Applications of Effective Probability Theory to Martin-Löf Randomness

Mathieu Hoyrup¹ and Cristóbal Rojas²

¹ INRIA Nancy
² Institut de Mathématiques de Luminy (FRANCE)

Applications of Effective Probability Theory to Martin-Löf Randomness

Effective probability theory (\in computable analysis)

Computable versions of object from probability/measure theory:

- probability measure,
- measurable set,
- almost sure convergence, etc.

Martin-Löf randomness

An individual notion of randomness:

- 00000000000000000... is not ML-random,
- 1011011011011011011 ... is not ML-random,
- 0101101001000110101... is ML-random.

Applications of Effective Probability Theory to Martin-Löf Randomness

Two main contributions:

- We provide a new framework to study randomness and strengthen existing results,
- We solve an open question about randomness and Brownian motion.

3 About random Brownian motion

We identify reals in [0, 1] with their binary representations.

How to define an individual notion of randomness?

- We expect a random real x to belong to all the sets of measure 1. For instance, a random real should be **normal**.
- But no point is in all sets of measure 1: x is not in $[0,1] \setminus \{x\}$.

Solution (Martin-Löf, 1966)

• A point x is random if it lies in all the **effective** sets of measure 1.

Computability on [0, 1]

A real number x is represented by an infinite stream $q_0, q_1, q_2, ...$ of rational numbers such that $|q_i - x| < 2^{-i}$.

Definition

A function $f : [0,1] \to \mathbb{R}$ is **computable** if there is a program which, on input stream representing $x \in [0,1]$, outputs a stream representing f(x).

Definition

A set $A \subseteq [0,1]$ is **semi-decidable** if there is a program which, on input stream representing $x \in [0,1]$, eventually halts if and only if $x \in A$.

$$\xrightarrow{x}$$
 program \longrightarrow halts iff $x \in A$.

Computability on [0,1]

Theorem (A classical result)

- Every computable function is continuous.
- Every semi-decidable set is open.

A few definitions

Definition (Martin-Löf, 1966)

A Martin-Löf test is a sequence $V_n \subseteq X$ such that

- $\lambda(V_n) < 2^{-n}$,
- V_n are semi-decidable, uniformly in n.

A point x is Martin-Löf random if $x \notin \bigcap_n V_n$ for all tests (V_n) .

Theorem (Martin-Löf, 1966)

There exists a universal test $(U_n)_{n \in \mathbb{N}}$: a point x is ML-random if and only if $x \notin \bigcap_n U_n$.

To convert a classical probability theorems like

P(x) holds for almost every x

into

P(x) holds for every ML-random x,

one has to find a ML-test $(V_n)_{n \in \mathbb{N}}$ such that $\{x : \neg P(x)\} \subseteq \bigcap_n V_n$.

Example: Strong Law of Large Numbers (SLLN)

Theorem (Classical)

Let f_i be i.i.d. bounded measurable functions with mean m. For almost every x,

$$\lim_{n\to\infty}\frac{f_0(x)+\ldots+f_{n-1}(x)}{n}=m$$

Theorem (SLLN for random points)

Let f_i be i.i.d. bounded computable functions with mean m. For every random x,

$$\lim_{n\to\infty}\frac{f_0(x)+\ldots+f_{n-1}(x)}{n}=m.$$

Sketch of the proof.

Let $\delta > 0$ be a rational number and $D_n(\delta) := \left\{ x : \exists k \ge 2^n \delta^{-4}, \left| \frac{f_0(x) + \dots + f_{k-1}(x)}{k} - m \right| > \delta \right\}.$

- if f_i are computable then $D_n(\delta)$ are semi-decidable,
- $\lambda(D_n(\delta)) < 2^{-n}$,
- so $D_n(\delta)$ is a ML-test.

Let's compare:

Theorem (Classical SLLN)

Let f_i be i.i.d. bounded measurable functions with mean m. For almost every x_i ,

$$\lim_{n\to\infty}\frac{f_0(x)+\ldots+f_{n-1}(x)}{n}=m.$$

Theorem (SLLN for random points)

Let f_i be i.i.d. bounded computable functions with mean m. For every random x,

$$\lim_{n\to\infty}\frac{f_0(x)+\ldots+f_{n-1}(x)}{n}=m$$

Every computable function is continuous. What about discontinuous functions?

M. Hoyrup, C. Rojas (INRIA, IML)

In [H. and Rojas, CiE09], we study several effective versions of notions from measure theory:

- Measurable set,
- Measurable function,
- Integrable function

and we introduce the new framework of layerwise computability.

