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Abstract. In this paper we provide a framework for computable anal-
ysis of measure, probability and integration theories. We work on com-
putable metric spaces with computable Borel probability measures. We
introduce and study the framework of layerwise computability which lies
on Martin-Löf randomness and the existence of a universal randomness
test. We then prove characterizations of effective notions of measura-
bility and integrability in terms of layerwise computability. On the one
hand it gives a simple way of handling effective measure theory, on the
other hand it provides powerful tools to study Martin-Löf randomness,
as illustrated in a sequel paper.

Keywords. Algorithmic randomness, universal test, computable anal-
ysis, effective probability theory, Lebesgue integration, layerwise com-
putability.

1 Introduction

While computability on topological spaces is now well-established (see [1,2] e.g.),
the landscape for computability on measurable spaces and probability spaces is
rather uneven. An effective presentation of measurable spaces is proposed in [3].
Computability on Lp-spaces has been studied in [4–6] for euclidean spaces with
the Lebesgue measure. Computability of measurable sets has been studied, on
the real line with the Lebesgue measure in [7] and on second countable locally
compact Hausdorff spaces with a computable σ-finite measure in [8]. In the
latter article a computability framework for bounded integrable functions is also
introduced, when the measure is finite. Another approach based on probabilistic
computing has been recently developed in [9]. The connection of this with the
previous mentioned works remains to be established.

On the other hand, another effective approach to probability theory has
already been deeply investigated, namely algorithmic randomness, as introduced
by Martin-Löf in [10]. This theory was originally developed on the Cantor space,
i.e. the space of infinite binary sequences, endowed with a computable probability
measure. Since then, the theory has been mainly studied on the Cantor space
from the point of view of recursion theory, focused on the interaction between
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randomness and reducibility degrees. The theory has been recently extended to
more general spaces in [11–13].

In this paper, we propose a general unified framework for the computable
analysis of measure and integration theory, and establish intimate relations with
algorithmic randomness. We first consider two natural ways (more or less already
present in the literature) of giving effective versions of the notions of measurable
set, measurable map and integrable function.

Then we develop a third approach which we call layerwise computability that
is based on the existence of a universal randomness test. This fundamental result
proved by Martin-Löf in his seminal paper is a peculiarity of the effective ap-
proach of mathematics, having no counterpart in the classical world. Making a
systematic use of this has quite unexpected strong consequences: (i) it gives topo-
logical characterizations of effective measurability notions; (ii) measure-theoretic
notions, usually defined almost everywhere, become set-theoretic when restrict-
ing to effective objects; (iii) the practice of these notions is rather light: most
of the basic manipulations on computability notions on topological spaces can
be straightforwardly transposed to effective measurability notions, by the simple
insertion of the term “layerwise”. This language trick may look suspicious, but
in a sense this paper provides the background for this to make sense and being
practiced.

In this way, Martin-Löf randomness and the existence of a universal test find
an application in computable analysis. In [14] we show how this framework in
turn provides powerful tools to the study of algorithmic randomness, extend-
ing Birkhoff’s ergodic theorem for random points from computable functions to
effectively measurable ones in a simple way thanks to layerwise computability.
In [14] we also show that this framework provides a general way of deriving
results in the spirit of [15].

In Sect. 2 we recall the background on computable probability spaces and
define the notion of layering of the space, which will be the cornerstone of our
approach. In Sect. 3 we present two approaches to make measure-theoretical
notions on computable probability space effective. Some definitions are direct
adaptations of preceding works, some others are new (in particular the notions
of effectively measurable maps and effectively integrable functions). In Sect. 4 we
present our main contribution, namely layerwise computability, and state several
characterizations. Being rather long, the proofs are gathered in the appendix.

2 Preliminaries

Computable metric space. Let us first recall some basic results established in
[12,13]. We work on the well-studied computable metric spaces (see [1,2,16,17]).

