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Accounting for the effect of local punching at the bar/ 
specimen interface in SHPB experiments 
K. Safa and G. Gary 

Laboratoire de Mecanique des So/ides, CNRS UMR 7649, Ecole Polytechnique, 
91128 Pa/aiseau, France 

Abstract. The object of this work is to provide a displacement correction for the local punching due 
to an axial loading at the end of a bar. For this purpose, an analytical calculation of the dynamic 
3-D indentation of an elastic isotropic semi-infinite bar is carried out. It provides a first-order 
correction for the displacement obtained through the 1-D wave analysis commonly used in SHPB 
processing. This correction applies to the displacements as they are calculated at both ends of a 
specimen sandwiched between the two bars of a SHPB device. It improves the results obtained for 
the dynamic behavior of the specimen, in particular at early instants of loading. 

I. INTRODUCTION 

The SHPB device, called also Kolsky apparatus, is widely used to measure the stress-strain 
behavior of materials at high strain rates of loading. This behavior is derived from the measured 
forces and velocities at the specimen faces. These quantities are obtained through the knowledge 
of the axial strains that are recorded by strain gauges glued on the lateral faces of the input and 
output bars (see formulas (I) underneath). These four quantities (forces and speeds) provide 
redundant measurements allowing for the use of inverse methods to investigate the specimen 
behavior [l]. A particular and simple use of such methods is to compute (using a 1-D transient 
calculation) the initially elastic response of the specimen. This method [2] was proposed for an 
optimized determination of the relative position of the origin of the three waves involved in the 
SHPB. It has been used for years in our laboratory where we have observed that the best value of 
the Young's modulus of the specimen was always smaller (in particular with small diameter 
specimens) than the expected or known value. We have suspected that this systematic error was 
due to an imperfect measurement of the average strain of the specimen. The bar face in contact 
with the specimen (when it has a smaller diameter than the bar) does not remain plane as it is non­
uniformly loaded, i.e. submitted to a local "elastic punching". The corresponding displacement 
field is restricted to the impact zone and is not recorded by the strain gauges located far from the 
bar end. 

We are interested in the evaluation of the non-planar deformation of the loaded surface 
induced at the end of a bar by a central axial load. The elementary 1-D theory of wave 
propagation in bars, and more advanced theories that consider wave dispersion due to lateral 
inertia effects in the bars [3, 4, 5], do not tackle this problem. They rather investigate wave
propagation at large distances from the bar end [6]. As suggested by some authors [7], the 
determination of the local displacement at a bar end is of practical importance for the use of the 
SHPB device. This displacement has been determined through a study described in details in [8]. 
Because the restricted number of permitted pages, only the basis and the general ideas are recalled 
in the present paper. 

Numerical and experimental studies are also carried out. They provide estimations of the 
consequence of the proposed displacement correction on the dynamic response of a specimen. The 
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correction is especially significant at the beginning of the loading where it permits an estimation of 
the Young's modulus of the tested material. 

2. FORMULATION OF THE PROBLEM

2.1 Experiment 

In a typical SHPB device (for compression testing), three waves are involved during the 
experiment: an incident compressive wave E;(a, t) generated by the impact of the striker, a reflected 
(tensile) wave E,(a, t) due to the lower impedance of the specimen (both recorded at gauge A­
abscissa a) of the input bar), and a transmitted compressive wave E1(b, t) recorded at gauge B -
abscissa b) of the output bar). 

By use of wave theory, the waves measured at A and B are obtained at the bar-specimen 
interfaces where they are denoted E,(t), E,(t) and E1(t) [9]. 

The measured forces and velocities are: 

F,(t) = A,E(E;(t) + E,(t)) 
V;(t) = -Co;(E;(t) - E,(t))
at the input interface 

F0(t) = A0EE1(t)
Va(t) = -co,E1(t) 
at the output interface (1) 

Where c0; and c0, are the velocities of the longitudinal waves and Ai and A0 are the cross-sectional 
areas of the input and output bars, respectively. 

In Figure 1, the sample is shown together with the output bar, with a deformed configuration 
of the bar end under a distributed force F(t). The bar end displacement derived from relations (1)
is u(t). The additional displacement p(t) resulting from the local elastic 3-D axisymmetric
deformation of the bar is referred to as the elastic punching. It appears when the diameter of the
specimen is smaller than that of the bar. The determination of the elastic punching p( t) provides a
correction for the displacement u(t) given by SHB formulas, allowing for the measurement of the 
real displacement at the specimen-bar interface: d(t) = u(t) + p(t).

d(t) 

face at t=O 
specimen 

Motion direction 
�> --=�� 

Figure 1. Schematic view of displacements at the output bar end during a SHPB experiment. 

