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ON SKOLEMISING ZERMELO’S SET THEORY

ALEXANDRE MIQUEL

Abstract. We give a Skolemised presentation of Zermelo’s set theory (with notations

for comprehension, powerset, etc.) and show that this presentation is conservative w.r.t.

the usual one (where sets are introduced by existential axioms). Conservativity is achieved

by an explicit deskolemisation procedure that transforms terms and formulæ of the ex-

tended language into provably equivalent formulæ of the core language of set theory.

Finally we show that the notation {t(x) | x ∈ u} (‘the set of all t(x) where x ranges

over u’) is also definable in this framework, which proves that the weak form of replacement

which is needed to define syntactic constructs such as (set-theoretic) λ-abstraction and

infinitary Cartesian product does not need Fraenkel and Skolem’s replacement scheme to

be justified.

§1. Introduction. Set theory [2, 3] is traditionally presented with a very
economical first-order language whose atomic formulæ are built from two binary
predicate symbols = and ∈ and whose underlying term algebra is reduced to
variables—the language provides no constant or function symbol.

Although convenient in the perspective of a model-theoretic study, the lan-
guage of set theory is too rudimentary to be used to formalise mathematics
effectively. For a practical use, it is necessary to enrich the language of terms
with notations to represent sets and set formers—and then to justify the conser-
vativity of adding such notations. Justifying the conservativity of new notations
is easy when these notations simply consist of Skolem symbols [5, 4]—typically,
the function symbols { ; }, P( ) and

⋃

that are obtained by Skolemising pair-
ing, powerset and union—since the introduction of Skolem function symbols is
known to be conservative (both in classical and intuitionistic logic). The problem
arises with the notation for comprehension

{x ∈ t | φ}

(where t is a term and φ a formula depending on x) that does not only go
beyond Skolem’s conservativity result, but that also escapes the scope of first-
order theories, where individuals are represented by first-order terms only.

To solve this problem for Zermelo’s set theory [2, 3], Dowek introduces [1]
Skolem symbols { ; }, P( ),

⋃

and ω for pairing, powerset, union and infinity,
as well as, for every formula φx1,... ,xn,x of the core language of set theory whose
free variables occur among the variables x1, . . . , xn and x, a Skolem symbol
fφx1,... ,xn,x

of arity n + 1 such that fφx1,... ,xn,x
(x1, . . . , xn, a) denotes the set of

all x ∈ a such that φx1,... ,xn,x. From these symbols, the notation {x ∈ a | φ}
is then redefined for arbitrary formulæ φ using an encoding technique similar to
λ-lifting. The main advantage of this approach is that despite its higher-order
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2 ALEXANDRE MIQUEL

taste, the language of terms is still first-order since the notation {x ∈ a | φ} is but
a macro which internally refers to a complex term built from a well-chosen set of
Skolem symbols. However, the full justification of this approach ultimately relies
on Skolem’s theorem, whose complex and non constructive proof (based on the
completeness theorem) gives no hint on how the removal of all these notations
(a.k.a. deskolemisation) could be achieved effectively.

In this paper we give a direct justification of these notations for Zermelo’s
set theory by presenting an effective deskolemisation procedure that transforms
every formula of the enriched language into a formula of the core language of set
theory which is provably equivalent. The main ingredient of the translation is
that every term t of the extended language is represented in the core language
of set theory not as a characterising predicate (‘x is t’), but as a predicate
written x ∈∗ t that characterises t as the collection of its elements (following
the spirit or realisability). Using this method we get an elementary and fully
constructive proof of conservativity of the extended theory—written Zsk—far
from the complexity of Skolem’s theorem.

Of course, the primary interest of Zsk is that its term language can express
most standard mathematical notations—for the empty set, binary intersections
and unions, ordered pairs, function application, Cartesian products, etc.—simply
as macros. Surprisingly, it turns out that this term language is even rich enough
to express the syntactic construct

{t(x) | x ∈ u}

which is traditionally justified using Fraenkel-Skolem’s replacement scheme.1

Technically, the definability of this notation comes from the fact that from two
arbitrary terms t(x) and u of Zsk one can effectively extract a syntactic upper
bound B (t(x) | x ∈ u) of the set of all t(x) where x ranges over u, that is, a term
B (t(x) | x ∈ u) such that the formula

∀x (x ∈ u ⇒ t(x) ∈ B (t(x) | x ∈ u))

is provable in the enriched system. Once the notation {t(x) | x ∈ u} has been
defined (as a subset of B (t(x) | x ∈ u) by comprehension), it is easy to derive
notations for well-known binders such as

λx∈A . t(x) ,
⋃

x∈A

B(x) ,
∑

x∈A

B(x) , etc.

which shows that these syntactic constructs—traditionally justified using the
replacement scheme—are actually definable inside Zermelo’s axiomatics.

Outline of the paper. In Section 2 we recall the language of set theory and
the axioms of Zermelo’s set theory. In Section 3 we introduce a formal system
called Zsk (the skolemised presentation of Zermelo’s set theory) and show how
terms and formulæ of Zsk can be transformed into formulæ of set theory that
are provably equivalent. We study the properties of these transformations, from
which we deduce that Zsk is a conservative extension of Z. Finally, we show
in Section 4 how most standard mathematical abbreviations can be defined in

1Formally, this means that all the instances of the replacement scheme that correspond to
functional relations of the form y = t(x) where t(x) is expressed in the term language of Zsk

are provable in Zermelo’s system.
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the term language of Zsk as macros. We also give a syntactic definition of the
notation {t(x) | x ∈ u} without using the replacement scheme.

§2. Zermelo’s set theory.

2.1. The language of set theory. The core language of set theory is the
language of (mono-sorted) first-order predicate logic whose atomic formulæ are
built from two binary relations x = y (equality) and x ∈ y (membership):

Formulæ φ, ψ ::= x = y | x ∈ y | ⊤ | ⊥
| φ ∧ ψ | φ ∨ ψ | φ⇒ ψ
| ∀x φ | ∃x φ

Note that this language provides no constant or function symbol, hence the
term algebra is reduced to variables. In what follows, we shall use the following
standard shorthands

¬φ ≡ φ⇒ ⊥ φ⇔ ψ ≡ (φ⇒ ψ) ∧ (ψ ⇒ φ)

x 6= y ≡ ¬(x = y) x /∈ y ≡ ¬(x ∈ y)

∀x∈ a φ ≡ ∀x (x ∈ a⇒ φ) ∃x∈ a φ ≡ ∃x (x ∈ a ∧ φ)