Definition 1. A computable metric space is a triple (X, d,S) where:

1. (X, d) is a separable metric space,
2. S = {si : i ∈ IN} is a countable dense subset of X with a fixed numbering,
3. d(si, sj) are uniformly computable real numbers.
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S is called the set of ideal points. If x ∈ X and r > 0, the metric ball B(x, r)
is defined as {y ∈ X : d(x, y) < r}. The set B := {B(s, q) : s ∈ S, q ∈ Q, q > 0}
of ideal balls, which is a basis of the topology, has a canonical numbering
B = {Bi : i ∈ IN}. An effective open set is an open set U such that there is a
r.e. set E ⊆ IN with U =

⋃
i∈E Bi. If Bi = B(s, r) we denote by Bi the closed

ball B(s, r) = {x ∈ X : d(x, s) ≤ r}. The complement of Bi is effectively open,
uniformly in i. If X ′ is another computable metric space, a function f : X →
X ′ is computable if the sets f−1(B′i) are effectively open, uniformly in i. Let
IR := IR ∪ {−∞,+∞}. A function f : X → IR is lower (resp. upper) semi-
computable if f−1(qi,+∞] (resp. f−1[−∞, qi)) is effectively open, uniformly in
i (where q0, q1, . . . is a fixed effective enumeration of the set of rational numbers
Q). We remind the reader that there is an effective enumeration (fi)i∈IN of all
the lower semi-computable functions f : X → [0,+∞].

A numbered basis B′ = {B′0, B′1, . . .} of the topology is called effectively
equivalent to B if every B′i ∈ B′ is effectively open uniformly in i, and every
Bi ∈ B is an effective union of elements of B′, uniformly in i.

Computable probability space. In [3] is studied an effective version of mea-
surable spaces. Here, we restrict our attention to metric spaces endowed with
the Borel σ-field (the σ-field generated by the open sets).

Let (X, d,S) be a computable metric space. We first recall what it means
for a Borel probability measure over X to be computable. Several equivalent
approaches can be found in [12,13,18,19] for instance.

Definition 2. A Borel probability measure µ is computable if µ(Bi1∪. . .∪Bin)
are lower semi-computable, uniformly in i1, . . . , in.

In [18,19] it is proved that µ is computable if and only if
∫
fi dµ are lower semi-

computable, uniformly in i (where fi are the lower semi-computable functions).

Proposition 1. Let µ be a computable Borel probability measure. If f : X →
[0,+∞) is upper semi-computable and bounded by M then

∫
f dµ is upper semi-

computable (uniformly in a description of f and M).

Following [13] we introduce:

Definition 3 (from [13]). A computable probability space is a pair (X,µ)
where X is a computable metric space and µ is a computable Borel probability
measure on X.

From now and beyond, we will always work on computable probability spaces.
A ball B(s, r) is said to be a µ-almost decidable ball if r is a computable

positive real number and µ({x : d(s, x) = r}) = 0. The following result has been
independently proved in [9] and [13].

Theorem 1. Let (X,µ) be a computable probability space. There is a basis Bµ =
{Bµ1 , B

µ
2 , . . .} of uniformly µ-almost decidable balls which is effectively equivalent

to the basis B of ideal balls. The measures of their finite unions are then uniformly
computable.
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Algorithmic randomness. Here, (X,µ) is a computable probability space.
Martin-Löf randomness was first defined in [10] on the space of infinite symbolic
sequences. Generalizations to abstract spaces have been investigated in [11–13,
20]. We follow the latter two approaches, developed on computable metric spaces.

Definition 4. A Martin-Löf test (ML-test) is a sequence of uniformly ef-
fective open sets Un such that µ(Un) < 2−n.

A point x passes a ML-test U if x /∈
⋂
n Un. A point is Martin-Löf random

(ML-random) if it passes all ML-tests. We denote the set of ML-random points
by MLµ.