2.2 Theoretical problem 

Following the usual SHPB practice, the friction between the sample and the bar faces is neglected 
and the uniaxial stresses within the specimen are assumed to be uniformly distributed through the 
cross section. 

Based on these two assumptions, the problem becomes that of a semi-infinite bar with traction­
free lateral faces, axi-symmetrically loaded at its end by a uniform distribution of time dependant 
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normal stress. The resulting force F(t) is assumed to be known, as obtained through relations (1) in 
the case of a SHPB testing. 

The problem can be divided in two parts. At early instants, the waves that are produced by the 
loading are the same as they would be in a semi-infinite solid, as long as the reflected waves at the 
free cylindrical surface of the bar are not superposed with them. The solution of the first part is 
then valid for a very short time (if compared with the SHPB test duration). An explicit solution is 
proposed in [8]. A short time later, the radial oscillations near the bar end tend to produce a quasi­
static state in the radial direction while the early axial waves produced by the loading are already 
far from the end of the bar. The solution of the corresponding problem provides a sufficient 
correction for SHPB applications. 

3. SOLUTION OF THE PROBLEM

Following the notations of figure 1, the corrected displacement for any point under the sample is 
defined by the relation d(t) = u(t) + p(t) where p(t) represents the "elastic punching".

A trick used to solve this problem is based on the superposition principle. Two loadings are 
applied simultaneously at the end of the bar. These loadings are chosen so that they result in
opposite forces F(t) and - F(t). (Figure 2). In order to determine the correction p(t), the dynamic
problem is transposed into the static configuration of a self-equilibrated end-loading problem of a 
semi-infinite cylinder. This configuration is able to provide at any time t the mean value of the 
correction p(t) to be added to the measured displacement u(t). 

d(t)=p{t) 

" ' 

a(t)=�(!)/JT(I�// , : 

q(t)=-F(t)/7TR2 /,,,,./

u(t)=O 

Figure 2. Determination of the local displacement p,,,.11 (t) by superposition of states of stress. 

The method and subsequent calculations are detailed in [8]. The exact analytical solution 
obtained is not easy to use for SHPB applications. 

In a second step, it is then searched (as also described in [8]) for an approximate expression in a 
closed-form that will be more convenient in the frame of SHPB practice. This step leads to the 
following formula. 

Where, 

4 1-v F 2 2 ( p = - -- - [2p - (p + 1 )E(p ) - (p -1 )K p )] (2) 
3.n2 µ apa 

a a a a a 

pis the average displacement under the loaded area, a is the radius of the loaded area, 

Pa is the ratio of the radius of the loaded area versus that of the bar (r/a)
Fis the applied (known) force,µ and v are Lame's coefficients 

Functions E(pa), K(pa) are well defined in the literature. They have the following expressions: 

E(pa) = (' V 1 - p� sin2 () d(); K(pa) = ['t d() Jo Jo j 1 - p� sin2 ()
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4. NUMERICAL SIMULATION

A dynamic numerical simulation is performed with Abaqus explicit code, for a cylinder of 
diameter 50 mm submitted to uniform distributions of pressure over diameters of 15 and 25 mm, 
due to the same force magnitude. The evolution of the loading force with time is given in the insert 
(Figure 3). Figure 3 shows the average displacement as calculated with formula (2) and as 
obtained numerically, and finally the ID displacement at large distance from the impact zone as it 
is derived from the standard 1-D wave theory: u(t) = -R} r01F(r)dr. Jr pco J( 

S.f-OS 6 E-05 7.f-05 a. f-OS 9 E-05 1 f-04 Tlm("(SI 
- - Nu:mencal stmulaoon -u{tl {SHPBdisp.) -d{tf (Correcteddisp.) 

O.QlS 01.00 
{U•OO l.E-OS 4 £-05 6 E.t!S 8.f-05 

0020 ; 

_Otso \mm) 
002S 

Figure 3. Numerical, analytical and lD average displacements under disks of pressure of diameters 15 and 
25 mm, applied on a 50 mm diameter cylinder, according to the same time-dependant function. 

This simulation confirms that the closed-form solution is almost equal to the one given by the 
numerical simulation. The test lasts 85 µS and simulates the behavior of a brittle material. We 
purposely have chosen a short loading duration to conveniently visualize the obtained solutions. 
In the present case, it appears that the amplitude of the correction is in the range of the 
displacement itself up to a force equal to 40 kN (250 or 90 M pa for a specimen of 15 mm or 25 mm 
respectively). The case of a 25 mm diameter specimen loaded by the same resulting force indicates 
that the correction for punching becomes rather small in this case (a/R greater than 0.5). The
distance between the corrected displacement d(t) and the 1-D displacement u(t) given by the

SHPB, corresponds to the elastic punching p(t). It vanishes when a= R. 