∃!x φ ≡ ∃x (φ ∧ ∀y (φ{x := y} ⇒ y = x))

x ⊆ y ≡ ∀z (z ∈ x ⇒ z ∈ y)

as well as the macro nat(n) expressing that n is a finite ordinal:

nat(n) ≡ ∀x∈n x /∈ x ∧
∀x∈n ∀y ∈x y ∈ n ∧
∀x∈n ∀y ∈x ∀z ∈ y z ∈ x ∧
∀p (p ⊆ n ∧ ∃x (x ∈ p) ⇒ ∃x∈ p ∀y ∈ p (x ∈ y ∨ x = y)) ∧
∀p (p ⊆ n ∧ ∃x (x ∈ p) ⇒ ∃x∈ p ∀y ∈ p (y ∈ x ∨ y = x))

2.2. Axioms and deduction rules. As a first-order theory with equality,
Zermelo’s set theory comes with equality axioms expressing that equality is an
equivalence relation

(Reflexivity)
(Symmetry)
(Transitivity)

∀x (x = x)
∀x ∀y (x = y ⇒ y = x)
∀x ∀y ∀z (x = y ∧ y = z ⇒ x = z)

and that membership is compatible with equality

(Compat-Left)
(Compat-Right)

∀x ∀x′ ∀y (x = x′ ∧ x ∈ y ⇒ x′ ∈ y)
∀x ∀y ∀y′ (y = y′ ∧ x ∈ y ⇒ x ∈ y′)

From these axioms one easily derives Leibniz principle:

Proposition 1 (Leibniz principle). — For every formula φ of the core lan-
guage of set theory and for all variables x, x1, x2, the formula

x1 = x2 ⇒ (φ{x := x1} ⇔ φ{x := x2})

is intuitionistically derivable from the 5 equality axioms given above.

Proof. By induction on φ using equality axioms for atomic formulæ. ⊣
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The remaining axioms of the theory—a.k.a. Zermelo’s axioms—are the ex-
tensionality axiom, plus five existential axioms that express how sets can be
constructed in the theory:

(Extensionality)
(Pairing)
(Comprehension)
(Powerset)
(Union)
(Infinity)

∀x ∀y (∀z (z ∈ x⇔ z ∈ y) ⇒ x = y)
∀x1 ∀x2 ∃y ∀z (z ∈ y ⇔ z = x1 ∨ z = x2)
∀x1 · · · ∀xn ∀x ∃y ∀z (z ∈ y ⇔ z ∈ x ∧ φ)
∀x ∃y ∀z (z ∈ y ⇔ z ⊆ x)
∀x ∃y ∀z (z ∈ y ⇔ ∃u (u ∈ x ∧ z ∈ u))
∃y ∀z (z ∈ y ⇔ nat(z))

(where comprehension axioms are introduced for every formula φ with free vari-
ables x1, . . . , xn, x, z).

Zermelo’s set theory (Z) is then defined as the classical first-order theory whose
language is the (core) language of set theory and whose axioms are the equality
axioms and Zermelo’s axioms. Intuitionistic Zermelo’s set theory (IZ) is the
theory formed on the same language and the same system of axioms, but in
which all reasoning is done in intuitionistic logic.

In this paper, we assume that proofs are done in natural deduction based on
asymmetric sequents of the form Γ ⊢ φ, where Γ is a finite list of formulæ and φ
a formula. The deduction rules are recalled in Fig. 1; they comprise all the
rules of intuitionistic natural deduction, plus a rule which implements reductio
ad absurdum to recover the full strength of classical logic.

A closed formula φ is a theorem of Z (resp. of IZ) when Γ ⊢ φ is classically
(resp. intuitionistically) derivable for some finite list of axioms Γ.

(Ax.) Γ ⊢ φ
φ ∈ Γ

(⊤, ⊥) Γ ⊢ ⊤
Γ ⊢ ⊥
Γ ⊢ φ

(∧)
Γ ⊢ φ1 Γ ⊢ φ2

Γ ⊢ φ1 ∧ φ2

Γ ⊢ φ1 ∧ φ2

Γ ⊢ φ1

Γ ⊢ φ1 ∧ φ2

Γ ⊢ φ2

(∨)
Γ ⊢ φ1

Γ ⊢ φ1 ∨ φ1

Γ ⊢ φ2

Γ ⊢ φ1 ∨ φ2

Γ ⊢ φ1 ∨ φ2 Γ, φ1 ⊢ ψ Γ, φ2 ⊢ ψ

Γ ⊢ ψ

(⇒)
Γ, φ ⊢ ψ

Γ ⊢ φ⇒ ψ

Γ ⊢ φ⇒ ψ Γ ⊢ φ

Γ ⊢ ψ

(∀)
Γ ⊢ φ

Γ ⊢ ∀xφ
x /∈ FV (Γ)

Γ ⊢ ∀xφ

Γ ⊢ φ{x := t}

(∃)
Γ ⊢ φ{x := t}

Γ ⊢ ∃xφ

Γ ⊢ ∃xφ Γ, φ ⊢ ψ

Γ ⊢ ψ
x /∈ FV (Γ, ψ)

(Abs.)
Γ,¬φ ⊢ ⊥

Γ ⊢ φ

Figure 1. Rules of natural deduction (including reductio ad absurdum)
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§3. A Skolemised presentation of set theory. In this section, we intro-
duce a formal system Zsk that extends Zermelo’s set theory with notations to
express sets defined using Zermelo’s existential axioms, and show that this formal
system is a conservative extension of Zermelo’s set theory (both in intuitionistic
and classical logic).

3.1. The language of Zsk. The language of Zsk is built by enriching the term
language of set theory with notations to express unordered pairs, powersets, sets
defined by comprehension, etc. Formulæ are defined using the same syntactic
constructs as usual, but since terms may now refer to formulæ, both syntactic
categories of terms and formulæ need to be defined by mutual induction:

Terms

Formulæ

t, u ::= x | ω
| {t1; t2} | P(t) |

⋃

t
| {x ∈ t | φ}

φ, ψ ::= t = u | t ∈ u | ⊤ | ⊥
| φ ∧ ψ | φ ∨ ψ | φ⇒ ψ
| ∀x φ | ∃x φ

Free and bound occurrences of variables are defined as expected (both in terms
and formulæ), keeping in mind that the notation {x ∈ t | φ} binds all the free
occurrences of the variable x in the formula φ, but none of the free occurrences
of the variable x in the term t (that refer to the enclosing context). The set of
free variables of a term t (resp. of a formula φ) is written FV (t) (resp. FV (φ)).
In particular we have:

FV (∀xφ) = FV (∃xφ) = FV (φ) \ {x}

FV ({x ∈ t | φ}) = FV (t) ∪ (FV (φ) \ {x})

As usual, terms and formulæ are considered up to α-conversion. Given a for-
mula φ, a variable x and terms t and u, we write:

• t{x := u} the term which is obtained by substituting the term u to every
free occurrence of the variable x in the term t;

• φ{x := u} the formula which is obtained by substituting the term u to
every free occurrence of the variable x in the formula φ.

