly
effective compact sets Cn and open sets Un such that Cn ⊆ A ⊆ Un and µ(Un \
Cn) < 2−n. A function f : X → Y is effectively µ-measurable if there is
a basis B̂ = {B̂1, B̂2, . . .} of Y effectively equivalent to B such that f−1(B̂i) are
uniformly effectively µ-measurable.

In the original definition the sets Cn are complements of effective open sets.
When the space is complete, requiring Cn to be effectively compact gives the
same notion, using effective tightness (Thm. 2) and Rmk. 1. Any effective open
set whose µ-measure is computable, as the complement of the fat Cantor set for
the Lebesgue measure, is effectively µ-measurable. Conversely, the measure of
any effectively µ-measurable set is computable. Decidable sets and computable
functions are always effectively µ-measurable, whatever the computable measure
µ may be. A set is effectively µ-measurable if and only if so is its indicator
function.

3 Layerwise computability

Now we enter in the main novelty of this article. With effective versions of
measure-theoretic notions at our disposal, we can hope to solve Problem 1. How-
ever the notions developed so far are difficult to handle and rather heavy, see
Def. 4. It was demonstrated in [7] that algorithmic randomness and the universal
test offer an alternative elegant way of handling effective measurability notions.

Let (X, µ) be a complete computable probability space. It comes with a
canonical universal ML-test Un, with Un+1 ⊆ Un. Hence the set of ML-random
points is layered by an increasing sequence of uniformly effective compact sets:
ML =

⋃

n Kn (Thm. 2).

Definition 5 (Martin-Löf Layering). Let (X, µ) be a computable probability
space. We call the sequence (Kn)n∈IN the Martin-Löf layering of the space.

Definition 6 (Layerwise computability notions).

1. A set A ⊆ X is layerwise semi-decidable if for all n, A is effectively open
on Kn, uniformly in n, i.e. there are uniformly effective open sets Un such
that A ∩ Kn = Un ∩ Kn,

2. A set A ⊆ X is layerwise decidable if for all n, A is decidable on Kn,
uniformly in n, i.e. both A and X \ A are layerwise semi-decidable,

3. A function f : (X, µ) → Y is layerwise computable if for all n, f is
computable on Kn, uniformly in n, i.e. f−1(Bi) are uniformly layerwise
semi-decidable (Bi are the canonical ideal open balls).

More generally, every computability (or effective topological) notion has its
layerwise counterpart. For instance, the layerwise counterpart of effective uni-
form convergence (i.e., in the sup norm) of functions will be examined in Sect.
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4. In general, layerwise computability is not stable under composition, simply
because layerwise computable functions may not preserve randomness. This can
be overcome under measure-preservation:

Proposition 1 (from [7]). Let (X, µ) be a computable probability space, T :
X → X a layerwise computable function which preserves µ (i.e. µ ◦ T−1 = µ)
and f : X → Y a layerwise computable function. Then:

1. T preserves ML-randomness. Moreover there is a contant c such that T (Kn) ⊆
Kn+c for all n.

2. f ◦ T is layerwise computable, uniformly in f and T .

3.1 Relation with effective measurability

In [7], we prove the following equivalences:

Theorem 3. Let A ⊆ X be a set and f : X → Y a function.

1. A is effectively µ-measurable ⇐⇒ A is layerwise decidable,
2. f : X → Y is effectively µ-measurable ⇐⇒ f is layerwise computable.

Therefore, under effectivity assumptions measure-theoretical notions are the
layerwise versions of topological ones. Observe that the latter are expressed
without referring to µ but only to the Martin-Löf layering. In other words, the
layering catches the essential part of the probabilistic features. This is the first
illustration of the Correspondence Principle (see Introduction).

3.2 Layerwise tests

We now state the theorem which will allow to solve Problem 1: making theorems
on random points hold under effective measurability assumptions. The surprising
point is that weakening randomness tests to their layerwise versions leave them
close to plain tests and does not spawn higher-order tests. This will enable us to
strengthen many existing results.

Definition 7. A layerwise Martin-Löf test A is a sequence of uniformly lay-
erwise semi-decidable sets An such that µ(An) < 2−n. A layerwise integrable
test is a layerwise lower semi-computable function t : X → [0,+∞] such that
∫

t dµ < ∞.

Theorem 4. Let U be a layerwise semi-decidable set, A a layerwise ML-test
and t a layerwise integrable test.

1. If µ(U) = 1 then MLµ ⊆ U .
2. If x is ML-random, then x /∈

⋂

n An. Moreover, there is a constant c (com-
putable from a Gödel number of the sequence A) such that An+c ∩ Kn = ∅
for all n.