5. PRACTICAL IMPLEMENTATION OF THE DISPLACEMENT CORRECTION

In Figure 1 a scheme of the shape of one bar face is displayed (for any given time). lf we consider 
the common case of two identical bars and if we denote by 10 the initial length of the specimen, its 
current length becomes 10 - 2[u(t) - p(t)]. The value 10 - 2u(t) given by the SHPB device is 
therefore under-estimating the length of the specimen. Consequently the real strain of the 
specimen is less than that given by the classical SHPB analysis. 

Note that Eq. 2 may be written in the form: 

4 1-v [ J p(t) = -3 2 - 2pa - (p� + l)E(pa) - (p� - l)K(pa) F(t) = KpF(t) n ap� (3) 

Where KP is function of the specimen, elastic properties and diameter of the bar Therefore KP is
constant all along the experiment and from (3) we can deduce that l/Kp is homogeneous to a
spring stiffness. 
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The punching effect is then equivalent to that produced by a spring of stiffness l /Kr (smaller 
than that of the bars) acting between the bars and the specimen. It explains that SHPB processing 
without punching corrections leads to an underestimated value of the Young's modulus of the 
specimen. 

Taking into account punching, the classical formulas (1), remain unchanged concerning the 
forces. The formulas, at the input interface (left) and at the output interface (right), are: 

F;(t) = A;E(E;(t) + E,(t)) 

dF;(t)
V;(t) = -c0;(E;(t) - E,(t)) + � Kp; (4) 

In the common particular case of identical input and output bars and a cylindrical specimen in 
equilibrium, formulas giving the stress are unchanged. 

Formulas giving the nominal strain are corrected in the following manner: 

2Kpa(t)Ss 
Ecorr. = EsHPB + f s 

where Ss and ls are the cross-sectional area and the length of the specimen, respectively. 

6. EXPERIMENT AL ILLUSTRATION AND APPLICATIONS

(5) 

In the processing procedure of SHPB, we use [10], the waves are first transported to the bar ends, 
taking into account the dispersion. The incident wave being known, we assume that the specimen 
has a purely 1-D elastic behavior. Taking the real specimen dimensions (area, length and density), 
a 1-D elastic calculation with a chosen Young's modulus, using the incident wave at bar end as 
input data, builds the reflected and transmitted waves as they would be produced by the elastic 
specimen. This calculation is very fast (it appears instantaneous). The "best" Young's modulus is
then chosen to find the best match in shape between simulated waves and the beginning of
(shifted) real ones. This procedure, called "elastic simulation" is described in [2], and is used for a 
more precise shift for the waves to be processed. This shift correction is always very small (a few 
microseconds) and has no influence on the dispersion effects. 

The important point, for the present paper, is that it allows for the measurement of the 
apparent elastic modulus. When used without taking account of the punching correction, it leads 
to an underestimated value of Young's modulus. 

This is illustrated in Figures 4 to 6 below.
It is observed that the expected real modulus of steel corresponds to waves that are different of 

real ones and that a (two times) lower modulus produces waves in good agreement with the real 
ones. This is due to the punching effect. When a test is processed with a specimen that has the same 
diameter than the bar, there is no punching effect and one recovers the expected modulus. 

Figure 6 shows that the punching correction is worth being done. It particularly applies when 
the specimen diameter is smaller than that of the bars and when the total strain of the test is in a 
reduced range, as it is the case when low strain-rates are required. In the present test the average 
strain-rate was around 100/s. 

7. CONCLUSION

The problem of the local punching of a bar axially loaded at one end has been investigated. When 
a known axial stress is dynamically applied on a circular central part of a bar end, it induces an 
axial displacement which varies along the radius of the bar. This displacement, depending on the 
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Figure 4. Basic recorded waves of a real test. Figure 5. Waves at bar ends.

(Steel bars, diameter 20 mm, striker speed 2.8 m/s, steel specimen: length 6.5 mm, diameter 5.1 mm) 

"incident", "reflected", "transmitted" (thin lines) show real waves at bar ends. 
"tr-siml "  and "ref-siml "  show simulated transmitted and reflected waves produced by a purely elastic 
specimen with Young's modulus= 1.1011 Pa
"tr-sim2" and "ref-sim2" show simulated transmitted and reflected waves produced by a purely elastic 
specimen with Young's modulus= 2. 10" Pa (as expected)

0 
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Figure 6. Nominal stress-strain curve: influence of 
the punching correction. 

mechanical parameters of the bar and on both parameters of the loading (stress and diameter), is 
closely approximated by a simplified formula. 

When applied to SHPB testing, it allows us to calculate the local punching induced by a 
specimen smaller than the bars. Consequently, it improves the measurement of material properties 
at low strains, and in particular provides an evaluation of the Young's modulus of elastic 
materials. 
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