Both forms of substitutions are defined as expected, taking care of renaming
bound variables to prevent undesirable captures.

3.2. The axioms of Zsk. The axioms of Zsk are the equality axioms and
the axiom of extensionality (the same as before), plus the following Skolemised
versions of Zermelo’s axioms:

(Pairingsk)
(Compr.sk)
(Powersetsk)
(Unionsk)
(Infinitysk)

∀x1 ∀x2 ∀z (z ∈ {x1;x2} ⇔ z = x1 ∨ z = x2)
∀x1 · · · ∀xn ∀x ∀z (z ∈ {y ∈ x | φ} ⇔ z ∈ x ∧ φ{y := z})
∀x ∀z (z ∈ P(x) ⇔ z ⊆ x)
∀x ∀z (z ∈

⋃

x ⇔ ∃y (y ∈ x ∧ z ∈ x))
∀z (z ∈ ω ⇔ nat(z))

(As in the usual presentation of Zermelo’s theory, the comprehension scheme
defines a comprehension axiom for every formula φ whose free variables occur
among the variables x1, . . . , xn, x, z.) The deduction rules are the same as before
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(see Fig. 1), except that sequents are now written using formulæ of the extended

language. The intuitionistic fragment of Zsk is written IZsk.
Notice that compatibility axioms of Zsk only deal with the membership re-

lation, as in Zermelo’s set theory. Indeed, there is no need to add compatibil-
ity axioms for the new notations—even comprehension—since the compatibility
property associated to a given notation can be easily (and intuitionistically)
derived from the corresponding skolemised axiom using extensionality:2

Proposition 2 (Compatibility). — The following formulæ

(1) ∀x ∀x′ ∀y (x = x′ ⇒ {x; y} = {x′; y})
(2) ∀x ∀y ∀y′ (y = y′ ⇒ {x; y} = {x; y′})
(3) ∀x ∀x′ (x = x′ ⇒ P(x) = P(x′))
(4) ∀x ∀x′ (x = x′ ⇒

⋃

x =
⋃

x′)
(5) ∀x1 · · · ∀xn ∀x ∀x′ (x = x′ ⇒ {y ∈ x | φ} = {y ∈ x′ | φ})
(6) ∀x1 · · · ∀xn ∀x (∀y (φ⇔ φ′) ⇒ {y ∈ x | φ} = {y ∈ x | φ′})

(where φ and φ′ are arbitrary formulæ whose free variables occur among the

variables x1, . . . , xn and x) are theorems of IZsk.

Proof. (1) Assume that x = x′. Under this assumption, we can derive:

1. ∀z (z = x⇔ z = x′), using symmetry and transitivity of equality;
2. ∀z (z = x ∨ z = y ⇔ z = x′ ∨ z = y) from 1, by purely logical means;
3. ∀z (z ∈ {x; y} ⇔ z = x ∨ z = y), by (Pairsk);
4. ∀z (z ∈ {x′; y} ⇔ z = x′ ∨ z = y), by (Pairsk);
5. ∀z (z ∈ {x; y} ⇔ z ∈ {x′; y}), from 2, 3 and 4;
6. {x; y} = {x′; y} from 5, by extensionality.

The proofs of (2), (3), (4) and (5) are analogous.

(6) Under the assumption ∀y (φ⇔ φ′), we can derive:

1. ∀z (z ∈ x ∧ φ{y := z} ⇔ z ∈ x ∧ φ′{y := z}), by purely logical means;
2. ∀z (z ∈ {y ∈ x | φ} ⇔ z ∈ x ∧ φ{y := z}), by (Compr.sk);
3. ∀z (z ∈ {y ∈ x | φ′} ⇔ z ∈ x ∧ φ′{y := z}), by (Compr.sk);
4. ∀z (z ∈ {y ∈ x | φ} ⇔ z ∈ {y ∈ x | φ′}), from 1, 2 and 3.
5. {y ∈ x | φ} = {y ∈ x | φ′} from 4, by extensionality.

⊣

From Prop. 2 we can derive Leibniz principle for terms and formulæ:

Proposition 3 (Leibniz principle). — For all terms t and for all formulæ φ
of the language of Zsk, the universal closures of the formulæ

x1 = x2 ⇒ t{x := x1} = t{x := x2}
x1 = x2 ⇒ φ{x := x1} ⇔ φ{x := x2}

are theorems of IZsk.

Proof. By mutual induction on t and φ. ⊣

Of course, (I)Z
sk

is an extension of (I)Z:

2Notice that we need two compatibility properties for the notation for comprehension: one

for the bounding set x (5) and another one for the selection formula φ (6).
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Proposition 4 (Extension). — If (I)Z ⊢ φ, then (I)Z
sk

⊢ φ.

Proof. We only have to check that every axiom of Zermelo’s set theory is a
theorem of IZsk, which is obvious. ⊣

3.3. The deskolemisation procedure. The deskolemisation procedure of
the language Zsk relies on two transformations:

• A transformation on terms, which maps every term t of Zsk equipped with
a variable z to a formula of set theory written z ∈∗ t;

• A transformation on formulæ, which maps every formula φ of Zsk to a
formula of set theory written φ∗.

Both transformations are defined by induction on the sizes of t and φ from the
deskolemisation equations given in Fig. 2. In this figure, we assume that the
bound variable names that are introduced in the r.h.s. of defining equations
are fresh w.r.t. the corresponding l.h.s. (On the other hand, we do not assume
anything about the variable z in the definition of z ∈∗ t, and z is allowed to be
one of the free variables of t.)

z ∈∗ x ≡ z ∈ x
z ∈∗ ω ≡ nat(z)
z ∈∗ {t1; t2} ≡ (z = t1)

∗ ∨ (z = t2)
∗

z ∈∗ P(t) ≡ ∀x (x ∈ z ⇒ x ∈∗ t)
z ∈∗

⋃

t ≡ ∃y (y ∈∗ t ∧ z ∈ y)
z ∈∗ {x ∈ t | φ} ≡ z ∈∗ t ∧ φ∗{x := z}

(t = u)∗ ≡ ∀z (z ∈∗ t⇔ z ∈∗ u)
(t ∈ u)∗ ≡ ∃z ((z = t)∗ ∧ z ∈∗ u)

⊤∗ ≡ ⊤
⊥∗ ≡ ⊥

(φ ∧ ψ)∗ ≡ φ∗ ∧ ψ∗

(φ ∨ ψ)∗ ≡ φ∗ ∨ ψ∗

(φ⇒ ψ)∗ ≡ φ∗ ⇒ ψ∗

(∀x φ)∗ ≡ ∀x φ∗

(∃x φ)∗ ≡ ∃x φ∗

Figure 2. Deskolemisation equations for terms and formulæ of Zsk

Fact 1. — For all terms t and formulæ φ of the language of Zsk, one has
FV (z ∈∗ t) = FV (t) ∪ {z} and FV (φ∗) = FV (φ).