3. If x is ML-random, then t(x) < ∞. Moreover, there is a constant c such that
t < 2n+c on Kn.
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4 Convergence of random variables

In [3] the following result for convergence of random variables on random points
is stated: if computable functions converge almost everywhere in an effective way
then they converge on ML-random points. Here we improve this in several ways:

• using layerwise tests, we weaken the hypothesis: the functions are now as-
sumed to be effectively measurable only, which gives a solution to Problem
1,

• using the layering, we get information about the speed of convergence on
random points, providing a solution to Problem 2,

• under effectivity assumptions, we get a characterization of a probabilistic
notion (namely, almost everywhere convergence) as the layerwise version of
a topological one (namely, uniform convergence), which further illustrate the
Correspondence Principle, beyond Theorem 3.

• we give other results for random points under different types of assumptions
on the convergence of the sequence.

Observe that what follows works on any computable probability space (algo-
rithmic randomness was only developed on the Cantor space when [3] was writ-
ten). Let fi : X → IR be a sequence of random variables and f another random
variable (expected to be the limit of fi). Let Dn(δ) := {x : ∃i ≥ n, |fi − f | > δ}.
It is a standard observation that the sequence fi converge almost everywhere to
f if and only if the measure of the sets Dn(δ) tends to zero, for each δ. This
motivates the following:

Definition 8. Functions fn converge effectively almost everywhere (effec-
tively a.e.) if µ(Dn(δ)) converge to 0, effectively from δ. In other words there
is a computable function n(δ, ε) such that µ(Dn(δ,ε)(δ)) < ε.

As already said, V’yugin [3] proved that if fn are uniformly computable func-
tions that converge effectively a.e. then they converge at each ML-random point.
Actually, the result also holds when the functions fn are uniformly effectively
µ-measurable and we can even go further. Let us first introduce the layerwise
version of effective convergence for the uniform norm:

Definition 9. Functions fi converge layerwise effectively uniformly to f
if for each k, the restrictions of fi to Kk converge to the restriction of f to Kk

for the uniform norm, effectively from k. In other words, there is a computable
function n(δ, k) such that ‖fi − f‖Kk

:= supKk
|fi − f | ≤ δ for all i ≥ n(δ, k).

In the same way that uniform convergence implies pointwise convergence,
such functions converge on each ML random point.

Proposition 2. If fi are uniformly layerwise computable functions that con-
verge layerwise effectively uniformly to f then f is layerwise computable.

As said above, effective a.e. convergence implies layerwise effective uniform
convergence. Actually this is a characterization, which provides another illustra-
tion of the Correspondence Principle:
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Theorem 5. Let fn be uniformly effectively µ-measurable functions. Then fn

converge effectively a.e. if and only if fn converge layerwise effectively uniformly.

At the same time, this result gives evidence that layerwise computability is
a solution to Problems 1 and 2: this convergence for random points holds for
effectively µ-measurable functions and not only computable ones, and the speed
of convergence can be computed from the layer a random point belongs to.

Corollary 1. If fi are uniformly effectively µ-measurable functions that con-
verge effectively a.e. to f , then f is effectively µ-measurable.

The simplicity of this proof shall be very general, as soon as the Correspon-
dence Principle holds: a result about effective measure-theoretical notions can
be split into two parts (i) the layerwise version of the corresponding result for
effective topological (i.e. computability) notions (as Prop. 2) and (ii) the charac-
terizations of effective measure-theoretical notions as layerwise topological ones
(as Thm. 3 and 5).

Non-effective convergence. When the convergence a.e. is not effective we can
still say something concerning random points.

Theorem 6. Let fn, f be uniformly layerwise computable functions, and c some
(not necessarily computable) constant.

– If fn converge a.e. to a constant c then lim inf fn(x) ≤ c ≤ lim sup fn(x) for
all x ∈ ML.

– If fn converge a.e. to a layerwise computable function f , then lim inf fn(x) ≤
f(x) ≤ lim sup fn(x) for all x ∈ ML.

5 Applications

5.1 Ergodic theorems for effectively measurable functions

We now apply the tools developed so far to solve Problem 1 for Poincaré recur-
rence theorem and Birkhoff’s ergodic theorem. The version of the latter theo-
rem for random points has been proved by V’yugin [3] (i) on the Cantor space
X = {0, 1}IN and (ii) for a computable transformation T : X → X and a com-
putable observable f : X → IR. Point (i) is not a real restriction as the proof for
general spaces remains unchanged. However the condition (ii) is an unnatural
and a priori too strong restriction, as explained in the introduction. Moreover,
on general spaces this restriction becomes much more important since the the-
orem cannot be applied to indicators of sets anymore (in connected spaces they
cannot be computable as they are not continuous).