Principle

Computability = Effective topology Layerwise computability = Effective measure theory

M. Hoyrup, C. Rojas (INRIA, IML)

- We are still working on [0,1] with the Lebesgue measure λ .
- Let $(U_n)_{n \in \mathbb{N}}$ be a universal Martin-Löf test, fixed once for all.
- We call the sets $K_n := [0, 1] \setminus U_n$ the Martin-Löf layers. One has:

$$K_n \subseteq K_{n+1}$$

ML = $\bigcup_n K_n$.

Definition

A function $f : [0, 1] \to \mathbb{R}$ is **layerwise computable** if for all *n*, *f* is computable on K_n , uniformly in *n*.

$$\xrightarrow[x \in K_n]{n} \longrightarrow f(x)$$

Definition

A set A is **layerwise semi-decidable** if for all n, A is semi-decidable on K_n , uniformly in n.

$$\xrightarrow[x \in K_n]{n} \rightarrow \text{program} \rightarrow \text{halts iff } x \in A$$

Layerwise computability Example

The fat Cantor set $A \subset [0, 1]$.

	—		—	—		—	—		—	—
	——						——			——
		•						•		
		•						•		
		•						•		
-										

 $\lambda(A) = \frac{1}{2}$

 χ_A is layerwise computable.

Let f_i be i.i.d. bounded layerwise computable functions with mean m.

Reminder.

Let $\delta > 0$ be a rational number and $D_n(\delta) := \left\{ x : \exists k \ge 2^n \delta^{-4}, \left| \frac{f_0(x) + \dots + f_{k-1}(x)}{k} - m \right| > \delta \right\}.$

- if f_i are computable then $D_n(\delta)$ are semi-decidable,
- $\lambda(D_n(\delta)) < 2^{-n}$,
- so $D_n(\delta)$ is a ML-test.

Let f_i be i.i.d. bounded layerwise computable functions with mean m.

Reminder.

Let $\delta > 0$ be a rational number and $D_n(\delta) := \left\{ x : \exists k \ge 2^n \delta^{-4}, \left| \frac{f_0(x) + \dots + f_{k-1}(x)}{k} - m \right| > \delta \right\}.$

- if f_i are layerwise computable then $D_n(\delta)$ are layerwise semi-decidable,
- $\lambda(D_n(\delta)) < 2^{-n}$,
- so $D_n(\delta)$ is a layerwise ML-test.

Definition

A layerwise **ML-test** is a sequence of sets A_n such that:

- A_n is layerwise semi-decidable,
- $\lambda(A_n) < 2^{-n}$.

Remark

The class of layerwise ML-tests is much larger than the class of plain ML-tests. However...

Theorem (H. and Rojas)

Let $(A_n)_{n \in \mathbb{N}}$ be a layerwise ML-test. If x is random then $x \notin \bigcap_n A_n$.

Theorem (SLLN for random points)

n

Let f_i be i.i.d. bounded layerwise computable functions with mean m. For every random x,

$$\lim_{n\to\infty}\frac{f_0(x)+\ldots+f_{n-1}(x)}{n}=m.$$

- C([0,1]): continuous functions $x : [0,1] \rightarrow \mathbb{R}$,
- Wiener measure W on $\mathcal{C}([0,1])$.

Theorem (Classical)

Almost every Brownian path is nowhere differentiable.

Theorem (Algorithmic)

Every Martin-Löf-random Brownian path is nowhere differentiable.

- $x: [0,1] \to \mathbb{R}$ any random path,
- t ∈ (0, 1] any computable real number.

Theorem (Fouché, 2000) x(t) is not computable.

Question

Can x(t) be lower semi-computable?

- $x:[0,1] \to \mathbb{R}$ any random path,
- t ∈ (0, 1] any computable real number.

Theorem

If $f : (X, \mu) \to (Y, \nu)$ is computable and maps μ to ν , then $f(ML_{(X,\mu)}) \subseteq ML_{(Y,\nu)}.$

Corollary

x(t) is random.

- $x: [0,1] \to \mathbb{R}$ any random path,
- t ∈ (0, 1] any computable real number.

Remark

There exist *lower semi-computable* random reals (Chaitin's Ω -numbers).

Theorem (H. and Rojas)

Given any computable $t \in (0,1]$ and any random $y \in \mathbb{R}$, there exists a random path x such that x(t) = y.

In particular, every Ω -number y is reached by a random path at a computable time t.

- $x: [0,1] \to \mathbb{R}$ any random path,
- t ∈ (0, 1] any computable real number.

Theorem (H. and Rojas) If $f : (X, \mu) \to (Y, \nu)$ is computable and maps μ to ν , then $f(ML_{(X,\mu)}) = ML_{(Y,\nu)}.$

Corollary

For every random $y \in \mathbb{R}$ and every computable $t \in (0, 1]$ there is a random path x such that x(t) = y.

Thank you