Proof. By mutual induction on the sizes of t and φ. ⊣

Proposition 5 (Translation equivalence). — For all terms t and formulæ φ
of the language of Zsk, one has:

1. IZsk ⊢ (z ∈∗ t) ⇔ z ∈ t

2. IZsk ⊢ φ∗ ⇔ φ

Moreover, if φ is expressed in the core language of set theory, then:

3. IZ ⊢ φ∗ ⇔ φ

Proof. Items 1. and 2. are proved by mutual induction on the sizes of t and φ.
We distinguish cases according to the construction of t and φ:

• t is a variable x. Trivial, since z ∈∗ x is z ∈ x.
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• t is ω. We have to prove (z ∈∗ ω) ⇔ z ∈ ω, that is: nat(z) ⇔ z ∈ ω. This
is obvious from (Infinitysk).

• t is {t1; t2}. We have to prove (z ∈∗ {t1; t2}) ⇔ z ∈ {t1; t2}, that is,
(z = t1)

∗ ∨ (z = t2)
∗ ⇔ z ∈ {t1; t2}, which is also

∀y (y ∈ z ⇔ y ∈∗ t1) ∨ ∀y (y ∈ z ⇔ y ∈∗ t1) ⇔ z ∈ {t1; t2} .

By induction hypothesis, we know that both (y ∈∗ t1) ⇔ y ∈ t1 and
(y ∈∗ t2) ⇔ y ∈ t2 are provable. Hence we have to prove

∀y (y ∈ z ⇔ y ∈ t1) ∨ ∀y (y ∈ z ⇔ y ∈ t1) ⇔ z ∈ {t1; t2} .

But this is obvious from extensionality3 and (Pairingsk).
• t is P(t1) or

⋃

t1. Both cases are analogous to the latter case.
• t is {x ∈ t1 | φ1}. We have to prove

(z ∈∗ {x ∈ t1 | φ1}) ⇔ z ∈ {x ∈ t1 | φ1} ,

that is

z ∈∗ t1 ∧ φ
∗
1{x := z} ⇔ z ∈ {x ∈ t1 | φ1} .

By induction hypothesis, we know that both (z ∈∗ t1) ⇔ z ∈ t1 and
φ∗1 ⇔ φ1 are provable. Hence we have to prove

z ∈ t1 ∧ φ1{x := z} ⇔ z ∈ {x ∈ t1 | φ1} .

But this is obvious from (Compr.sk).
• φ is t = u. We have to prove (t = u)∗ ⇔ t = u, that is

∀z (z ∈∗ t⇔ z ∈∗ u) ⇔ t = u .

By induction hypothesis, we know that both formulæ (z ∈∗ t) ⇔ z ∈ t and
(z ∈∗ u) ⇔ z ∈ u are provable. Hence we have to prove

∀z (z ∈ t⇔ z ∈ u) ⇔ t = u .

But this is obvious from extensionality.
• φ is t ∈ u. We have to prove ∃z ((z = t)∗ ∧ z ∈∗ u) ⇔ t ∈ u, that is

∃z (∀y (y ∈ z ⇔ y ∈∗ t) ∧ z ∈∗ u) ⇔ t ∈ u .

By induction hypothesis, we know that both formulæ (y ∈∗ t) ⇔ y ∈ t and
(z ∈∗ u) ⇔ z ∈ u are provable. Hence we have to prove

∃z (∀y (y ∈ z ⇔ y ∈ t) ∧ z ∈ u) ⇔ t ∈ u .

From extensionality, the formula above is equivalent to

∃z (z = t ∧ z ∈ u) ⇔ t ∈ u ,

which is obvious from the equality axioms.
• φ is ⊤ or ⊥. Trivial, since φ∗ is φ.
• φ is φ1 ∧ φ2. We have to prove (φ1 ∧ φ2)

∗ ⇔ φ1 ∧ φ2, that is the formula
φ∗1 ∧ φ

∗
2 ⇔ φ1 ∧ φ2. But this is obvious from the equivalences φ∗1 ⇔ φ1 and

φ∗2 ⇔ φ2 that come from induction hypothesis.
• φ is φ1 ∨ φ2 or φ1 ⇒ φ2. Both cases are analogous to the latter case.

3By extensionality, we mean the equivalence ∀z (z ∈ a ⇔ z ∈ b) ⇔ a = b, which follows

from (Ext.) (direct implication) and (Compat-Left) (converse implication).
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• φ is ∀xφ1. We have to prove (∀xφ1)
∗ ⇔ ∀xφ1, that is: ∀xφ∗1 ⇔ ∀xφ1. But

this is obvious from the equivalence φ∗1 ⇔ φ1 which comes from induction
hypothesis.

• φ is ∃xφ1. This case is analogous to the latter case.

The last item (3.) is proved separately, by structural induction on φ. The only
interesting cases correspond to atomic formulæ:

• φ is x = y. We have to prove (x = y)∗ ⇔ x = y in IZ, that is:

∀z (z ∈ x⇔ z ∈ y) ⇔ x = y .

This is obvious from extensionality (expressed in IZ).
• φ is x ∈ y. We have to prove (x ∈ y)∗ ⇔ x ∈ y in IZ, that is the formula

∃z ((z = x)∗ ∧ z ∈∗ y) ⇔ x ∈ y, which is also:

∃z (∀w (w ∈ z ⇔ w ∈ x) ∧ z ∈ y) ⇔ x ∈ y .

But this is obvious from the equality axioms and extensionality (in IZ).

The rest of the proof (i.e. treating inductive cases) is then pure routine. ⊣

We now have to prove that the deskolemisation procedure transforms each the-

orem φ of (I)Z
sk

into a theorem φ∗ of (I)Z. For that, we have to check—and this
is the crucial point—that each term of the extended language Zsk corresponds
to a set whose existence can be proved in IZ, that is:

Lemma 1 (Collection). — For every term t of Zsk, one has:

IZ ⊢ ∃x ∀z (z ∈ x⇔ z ∈∗ t) (x and z fresh w.r.t. t)

Proof. By structural induction on the size of t, distinguishing the following
cases:

• t is ω. We have to prove ∃x ∀z (z ∈ x⇔ z ∈∗ ω) in IZ, that is the formula
∃x ∀z (z ∈ x⇔ nat(z)). But this is precisely (Infinity).