In [4], Birkhoff’s ergodic theorem for random points is extended to include
functions having some discontinuities at computable points. A further step is
given in [5] where the result is proved to hold for the indicator functions of every
(not necessarily constructive) set of continuity (i.e., a set whose boundary has
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measure zero). Yet, nothing can be said about some natural sets having effective
constructions, like the Smith-Volterra-Cantor set (or fat Cantor set) whose
Lebesgue measure is 1

2 but has empty interior, and hence is not a continuity set.

We now give a definite solution by proving the ergodic theorems for effectively
measurable functions. In particular, indicator functions of sets like the fat Cantor
set fall in this class.

Theorem 7 (Poincaré recurrence theorem for random points). Let (X, µ)
be a computable probability space, T : X → X an effectively µ-measurable
measure-preserving map and A a layerwise semi-decidable set with positive mea-
sure. Every ML-random point x ∈ A falls infinitely often in A by iteration of T .
If the system is moreover ergodic, then every ML-random point falls infinitely
often in A by iteration of T .

Theorem 8 (Ergodic theorem for random points). Let (X, µ) be a com-
putable probability space, T : X → X an effectively µ-measurable measure-
preserving map and f ∈ L1(X, µ) be an effectively µ-measurable observable.
Then:

(i) For every ML-random point x, the limit f(x) := limn→∞
1
n

∑n−1
i=0 f ◦ T i(x)

exists.

(ii) If the system is moreover ergodic, then f(x) =
∫

f dµ for every ML-random
x.

5.2 Layerwise computable speed of convergence on random points

In this section we show how the framework developed so far provides a solution
to Problem 2. Let us first recall some results established by Davie [6].

Davie’s results. To state them some background is needed first. On the Can-
tor space, implicitely endowed with the uniform measure λ, the compressibility
coefficient or deficiency of randomness of a sequence ω is defined as dλ(ω) =
supn{n − H(ω1:n)} where H(w) is the Kolmogorov-Chaitin complexity of the
finite word w. A fundamental result from algorithmic randomness and informa-
tion theory is that a sequence is ML-random w.r.t. λ if and only if dλ(ω) is finite.
Davie defines Kc := {ω : dλ(ω) ≤ c} and proves:

Theorem 9 (Davie, 2001). If Ai are uniformly effective open sets such that
∑

i µ(Ai) is a finite computable real number, then there is a computable function
n(c) such that for all ω ∈ Kc and all m > n(c), ω /∈ Am.

Theorem 10 (Davie, 2001). There is a computable function n(c, ε) such that

for all ω ∈ Kc and all n > n(c, ε),
∣

∣

∣

Sn(ω)
n

− 1
2

∣

∣

∣
< ε where Sn(ω) is the number

of ones in the prefix of ω of length n.
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The equivalence between the paradigm of effective measure theory (Martin-
Löf’s approach) and the paradigm of compressibility (Chaitin’s approach) is a
strong non-trivial result, partly based on the technical coding theorem. Davie’s
results follow this line as they relate the compressibility coefficient of a sequence
to the way the sequence satisfies a probability law, and thus their proofs consist
in a finer use of the coding theorem. In our framework, we stay on the side of
effective measure theory. In this way, the relation between the layer a random
point belongs to and the way it satisfy laws is much simpler to derive, as it is
essentially already contained in the existing proofs. This provides a solution to
Problem 2. At the same time, as layerwise computability provides a solution to
Problem 1 too, our results hold for effectively measurable sets/functions.

As an illustration, we first state here the refined version of classical results in
algorithmic randomness due to Solovay. The proofs are straightforward combi-
nations of the usual proofs together with Thm. 4. Note that the first one is the
generalization of Thm. 9 due to Davie.

Proposition 3 (Borel-Cantelli 1). There is a computable function n(c, p)
such that if An are uniformly layerwise semi-decidable sets such that α :=
∑

n µ(An) is finite and computable, then there is a constant c, computable from
a Gödel number of the sequence An and α, such that if x ∈ Kp then x /∈ An for
all n ≥ n(c, p).

We can also get a weaker result when the sum is not computable.

Proposition 4 (Borel-Cantelli 2). Let Ai be uniformly layerwise semi-decidable
sets such that

∑

i µ(Ai) < ∞. There is c, computable from a description of the
sequence Ai, such that every x in Kn falls in the Ai’s at most 2n+c times.

We can now easily prove:

Theorem 11 ((Very) Strong Law of Large Numbers.). Let Xi : (X, µ) →
IR be i.i.d. effectively µ-measurable random variables such that

∫

|Xi|
4 dµ < +∞.