If a set A ⊆ X can be enclosed in a ML-test (Un), i.e. A ⊆
⋂
n Un then we

say that A is an effective µ-null set.
The following fundamental result, proved by Martin-Löf on the Cantor space

with a computable probability measure, can be extended to any computable
probability space using Thm. 1 (almost decidable balls behave in some way as
the cylinders in the Cantor space, as their measures are computable).

Theorem 2 (adapted from [10]). Every computable probability space (X,µ)
admits a universal Martin-Löf test, i.e. a ML-test U such that for all x ∈ X, x
is ML-random ⇐⇒ x passes the test U . Moreover, for each ML-test V there is
a constant c (computable from a description of V ) such that Vn+c ⊆ Un for all
n.

Definition 5. Let (X,µ) be a computable probability space. Let (Un)n∈IN be a
universal ML-test. We call Kn := X \ Un the nth layer of the space and the
sequence (Kn)n∈IN the layering of the space.

One can suppose w.l.o.g. that the universal test is decreasing: Un+1 ⊆ Un.
Hence the set MLµ of ML-random points can be expressed as an increasing
union: MLµ =

⋃
nKn. In [14] we prove that the sets Kn are compact, in an

effective way, which justifies their name.

3 Effective versions of measurability notions

We now consider effective versions of the notions of measurable set, measurable
map, and integrable function.

3.1 The approach up to null sets

This approach is by equivalence classes. As a concequence, the obtained defini-
tions cannot distinguish between objects which coincide up to a null set.
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Measurable sets. This approach to computability of measurable sets was first
proposed by S̃anin [7] on IR with the Lebesgue measure, and generalized by
Edalat [8] to any second countable locally compact Hausdorff spaces with a
computable regular σ-finite measure. We present the adaptation of this approach
to computable probability spaces (which are not necessarily locally compact).

Let (X,µ) be a computable probability space and S the set of Borel subsets
of X. The function dµ : S2 → [0, 1] defined by dµ(A,B) = µ(A∆B) for all Borel
sets A,B is a pseudo-metric. Let [S]µ be the quotient of S by the equivalence
relation A ∼µ B ⇐⇒ dµ(A,B) = 0 and Aµ be the set of finite unions of
µ-almost decidable balls from Bµ with a natural numbering Aµ = {A1, A2, . . .}.
We denote by [A]µ the equivalence class of a Borel set A. The following result
was proved in [21] (Thm. 2.3.2.1) for computable metric spaces.

Proposition 2. ([S]µ, dµ,Aµ) is a computable metric space.

The following definition is then the straightforward adaptation of [7, 8].

Definition 6. A Borel set A is called a µ-recursive set if its equivalence class
[A]µ is a computable point of the computable metric space [S]µ.

In other words, there is a total recursive function ϕ : IN → IN such that
µ(A∆Aϕ(n)) < 2−n for all n. The measure of any µ-recursive set is computable.
Observe that an ideal ball need not be µ-recursive as its measure is in general
only lower semi-computable. On the other hand, µ-almost decidable balls are
always µ-recursive.

Measurable maps. Here Y is a computable metric space. To the notion of µ-
recursive set corresponds a natural effective version of the notion of µ-recursive
map:

Definition 7. A measurable map T : (X,µ)→ Y is called a µ-recursive map
if there exists a basis of balls B̂ = {B̂1, B̂2, . . . } of Y , which is effectively equiva-
lent to the basis of ideal balls B, and such that T−1(B̂i) are uniformly µ-recursive
sets.

Integrable functions. Computability on Lp spaces has been studied in [4–6]
for euclidean spaces with the Lebesgue measure. The L1 case can be easily
generalized to any computable probability space, and a further generalization
including σ-finite measures might be carried out without difficulties.