• t is {t1; t2}. We have to prove ∃x ∀z (z ∈ x⇔ z ∈∗ {t1; t2}) in IZ, that is,
∃x ∀z (z ∈ x⇔ (z = t1)

∗ ∨ (z = t2)
∗), which is the formula:

∃x ∀z (z ∈ x⇔ ∀y (y ∈ z ⇔ y ∈∗ t1) ∨ ∀y (y ∈ z ⇔ y ∈∗ t2)) .

By induction hypothesis, there are sets x1 and x2 such that

∀y (y ∈ x1 ⇔ y ∈∗ t1) and ∀y (y ∈ x2 ⇔ y ∈∗ t2) .

From these equivalences, the formula we have to prove is equivalent to

∃x ∀z (z ∈ x⇔ ∀y (y ∈ z ⇔ y ∈ x1) ∨ ∀y (y ∈ z ⇔ y ∈ x2)) ,

that is to the formula ∃x ∀z (z ∈ x⇔ z = x1 ∨ z = x2) (by extensionality),
which is an immediate consequence of the pairing axiom.

• t is P(t1) or
⋃

t1. Both cases are analogous to the latter case.
• t is {y ∈ t1 | φ1}. We have to prove ∃x ∀z (z ∈ x ⇔ z ∈∗ {y ∈ t1 | φ1}) in

IZ, that is the formula

∃x ∀z (z ∈ x⇔ z ∈∗ t1 ∧ φ
∗
1{y := z})

By induction hypothesis, there exists a set x1 such that

∀z (z ∈ x1 ⇔ z ∈∗ t1) ,
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so that the formula we have to prove is equivalent to

∃x ∀z (z ∈ x⇔ z ∈ x1 ∧ φ
∗
1{y := z}) ,

which is a consequence of the comprehension scheme.

⊣

Lemma 2. — If φ is an axiom of Zsk, then IZ ⊢ φ∗.

Proof. Let φ be an axiom of Zsk. We distinguish the following cases:

• The formula φ is an equality axiom, or the axiom of extensionality. In this
case, φ is also an axiom of IZ, and since IZ ⊢ φ∗ ⇔ φ (Prop. 5, item 3.) we
get IZ ⊢ φ∗.

• The formula φ is ∀a ∀b ∀x (x ∈ {a; b} ⇔ x = a ∨ x = b) (Pairingsk). In
this case, the formula φ∗ is

φ∗ ≡ ∀a ∀b ∀x (∃z ((z = x)∗ ∧ z ∈∗ {a; b})
⇔ (x = a)∗ ∨ (x = b)∗)

≡ ∀a ∀b ∀x (∃z ((z = x)∗ ∧ ((z = a)∗ ∨ (z = b)∗))
⇔ (x = a)∗ ∨ (x = b)∗)

But φ∗ is a consequence of the equality axioms and (Ext.)
• The formula φ is either the powerset axiom (Powersetsk), the union axiom

(Unionsk), or the infinity axiom (Infinitysk). These cases are analogous
to the latter case.

• The formula φ is an instance of the comprehension scheme (Compr.sk):

φ ≡ ∀x1 · · · ∀xn ∀a ∀y (y ∈ {x ∈ a | ψ} ⇔ y ∈ a ∧ ψ{x := y})

(for some formula ψ of Zsk whose free variables occur among the variables
x1, . . . , xn and x). Then φ∗ is

φ∗ ≡ ∀x1 · · · ∀xn ∀a ∀y (∃z (z = y ∧ z ∈∗ {x ∈ a | ψ})
⇔ (y ∈ a)∗ ∧ (ψ{x := y})∗)

≡ ∀x1 · · · ∀xn ∀a ∀y (∃z (z = y ∧ z ∈ a ∧ ψ∗{x := z})
⇔ ∃z (z = y ∧ z ∈ a) ∧ ψ∗{x := y})

But φ∗ a consequence of the equality axioms and (Ext).

⊣

Remark 1. — It is interesting to notice that the proof (in IZ) of the trans-
lation φ∗ of every axiom φ of Zsk only relies on the equality axioms and the
extensionality axiom of Zermelo’s theory—even when φ is the Skolemised ver-
sion of one of Zermelo’s existential axioms. This paradoxical fact does not mean
that Zermelo’s existential axioms play no role during the translation of proofs

from (I)Z
sk

to (I)Z, but simply that this role is played somewhere else. As we
shall see in the rest of this section, Zermelo’s existential axioms actually come
into action in the translation of the deduction rules involving a substitution, since
the lemma that describes the interaction between the deskolemisation procedure
and substitution relies on them:

Lemma 3 (Substitutivity). — For all formulæ φ and for all terms t and u of
Zsk one has the equivalences:
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1. IZ ⊢ y ∈∗ t{x := u} ⇔ ∃x (y ∈∗ t ∧ ∀z (z ∈ x⇔ z ∈∗ u)) (y 6≡ x)
2. IZ ⊢ (φ{x := u})∗ ⇔ ∃x (φ∗ ∧ ∀z (z ∈ x⇔ z ∈∗ u))

Proof. We first prove by mutual induction on t and φ that:

1. IZ ⊢ ∀x (∀z (z ∈ x⇔ z ∈∗ u) ⇒ ∀z (z ∈∗ t{x := u} ⇔ z ∈∗ t))
2. IZ ⊢ ∀x (∀z (z ∈ x⇔ z ∈∗ u) ⇒ (φ{x := u}∗ ⇔ φ))

We distinguish the following cases:

• t is the variable x. We have to prove

∀x (∀z (z ∈ x⇔ z ∈∗ u) ⇒ ∀z (z ∈∗ x{x := u} ⇔ z ∈∗ x))

that is, the formula

∀x (∀z (z ∈ x⇔ z ∈∗ u) ⇒ ∀z (z ∈∗ u⇔ z ∈ x)) ,

which holds by purely logical means.
• t is a variable y 6≡ x. We have to prove

∀x (∀z (z ∈ x⇔ z ∈∗ u) ⇒ ∀z (z ∈∗ y{x := u} ⇔ z ∈∗ y))

that is, the formula

∀x (∀z (z ∈ x⇔ z ∈∗ u) ⇒ ∀z (z ∈ y ⇔ z ∈ y)) ,

which holds by purely logical means.
• t is ω. We have to prove

∀x (∀z (z ∈ x⇔ z ∈∗ u) ⇒ ∀z (z ∈∗ ω{x := u} ⇔ z ∈∗ ω))

that is, the formula

∀x (∀z (z ∈ x⇔ z ∈∗ u) ⇒ ∀z (z ∈∗ ω ⇔ z ∈∗ ω)) ,

which holds by purely logical means.
• t is {t1; t2}. Assume that x is a set such that ∀z (z ∈ x ⇔ z ∈∗ u) (∗).

