An Application of Martin-Löf Randomness to Effective Probability Theory

Mathieu Hoyrup¹ and Cristóbal Rojas²

¹ INRIA Nancy
² Institut de Mathématiques de Luminy (FRANCE)

Initial problem

Having effective versions of measure-theoretical notions adapted to Martin-Löf randomness.

Martin-Löf randomness

Short review

 In every (computable) probability space (X, μ) is defined the set of Martin-Löf random points:

 $\begin{aligned} \mathrm{ML}_{\mu} &\subseteq X \\ \mu(\mathrm{ML}_{\mu}) &= 1. \end{aligned}$

Most classical probability theorems like

P(x) holds for almost every x

can be converted into

P(x) holds for every ML-random x.

Martin-Löf randomness

Example: Strong Law of Large Numbers (SLLN)

Theorem (Classical)

Let f_i be i.i.d. bounded **measurable** functions with mean m. For almost every x,

$$\lim_{n\to\infty}\frac{f_0(x)+\ldots+f_{n-1}(x)}{n}=m.$$

Theorem (SLLN for random points)

Let f_i be i.i.d. bounded **computable** functions with mean m. For every random x,

$$\lim_{n\to\infty}\frac{f_0(x)+\ldots+f_{n-1}(x)}{n}=m$$

Every computable function is continuous. What about discontinuous functions?

M. Hoyrup, C. Rojas (INRIA, IML)

Content of the paper

- We review, compare and generalize some effective versions of measure-theoretical notions:
 - Measurable set,
 - Measurable function,
 - Integrable function.
- We introduce the new framework of **layerwise computability**, which unifies effective measure theory and Martin-Löf randomness.

The context

- X is a computable metric space,
- μ is a computable Borel probability measure over X.

Examples

- $(\{0,1\}^{\mathbb{N}}, \mathbb{B}_p)$: Bernoulli process,
- $([0,1],\lambda)$: uniform measure,
- $(\mathcal{K}(\mathbb{R}^n), \mu)$: random Cantor sets,
- $(\mathcal{C}([0,1]), W)$: Brownian motion.

Martin-Löf randomness is defined on such spaces.

Effective measure theory

- First approach: review
- Second approach: review
- Third approach: layerwise computability

Let $\mathcal{A} = \{A_0, A_1, \ldots\}$ be an effective enumeration of the finite unions of basic balls. Members of \mathcal{A} are called **simple sets**.

Definition

A set A is μ -recursive if there is a computable function $\varphi : \mathbb{N} \to \mathbb{N}$ such that for all n,

 $\mu(A \bigtriangleup A_{\varphi(n)}) < 2^{-n}.$

Let $\mathcal{A} = \{A_0, A_1, \ldots\}$ be an effective enumeration of the finite unions of basic balls. Members of \mathcal{A} are called **simple sets**.

Definition

A set A is μ -recursive if there is a computable function $\varphi : \mathbb{N} \to \mathbb{N}$ such that for all n,

 $\mu(A \bigtriangleup A_{\varphi(n)}) < 2^{-n}.$

Another formulation: A is μ -recursive if there is a type-two machine M that, given n, decides membership of A with probability of error $< 2^{-n}$.

Let $\mathcal{A} = \{A_0, A_1, \ldots\}$ be an effective enumeration of the finite unions of basic balls. Members of \mathcal{A} are called **simple sets**.

Definition

A set A is μ -recursive if there is a computable function $\varphi : \mathbb{N} \to \mathbb{N}$ such that for all n,

 $\mu(A \bigtriangleup A_{\varphi(n)}) < 2^{-n}.$

Another formulation: A is μ -recursive if there is a type-two machine M that, given n, decides membership of A with probability of error $< 2^{-n}$.

Definition

A function $f: X \to X'$ is μ -recursive if all the $f^{-1}(A'_i)$ are μ -recursive, uniformly in i.

Can we expect the following?

Theorem (Virtual)

Let f_i be i.i.d. bounded μ -recursive functions with mean m. For every random \times ,

$$\lim_{n\to\infty}\frac{f_0(x)+\ldots+f_{n-1}(x)}{n}=m.$$

Can we expect the following?

Theorem (Virtual)

Let f_i be i.i.d. bounded μ -recursive functions with mean m. For every random \times ,

$$\lim_{n\to\infty}\frac{f_0(x)+\ldots+f_{n-1}(x)}{n}=m.$$

No!

Assuming that f is μ -recursive does not imply anything about its value at a given random point.

Effective measure theory

- First approach: review
- Second approach: review
- Third approach: layerwise computability

Theorem (Classical result)

For every Borel set A and every $\epsilon > 0$ there is an open set U and a closed set F such that

- $F \subseteq A \subseteq U$,
- $\mu(U \setminus F) < \epsilon$.

Theorem (Classical result)

For every Borel set A and every $\epsilon > 0$ there is an open set U and a closed set F such that

- $F \subseteq A \subseteq U$,
- $\mu(U \setminus F) < \epsilon$.

Definition (Edalat)

A set A is **effectively** μ -measurable if there are open sets U_n and closed sets F_n such that:

- U_n, F_n are constructive, uniformly in n,
- $F_n \subseteq A \subseteq U_n$,
- $\mu(U_n \setminus F_n) < 2^{-n}$.