Let (X,µ) be a computable probability space. Let F be the set of measurable
functions f : X → IR which are integrable. Let Iµ : F ×F → [0,+∞) be defined
by Iµ(f, g) =

∫
|f − g|dµ. Iµ is a metric on the quotient space L1(X,µ) with the

relation f ∼µ g ⇐⇒ Iµ(f, g) = 0. There is a set E = {f0, f1, . . .} of uniformly
computable effectively bounded functions (|fi| < Mi with Mi computable from
i) which is dense in L1(X,µ) (this is a direct consequence of Prop. 2.1 in [12]).
E is called the set of ideal functions.
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Proposition 3. (L1(X,µ), dµ, E) is a computable metric space.

This leads to a first effective notion of integrable function:

Definition 8. A function f : X → IR is µ-recursively integrable if its equiv-
alence class is a computable point of the space L1(X,µ), i.e. f can be effectively
approximated by ideal functions in the L1 norm.

If f : X → IR is integrable, then f is µ-recursively integrable if and only if
so are f+ = max(f, 0) and f− = max(−f, 0).

3.2 The approach up to effective null sets

On a metric space, every Borel probability measure is regular, i.e. for every
Borel set A and every ε > 0 there is a closed set F and an open set U such
that F ⊆ A ⊆ U and µ(U \ F ) < ε (see [22]). It gives an alternative way to
define an effective version of the notion of measurable set. We will see how to
define effectively µ-measurable maps and effectively µ-integrable functions using
the same idea.

Measurable sets. Edalat [8] already used regularity of measures to define
µ-computable sets, a notion that is stronger than µ-recursivity. Let us con-
sider the adaptation of this notion to computable probability spaces (for co-
herence reasons, we use the expression “effective µ-measurability” instead of
“µ-computability”).

Definition 9. A Borel set A is effectively µ-measurable if there are uni-
formly effective open sets Ui, Vi such that X \Vi ⊆ A ⊆ Ui and µ(Ui∩Vi) < 2−i.

This is a generalization of the notion of effective µ-null set (see after Def.
4): a set of measure zero is an effective µ-null set if and only if it is effectively
µ-measurable.

Example 1. The whole space X is effectively µ-measurable. More generally, an
effective open set is effectively µ-measurable if and only if its measure is com-
putable. The Smith-Volterra-Cantor set or fat Cantor set, which is an effec-
tive compact subset of [0, 1] whose Lebesgue measure is 1/2, is effectively λ-
measurable where λ denotes the Lebesgue measure (see SVC(4) in [23]).

Measurable maps. To the notion of effectively µ-measurable set corresponds
a natural effective version of the notion of measurable map:

Definition 10. A measurable map T : (X,µ)→ Y is effectively µ-measurable
if there exists a basis of balls B̂ = {B̂1, B̂2, . . . } of Y , which is effectively equiva-
lent to the basis of ideal balls B, and such that T−1(B̂i) are uniformly effectively
µ-measurable sets.
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Integrable functions. In [8] a notion of µ-computable integrable function is
proposed: such a function can be effectively approximated from above and below
by simple functions. This notion is developed on any second countable locally
compact Hausdorff spaces endowed with a computable finite Borel measure. In
this approach only bounded functions can be handled, as they are dominated by
simple functions, which are bounded by definition. We overcome this problem,
providing at the same time a framework for metric spaces that are not locally
compact, as function spaces.

The following definition is a natural extension of the counterpart of Def. 9
for the characteristic function 1A of an effectively µ-measurable set A.

Definition 11. A function f : X → [0,+∞] is effectively µ-integrable if
there are uniformly lower semi-computable functions gn : X → [0,+∞] and
upper semi-computable functions hn : X → [0,+∞) such that:

1. hn ≤ f ≤ gn,
2.

∫
(gn − hn) dµ < 2−n,

3. hn is bounded by some Mn which is computable from n.

Observe that a set A is effectively µ-measurable if and only if its characteristic
function 1A is effectively µ-integrable.

4 The algorithmic randomness approach: layerwise
computability

4.1 Layerwise computability

We remind the reader that every computable probability space comes with a
Martin-Löf layering (Kn)n∈IN (see Def. 5). In the following definition, B = {Bi :
i ∈ IN} is the basis of ideal balls of Y .