Under this assumption, we have to prove

∀z (z ∈∗ {t1; t2}{x := u} ⇔ z ∈∗ {t1; t2}) ,

that is the formula

∀z ((z = t1{x := u})∗ ∨ (z = t2{x := u})∗ ⇔ (z = t1)
∗ ∨ (z = t2)

∗) .

By induction hypothesis, we know that the equivalences

∀y (y ∈∗ t1{x := u} ⇔ y ∈∗ t1)
∀y (y ∈∗ t2{x := u} ⇔ y ∈∗ t2)

are provable under the assumption (∗), from which we easily deduce the
equivalences

(z = t1{x := u})∗ ⇔ (z = t1)
∗

(z = t2{x := u})∗ ⇔ (z = t2)
∗

(using the definition: (z = t)∗ ≡ ∀y (y ∈ z ⇔ y ∈∗ t)). The desired formula
comes from the latter equivalences by purely logical means.

• t is P(t1) or
⋃

t1. These cases are analogous to the latter.
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• t is {y ∈ t1 | φ1}. Assume that x is a set such that ∀z (z ∈ x⇔ z ∈∗ u) (∗).
Under this assumption, we have to prove

∀z (z ∈∗ {y ∈ t1 | φ1}{x := u} ⇔ z ∈∗ {y ∈ t1 | φ1}) ,

that is, the formula

∀z (z ∈∗ t1{x := u} ∧ φ1{x := u}{y := z} ⇔ z ∈∗ t1 ∧ φ1{y := z}) .

By induction hypothesis, we know that the equivalences

∀y (y ∈∗ t1{x := u} ⇔ y ∈∗ t1)
φ1{x := u}∗ ⇔ φ∗

are provable under the assumption (∗), from which we easily deduce the
equivalence

φ1{x := u}{y := z}∗ ⇔ φ∗1{y := z}

(since y does not appear in the assumption (∗)). The desired formula then
comes from these equivalences by purely logical means.

• φ is t1 = t2. Assume that x is a set such that ∀z (z ∈ x ⇔ z ∈∗ u) (∗).
Under this assumption, we have to prove the equivalence

(t1 = t2){x := u}∗ ⇔ (t1 = t2)
∗ ,

that is, the formula

∀z (z ∈∗ t1{x := u} ⇔ z ∈∗ t2{x := u}) ⇔ ∀z (z ∈∗ t1 ⇔ z ∈∗ t2) .

By induction hypothesis, we know that the equivalences

∀z (z ∈∗ t1{x := u} ⇔ z ∈∗ t1)
∀z (z ∈∗ t2{x := u} ⇔ z ∈∗ t2)

are provable under the assumption (∗), so that the desired equivalence
immediately follows by purely logical means.

• φ is t1 ∈ t2. Assume that x is a set such that ∀z (z ∈ x ⇔ z ∈∗ u) (∗).
Under this assumption, we have to prove the equivalence

(t1 ∈ t2){x := u}∗ ⇔ (t1 ∈ t2)
∗ ,

that is, the formula

∃y ((y = t1{x := u})∗ ∧ y ∈∗ t2{x := u}) ⇔ ∃y ((y = t1)
∗ ∧ y ∈∗ t2) ,

which is also the formula

∃y (∀z (z ∈ y ⇔ z ∈∗ t1{x := u}) ∧ y ∈∗ t2{x := u})
⇔ ∃y (∀z (z ∈ y ⇔ z ∈∗ t1) ∧ y ∈∗ t2) ,

By induction hypothesis, we know that the equivalences

∀z (z ∈∗ t1{x := u} ⇔ z ∈∗ t1)
∀y (y ∈∗ t2{x := u} ⇔ y ∈∗ t2)

are provable under the assumption (∗), so that the desired equivalence
immediately follows by purely logical means.

• φ is ⊤ or ⊥. Obvious.
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• φ is φ1 ∧ φ2. Assume that x is a set such that ∀z (z ∈ x ⇔ z ∈∗ u) (∗).
Under this assumption, we have to prove the equivalence

(φ1 ∧ φ2){x := u}∗ ⇔ (φ1 ∧ φ2)
∗ ,

that is, the formula

φ1{x := u}∗ ∧ φ2{x := u}∗ ⇔ φ∗1 ∧ φ
∗
2 .

By induction hypothesis, we know that the equivalences

φ1{x := u}∗ ⇔ φ∗1 and φ2{x := u}∗ ⇔ φ∗2

are provable under the assumption (∗), so that the desired equivalence
immediately follows by purely logical means.

• φ is φ1 ∨ φ2 or φ1 ⇒ φ2. These cases are analogous to the latter case.
• φ is ∀y φ1. Assume that x is a set such that ∀z (z ∈ x ⇔ z ∈∗ u) (∗).

Under this assumption, we have to prove the equivalence

(∀y φ1){x := u}∗ ⇔ (∀y φ1)
∗ ,

that is, the formula

∀y φ1{x := u}∗ ⇔ ∀y φ∗1 .

By induction hypothesis, we know that the equivalence

φ1{x := u}∗ ⇔ φ∗1

is provable under the assumption (∗) (which does not refer to y), so that
the desired equivalence immediately follows by purely logical means.

• φ is ∃y φ1. This case is analogous to the latter case.

We established that for each term t and each formula φ the formulæ

∀x (∀z (z ∈ x⇔ z ∈∗ u) ⇒ ∀z (z ∈∗ t{x := u} ⇔ z ∈∗ t))
∀x (∀z (z ∈ x⇔ z ∈∗ u) ⇒ (φ{x := u}∗ ⇔ φ))

are provable in IZ, from which the equivalences

y ∈∗ t{x := u} ⇔ ∃x (y ∈∗ t ∧ ∀z (z ∈ x⇔ z ∈∗ u))
(φ{x := u})∗ ⇔ ∃x (φ∗ ∧ ∀z (z ∈ x⇔ z ∈∗ u))

immediately follow by Lemma 1. ⊣

Lemma 4 (Deskolemisation of a derivation). — Let A be a formula and Γ a
list of formulæ both expressed in the language of Zsk. If the sequent Γ ⊢ A is
classically (resp. intuitionistically) derivable, then there exists a list ∆ of axioms
of Zermelo’s set theory such that the sequent ∆,Γ∗ ⊢ A∗ is classically (resp.
intuitionistically) derivable.