Let Sn := X0 + · · · + Xn−1. Hence, there is a computable function n(c, ε) such

that if x ∈ Kc then for all n > n(c, ε),
∣

∣

∣

Sn(x)
n

−
∫

X0 dµ
∣

∣

∣
< ε.

Effective convergence in Birkhoff’s theorem The convergence of the Birkhoff
averages is not effective in general. In [3], on the Cantor space V’yugin builds
a computable probability measure which is invariant under the shift transfor-
mation, and such that the convergence of the averages of 1[1] is not effective.
This measure is an infinite combination of ergodic measures and it is still an
open question if a computable ergodic measure could be built for which the
convergence is not effective.

However, in [16] it is shown that for a class of ergodic systems, the conver-
gence in Birkhoff theorem is effective. Let us recall that a system is ergodic if
and only if for any two integrable functions f and g, the quantity γn(f, g) :=
∣

∣

1
n

∑

i<n

∫

f ◦ T i.g dµ −
∫

f dµ
∫

g dµ
∣

∣ goes to 0. A system is said to be ln2-

ergodic for (f, g), if there is a constant cf,g > 0 such that γn(f, g) ≤
cf,g

(ln(n))2

for all n ≥ 2.
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Theorem 12 (Ergodic theorem for random points). Let (X, µ) be a com-
putable probability space, T : X → X be an effectively measurable measure-
preserving map and f ∈ L1(X, µ) be an effectively measurable function. If T
is ln2-ergodic for (f, f), then there is a computable function n(c, ε) such that if
x ∈ Kc then for all n > n(c, ε),

∣

∣

1
n

∑

i<n f(x) ◦ T i(x) −
∫

f dµ
∣

∣ < ε.

Relation between Kn and Kn. Let X be the Cantor space endowed with a
computable Borel probability measure µ. The version of the compressibility coef-
ficient or deficiency of randomness adapted to µ is dµ(ω) := supn{− log µ[ω1:n]−
H(ω1:n)}. This function is known to be the logarithm of a universal integrable
µ-test, which means that for every integrable µ-test t there is a constant a such
that log t ≤ a + dµ. On the other hand, every computable probability space
admits a universal integrable test tµ (see [8, 9]). Generalizing Davie, let us de-
fine Kc := {x : tµ(x) ≤ 2c}. As MLµ =

⋃

c Kc, the sequence (Kc)c∈IN can be
used as an alternative layering and underly alternative versions of Def. 6 and
9. Actually, this would lead to the same notions. Indeed, using classical results
from algorithmic randomness and information theory (see [17, 18]), it can be
proved that there is a constant c such that Kn ⊆ Kn+c and Kn ⊆ Kn+2 log n+c

for all n. Hence Kn are also uniformly effective compact sets and all layerwise
computability notions relative to Kn are equivalent to the notions relative to
Kn.

5.3 An application to Brownian motion

The study of Brownian motion from the algorithmic randomness point of view is
carried out in [10,19]. Algorithmically random paths, called complex oscillations
as they are defined in terms of Kolmogorov-Chaitin complexity, are the Martin-
Löf random points of the computable probability space (C([0, 1]), W ), where
C([0, 1]) is the space of continuous functions x : [0, 1] → IR with the uniform norm
and W is the Wiener probability measure. In [19] it is proved that if t ∈ [0, 1] is
computable and x is a complex oscillation then x(t) is not computable. At the
end of [10] the following question is raised: can it be lower semi-computable?

We say that y ∈ IR is λ-ML-random if y = n + z where n ∈ ZZ and z ∈ [0, 1]
is ML-random w.r.t. the Lebesgue measure λ on [0, 1]. As noticed in [10], it is a
corollary of [20] that x(t) is actually λ-ML-random. But then can it be a Chaitin’s
Ω (which are lower semi-computable λ-ML-random reals)? The compactness of
the layers (Thm. 2) enables us to give a positive answer. Indeed, Prop. 1 can be
reinforced using Thm. 2:

Proposition 5. Let (X, µ) and (Y, ν) be computable probability spaces such that
X is complete. Let T : X → Y be a layerwise computable function which maps
µ to ν. Then T (MLµ) = MLν , i.e. T preserves randomness but it is also onto.

Now, given a computable t ∈ (0, 1], the function Tt : C([0, 1]) → IR mapping
x to x(t) is computable. It pushes the Wiener measure W to a gaussian measure
G. As G has bounded density w.r.t. the uniform measure and vice versa, MLG

is exactly the set of λ-ML-random reals. Hence,
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Corollary 2. Let x be a complex oscillation. For each computable t ∈ (0, 1],
x(t) is λ-ML-random. Moreover, given any λ-ML-random y and any non-zero
computable t, there exists a complex oscillation x such that x(t) = y.
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