Definition 12. A set A is layerwise semi-decidable if it is semi-decidable on
every Kn, uniformly in n. In other words, A is layerwise semi-decidable if there
are uniformly effective open sets Un such that A ∩Kn = Un ∩Kn for all n. A
set A is layerwise decidable if both A and its complement are layerwise semi-
decidable. A function T : (X,µ)→ Y is layerwise computable if T−1(Bi) are
layerwise semi-decidable, uniformly in i.

In the language of representations, a set A is layerwise semi-decidable (resp.
layerwise decidable) if there is a machine which takes n and a Cauchy represen-
tation of x ∈ Kn as inputs, and eventually halts if and only if x ∈ A (resp. halts
and outputs 1 if x ∈ A, 0 if x /∈ A) (if x /∈ Kn, nothing is assumed about the
behavior of the machine).

Actually, every computability notion on computable metric spaces has in
principle its layerwise version. For instance one can define layerwise lower semi-
computable functions f : X → IR.

Let us state some basic properties of layerwise computable maps, when con-
sidering the push-forward measure ν defined by ν(A) = µ(T−1(A)).
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Proposition 4. Let T : (X,µ)→ Y be a layerwise computable map.

– The push-forward measure ν := µ ◦ T−1 ∈M(Y ) is computable.
– T preserves ML-randomness, i.e. T (MLµ) ⊆ MLν . Moreover, there is a con-

stant c (computable from a description of T ) such that T (Kn) ⊆ K ′n+c for
all n, where (K ′n) is the canonical layering of (Y, ν).

– If f : (Y, ν)→ Z is layerwise computable then so is f ◦ T .
– If A ⊆ Y is layerwise decidable (resp. semi-decidable) then so is T−1(A).

The first point implies that in the particular case when Y = IR, a layerwise
computable function is then a computable random variable as defined in [24]: its
distribution ν over IR is computable. Observe that when ν is the push-forward
of µ, layerwise computability notions interact as the corresponding plain com-
putability ones; however, without this assumption on ν the last three points may
not hold.

As shown by the following proposition, if layerwise computable objects differ
at one ML-random point then they essentially differ, i.e. on a set of positive
measure.

Proposition 5. Let A,B ⊆ X be layerwise decidable sets and T1, T2 : (X,µ)→
Y layerwise computable functions.

– A = B mod 0 if and only if A ∩MLµ = B ∩MLµ.
– T1 = T2 almost everywhere if and only if T1 = T2 on MLµ.

4.2 Characterizations of effective measure-theoretic notions in
terms of layerwise computability

Measurable sets. The notion of effective µ-measurable set is strongly related
to the Martin-Löf approach to randomness. Indeed, if A is a Borel set such that
µ(A) = 0 then A is effectively µ-measurable if and only if it is an effective µ-null
set. If A is effectively µ-measurable, coming with Cn, Un, then

⋃
n Cn and

⋂
n Un

are two particular representatives of [A]µ which coincide with A on MLµ. We
can even go further, as the following result proves.

Theorem 3. Let A be a Borel set. We have:

1. A is µ-recursive ⇐⇒ A is equivalent to an effectively µ-measurable set.
2. A is effectively µ-measurable ⇐⇒ A is layerwise decidable.

The equivalences are uniform. These characterizations enable one to use lay-
erwise computability to simplify proofs: for instance basic operations that pre-
serve decidability of sets, as finite unions or complementation, also preserve lay-
erwise computability in a straightforward way, hence they preserve µ-recursivity
and effective µ-measurability.