Proof. By induction of the derivation π of Γ ⊢ A. The only interesting cases
correspond to the rules of inference that involve a substitution, that is, the rules
∃-intro and ∀-elim.

• (∃-intro) The classical (resp. intuitionistic) derivation π has the form

π =











.... π1

Γ ⊢ φ{x := t}

Γ ⊢ ∃xφ
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By induction hypothesis, there exists a context ∆1 formed by axioms of Z
and a classical (resp. intuitionistic) derivation π∗

1 of the form:
.... π

∗
1

∆1,Γ
∗ ⊢ (φ{x := t})∗

From lemma 3, we know that

IZ ⊢ (φ{x := t})∗ ⇔ ∃x (φ∗ ∧ ∀z (z ∈ x⇔ z ∈∗ t))

hence
IZ ⊢ (φ{x := t})∗ ⇒ ∃x φ∗ .

Writing ∆′
1 the list of axioms which is needed to prove the latter implication,

we finally build a classical (resp. intuitionistic) derivation π∗ of the desired
form

.... π
∗
1

∆1,Γ
∗ ⊢ (φ{x := t})∗

....
∆′

1 ⊢ (φ{x := t})∗ ⇒ ∃x φ∗

∆1,∆
′
1,Γ

∗ ⊢ (∃x φ)∗

(implicitly using the admissible rule of weakening).
• (∀-elim) The classical (resp. intuitionistic) derivation π has the form

π =











.... π1

Γ ⊢ ∀xφ

Γ ⊢ φ{x := t}

By induction hypothesis, there exists a context ∆1 formed by axioms of Z
and a classical (resp. intuitionistic) derivation π∗

1 of the form:
.... π

∗
1

∆1,Γ
∗ ⊢ ∀xφ∗

From lemma 3, we know that

IZ ⊢ (φ{x := t})∗ ⇔ ∃x [φ∗ ∧ ∀z (z ∈ x⇔ z ∈∗ t)] .

Since by lemma 1 we have

IZ ⊢ ∃x (∀z (z ∈ x⇔ z ∈∗ t)) ,

we easily get
IZ ⊢ ∀x φ∗ ⇒ (φ{x := t})∗

Writing ∆′
1 the list of axioms which is needed to prove the latter implication,

we finally build a derivation π∗ of the desired form
.... π

∗
1

∆1,Γ
∗ ⊢ ∀xφ∗

....
∆′

1 ⊢ ∀xφ∗ ⇒ (φ{x := t})∗

∆1,∆
′
1,Γ

∗ ⊢ (φ{x := t})∗

(implicitly using the admissible rule of weakening).

The other cases are straightforward. ⊣

Proposition 6 (Soundness of deskolemisation). — If a closed formula φ is

a theorem of (I)Z
sk

, then φ∗ is a theorem of (I)Z.
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Proof. Immediately follows from lemmas 2 and 4. ⊣

Proposition 7 (Conservativity). — The theory (I)Z
sk

is a conservative ex-
tension of (I)Z.

Proof. Assume that φ is a theorem of (I)Z
sk

expressed in the language of set
theory. By Prop. 6, φ∗ is a theorem of (I)Z. But since IZ ⊢ φ∗ ⇔ φ (Prop. 5,
item 3.) the formula φ is a theorem of (I)Z. ⊣

§4. Definable constructions.

4.1. Some abbreviations. Most standard mathematical notations can be
recovered in Zsk as macros:

• Basic operations on sets:

x ∪ y =
⋃

{x; y} ∅ = {x ∈ ω | ⊥}
x ∩ y = {z ∈ x | z ∈ y} {x} = {x;x}
x \ y = {z ∈ x | z /∈ y}

• Natural numbers (using von Neumann encoding):

0 = ∅ s(x) = x ∪ {x}

So that we can set: 1 = s(0), 2 = s(1), 3 = s(2), 4 = s(3), etc.
• Ordered pairs and projections:

〈x; y〉 = {{x}; {x; y}}

π1(c) =
⋃

{x ∈
⋃

c | ∃y (c = 〈x; y〉)}
π2(c) =

⋃

{y ∈
⋃

c | ∃x (c = 〈x; y〉)}

• Cartesian product and disjoint union:

A×B =
{

c ∈ P(P(A ∪B)) | ∃x∃y (c = 〈x; y〉)
}

A+B = ({0} ×A) ∪ ({1} ×B)

In set theory, a function is represented as a set of pairs f such that the binary
relation 〈x; y〉 ∈ f is functional w.r.t. x, that is:

function(f) = ∀c∈ f ∃x ∃y (c = 〈x; y〉) ∧
∀x ∀y ∀y′ (〈x; y〉 ∈ f ∧ 〈x; y′〉 ∈ f ⇒ y = y′)

From this we can define the following notations:

• Domain and image of a function:

dom(f) =
{

x ∈
⋃ ⋃

f
∣

∣ ∃y (〈x; y〉 ∈ f)
}

img(f) =
{

y ∈
⋃ ⋃

f
∣

∣ ∃x (〈x; y〉 ∈ f)
}

• Function application:

f(x) =
⋃

{

y ∈
⋃ ⋃

f | 〈x; y〉 ∈ f
}

• Function space (i.e. set-theoretic exponential):

BA =
{

f ∈ P(A×B) | function(f) ∧ dom(f) = A ∧ img(f) ⊆ B
}
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4.2. A weak form of replacement. Zermelo and Fraenkel’s set theory ex-
tends Zermelo’s with an additional axiom scheme, namely, Fraenkel and Skolem’s
replacement scheme

(Repl.) ∀a
(

∀x∈ a ∃!y ∈ b φ(x, y) ⇒ ∃b ∀x∈ a ∃y ∈ b φ(x, y)
)

expressing that given a set a and a binary relation φ(x, y) that is functional
w.r.t. x (for x ∈ a), we can build the image of a through the relation φ, that is,
the set b formed by all the objects y such that φ(x, y) for some x ∈ a.

In this subsection we aim to show that the weak form of replacement we obtain
by only considering functional relations of the form ‘y = t(x)’ where t(x)4 is a
term written in the language of Zsk already holds in Zsk, and that we can actually
define the notation {t(x) | x ∈ u} in the term language of Zsk.

For that, we first define a notation B (t | x ∈ u) which intuitively represents
an upper bound of the set we want to define, that is, a set which contains—at
least—all the objects of the form t(x) when x ranges over u.