Comparison with the first approach

Theorem (H. and Rojas)

Let A be a Borel set. The following statements are equivalent:

1 A is μ -recursive,

2 A is equivalent to an effectively μ -measurable set.

Comparison with the first approach

Theorem (H. and Rojas)

Let A be a Borel set. The following statements are equivalent:

1 A is μ -recursive,

2 A is equivalent to an effectively μ -measurable set.

Definition

A function $f : X \to X'$ is **effectively** μ -measurable if all the $f^{-1}(A'_i)$ are effectively μ -measurable, uniformly in *i*.

Comparison with the first approach

Theorem (H. and Rojas)

Let A be a Borel set. The following statements are equivalent:

1 A is μ -recursive,

2 A is equivalent to an effectively μ -measurable set.

Definition

A function $f : X \to X'$ is effectively μ -measurable if all the $f^{-1}(A'_i)$ are effectively μ -measurable, uniformly in *i*.

Theorem (H. and Rojas)

Let $f : X \to X'$ be a function. The following statements are equivalent:

- **1** f is μ -recursive,
- **2** f is equivalent to an effectively μ -measurable function.

Relation with Martin-Löf randomness

Theorem (H. and Rojas)

- If A, B are effectively μ -measurable and $\mu(A \triangle B) = 0$, then $A \cap ML_{\mu} = B \cap ML_{\mu}$.
- If f, g are effectively μ-measurable and f = g almost everywhere, then f = g on ML_μ.

Relation with Martin-Löf randomness

Theorem (H. and Rojas)

- If A, B are effectively μ -measurable and $\mu(A \triangle B) = 0$, then $A \cap ML_{\mu} = B \cap ML_{\mu}$.
- If f, g are effectively μ-measurable and f = g almost everywhere, then f = g on ML_μ.

Now we can expect:

Theorem (Virtual)

Let f_i be i.i.d. bounded effectively μ -measurable functions with mean *m*. For every random x,

$$\lim_{n\to\infty}\frac{f_0(x)+\ldots+f_{n-1}(x)}{n}=m.$$

1 Effective measure theory

- First approach: review
- Second approach: review
- Third approach: layerwise computability

Layerwise computability Layering

The existence of a universal Martin-Löf test [Martin-Löf, 1966] induces a canonical decomposition of ML_{μ} :

- $\mathrm{ML}_{\mu} = \bigcup_{n} K_{n}$
- with $K_n \subseteq K_{n+1}$
- and $\mu(K_n) > 1 2^{-n}$.

Theorem (H. and Rojas, ICALP09)

If the space X is complete, then the sets K_n are effectively compact, uniformly in n.

We call the sequence $(K_n)_{n \in \mathbb{N}}$ the **Martin-Löf layering** of the space (X, μ) .

Layerwise computability

Definition

A set A is **layerwise decidable** if it is decidable on each K_n , uniformly in n.

$$\xrightarrow[x \in K_n]{n} \xrightarrow{program} \rightarrow 1 \text{ if } x \in A, 0 \text{ if } x \notin A$$

Definition

A function $f : X \to Y$ is **layerwise computable** if it is computable on each K_n , uniformly in n.

$$\xrightarrow[x \in K_n]{n} \rightarrow f(x)$$

Layerwise computability

Equivalences

Theorem (H. and Rojas)

Let A be a set. The following statements are equivalent:

1 A is effectively μ -measurable,

2 A is layerwise decidable.

Theorem (H. and Rojas)

Let $f : X \to X'$ be a function. The following statements are equivalent:

- **1** f is effectively μ -measurable,
- 2 f is layerwise computable.

Layerwise computability

Equivalences

Theorem (H. and Rojas)

Let A be a set. The following statements are equivalent:

1 A is effectively μ -measurable,

2 *A* is layerwise decidable.

Theorem (H. and Rojas)

Let $f : X \to X'$ be a function. The following statements are equivalent:

- **1** f is effectively μ -measurable,
- **2** *f* is layerwise computable.

Application (ICALP09)

Theorems for random points with weaker hypotheses: functions can be assumed to be **layerwise computable** instead of **computable**.

M. Hoyrup, C. Rojas (INRIA, IML)

Conclusion

Martin-Löf randomness, through the decomposition $ML = \bigcup_n K_n$, provides an alternative way of expressing effective measure theory (ICALP09 and ongoing work)

- Eff. μ -measurable set
- Eff. μ -measurable function
- Eff. μ -a.s. convergence
- $\mu \ll_{\rm eff} \nu$
- $\mu \ll
 u$ and $rac{d\mu}{d
 u} \in L^{\infty}(
 u)$

- Set decidable on each K_n
- Function computable on each K_n
- Eff. uniform convergence on each K_n

•
$$K_n^{\mu} \subseteq K_{\varphi(n)}^{\nu}$$

•
$$K_n^{\mu} \subseteq K_{n+c}^{\nu}$$

Conclusion

Martin-Löf randomness, through the decomposition $ML = \bigcup_n K_n$, provides an alternative way of expressing effective measure theory (ICALP09 and ongoing work)

- Eff. μ -measurable set
- Eff. μ -measurable function
- Eff. μ -a.s. convergence
- $\mu \ll_{\text{eff}} \nu$
- $\mu \ll \nu$ and $\frac{d\mu}{d\nu} \in L^{\infty}(\nu)$

- Set decidable on each K_n
- Function computable on each K_n
- Eff. uniform convergence on each K_n

•
$$K_n^{\mu} \subseteq K_{\varphi(n)}^{\nu}$$

$$K_n^{\mu} \subseteq K_{n+c}^{\nu}$$

Thank you.