Let A be a µ-recursive set: it is equivalent to a layerwise decidable set B.
By Prop. 5 the set A∗ := B ∩MLµ is well-defined and constitutes a canonical
representative of the equivalence class of A under ∼µ. If A is already layerwise
decidable then A∗ = A ∩ MLµ. From this, the operator ∗ is idempotent, it
commutes with finite unions, finite intersections and complements.
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Proposition 6. If A is a layerwise semi-decidable set then

– µ(A) is lower semi-computable,
– µ(A) is computable if and only if A is layerwise decidable.

Measurable maps. We obtain a version of Thm. 3 for measurable maps.

Theorem 4. Assume Y is a complete computable metric space. Let T : (X,µ)→
Y be a measurable map. We have:

1. T is µ-recursive ⇐⇒ T coincides almost everywhere with an effectively
µ-measurable map.

2. T is effectively µ-measurable ⇐⇒ T is layerwise computable.

The equivalences are uniform. Observe that while all other implications di-
rectly derive from Thm.3, the first one is not so easy as we have to carry out the
explicit construction of an effectively µ-measurable function from the equivalence
class of T . These characterizations show that computability, which trivially im-
plies layerwise computability, implies µ-recursivity and effective µ-measurability.

Let T be µ-recursive: there is a layerwise computable function T ′ which is
equivalent to T . Let T ∗ be the restriction of T ′ to MLµ. By Prop. 5 T ∗ is uniquely
defined.

Integrable functions. We know from Thm. 3 that A is effectively µ-measurable
if and only if A is layerwise decidable, which is equivalent to the layerwise com-
putability of 1A. As a result, 1A is effectively µ-integrable if and only if 1A is lay-
erwise computable. The picture is not so simple for unbounded integrable func-
tions: although

∫
f dµ is always computable when f is effectively µ-integrable, it

is only lower semi-computable when f is layerwise computable.

Proposition 7. Let f : X → [0,+∞].

– If f is layerwise lower semi-computable then
∫
f dµ is lower semi-computable

(uniformly in a description of f).
– If f is bounded and layerwise computable then

∫
f dµ is computable (uni-

formly in a description of f and a bound on f).

Hence, we have to add the computability of
∫
f dµ to get a characterization.

Theorem 5. Let f : X → [0,+∞] be a µ-integrable function. We have:

1. f is µ-recursively integrable ⇐⇒ f is equivalent to an effectively µ-integrable
function.

2. f is effectively µ-integrable ⇐⇒ f is layerwise computable and
∫
f dµ is

computable.

The equivalences are uniform, but a description of
∫
f dµ as a computable

real number must be provided.
We now get a rather surprising result, which is a weak version of Prop. 6 for

integrable functions.

Proposition 8. Let f : X → [0,+∞] be a layerwise lower semi-computable
function. If

∫
f dµ is computable then f is layerwise computable.

ha
l-0

04
25

55
6,

 v
er

si
on

 1
 - 

22
 O

ct
 2

00
9



10

References

1. Edalat, A., Heckmann, R.: A computational model for metric spaces. Theor.
Comput. Sci. 193 (1998) 53–73

2. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)
3. Wu, Y., Weihrauch, K.: A computable version of the daniell-stone theorem on

integration and linear functionals. Theor. Comput. Sci. 359(1-3) (2006) 28–42
4. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Perspectives

in Mathematical Logic. Springer, Berlin (1989)
5. Zhang, B.Y., Zhong, N.: Lp-computability. Math. Logic Q. 45 (1999) 449–456
6. Kunkle, D.: Type-2 computability on spaces of integrable functions. Math. Logic

Q. 50(4-5) (2004) 417–430
7. S̃anin, N.: Constructive Real Numbers and Constructive Function Spaces. Vol-

ume 21 of Translations of Mathematical Monographs. American Mathematical
Society, Providence (1968)

8. Edalat, A.: A computable approach to measure and integration theory. In: LICS
’07: Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer
Science, Washington, DC, USA, IEEE Computer Society (2007) 463–472

9. Bosserhoff, V.: Notions of probabilistic computability on represented spaces. Jour-
nal of Universal Computer Science 14(6) (2008) 956–995
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