Formally, the notation B (t | x ∈ u) is defined by induction on t as follows:

B (x | x ∈ u) = u
B (y | x ∈ u) = P(y) (if y 6≡ x)
B (ω | x ∈ u) = P(ω)
B ({t1; t2} | x ∈ u) = P

(

B (t1 | x ∈ u) ∪ B (t2 | x ∈ u)
)

B (P(t) | x ∈ u) = P(P(
⋃

B (t | x ∈ u)))
B (

⋃

t | x ∈ u) = P(
⋃ ⋃

B (t | x ∈ u))
B ({y ∈ t | φ} | x ∈ u) = P(

⋃

B (t | x ∈ u))

The notation B (t | x ∈ u) has the expected behavior w.r.t. variable binding: it
binds all the free occurrences of the variable x in the term t while keeping free
all the free occurrences of x in u (that refer to the enclosing context):

Fact 2. — For all terms t and u of Zsk, one has:

FV
(

B (t | x ∈ u)
)

⊆ (FV (t) \ {x}) ∪ FV (u) .

We have to prove that the term B (t | x ∈ u) fulfils the desired invariant:

Lemma 5. — For all terms t(x) and u of Zsk such that x /∈ FV (u):

IZsk ⊢ ∀x (x ∈ u⇒ t(x) ∈ B (t(x) | x ∈ u)) .

Proof. By induction on the term t(x).

• t(x) is the variable x. We have to prove ∀x (x ∈ u ⇒ x ∈ B (x | x ∈ u)),
that is the formula ∀x (x ∈ u⇒ x ∈ u). Trivial.

• t(x) is a variable y 6≡ x. We have to prove ∀x (x ∈ u ⇒ y ∈ B (y | x ∈ u)),
that is the formula ∀x (x ∈ u⇒ y ∈ P(y)). This is obvious.

• t(x) is ω. We have to prove ∀x (x ∈ u ⇒ ω ∈ B (ω | x ∈ u)), that is the
formula ∀x (x ∈ u⇒ ω ∈ P(ω)). This is obvious.

• t(x) is {t1(x); t2(x)}. We have to prove

∀x
(

x ∈ u ⇒ {t1(x); t2(x)} ∈ B ({t1(x); t2(x)} | x ∈ u)
)

,

4Here we write t(x) instead of t to emphasize that t possibly depends on x—but not on y.
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that is the formula

∀x
(

x ∈ u ⇒ {t1(x); t2(x)} ∈ P
(

B (t1(x) | x ∈ u) ∪ B (t2(x) | x ∈ u)
))

.

Assume x ∈ u. By induction hypothesis, we know that

t1(x) ∈ B (t1(x) | x ∈ u) and t2(x) ∈ B (t2(x) | x ∈ u) .

Hence we have

{t1(x); t2(x)} ⊆ B (t1(x) | x ∈ u) ∪ B (t2(x) | x ∈ u)

and finally

{t1(x); t2(x)} ∈ P
(

B (t1(x) | x ∈ u) ∪ B (t2(x) | x ∈ u)
)

.

• t(x) is P(t1(x)). We have to prove

∀x
(

x ∈ u ⇒ P(t1(x)) ∈ B (P(t1(x)) | x ∈ u)
)

,

that is the formula

∀x
(

x ∈ u ⇒ P(t1(x)) ∈ P
(

P
(

⋃

B (t1(x) | x ∈ u)
)))

.

Assume x ∈ u. By induction hypothesis, we get t1(x) ∈ B (t1(x) | x ∈ u).
We thus have

t1(x) ⊆
⋃

B (t1(x) | x ∈ u) ,

hence

P(t1(x)) ⊆ P
(

⋃

B (t1(x) | x ∈ u)
)

,

and finally

P(t1(x)) ∈ P
(

P
(

⋃

B (t1(x) | x ∈ u)
))

.

• t(x) is
⋃

t1(x). We have to prove

∀x
(

x ∈ u ⇒
⋃

t1(x) ∈ B

(

⋃

t1(x) | x ∈ u
))

,

that is the formula

∀x
(

x ∈ u ⇒
⋃

t1(x) ∈ P
(

⋃ ⋃

B (t1(x) | x ∈ u)
))

.

Assume x ∈ u. By induction hypothesis, we get t1(x) ∈ B (t1(x) | x ∈ u).
We thus have

t1(x) ⊆
⋃

B (t1(x) | x ∈ u) ,

hence
⋃

t1(x) ⊆
⋃ ⋃

B (t1(x) | x ∈ u) ,

and finally
⋃

t1(x) ∈ P
(

⋃ ⋃

B (t1(x) | x ∈ u)
)

.
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• t(x) is {y ∈ t1(x) | φ1(x, y)}. We have to prove

∀x
(

x ∈ u ⇒ {y ∈ t1(x) | φ1(x, y)} ∈ B ({y ∈ t1(x) | φ1(x, y)} | x ∈ u)
)

,

that is the formula

∀x
(

x ∈ u ⇒ {y ∈ t1(x) | φ1(x, y)} ∈ P
(

⋃

B (t1(x) | x ∈ u)
))

.

Assume x ∈ u. By induction hypothesis, we get t1(x) ∈ B (t1(x) | x ∈ u).
We thus have

{y ∈ t1(x) | φ1(x, y)} ⊆ t1(x) ⊆
⋃

B (t1(x) | x ∈ u) ,

hence

{y ∈ t1(x) | φ1(x, y)} ∈ P
(

⋃

B (t1(x) | x ∈ u)
)

. ⊣
From the lemma above we can set for all terms t and u

{t | x ∈ u} ≡ {y ∈ B (t | x ∈ u) | ∃x ∈ u (y = t)}

and we easily check that

Proposition 8. — For all terms t, u such that x /∈ FV (u) and y /∈ FV (t):

IZsk ⊢ ∀y (y ∈ {t | x ∈ u} ⇔ ∃x (x ∈ u ∧ y = t)) .

Proof. Follows from lemma 5 by comprehension. ⊣

4.3. More abbreviations. From the notation {t(x) | x ∈ u} we can now
derive the following abbreviations:

λx∈A . t(x) = {〈x; t(x)〉 | x ∈ A}
⋃

x∈A

B(x) =
⋃

{B(x) | x ∈ A}

∑

x∈A

B(x) =
⋃

x∈A

{x} ×B(x)

∏

x∈A

B(x) =
{

f ∈
(

⋃

x∈A

B(x)
)A ∣

∣

∣
∀x∈A f(x) ∈ B(x)

}

4.4. Incompleteness w.r.t. Skolemisation. From the derivability of the
weak form of replacement discussed in 4.2 it is possible to show that the syn-
tactic constructs provided in Zsk are actually not sufficient to express all Skolem
symbols, in the sense that we can define a binary predicate φ(x, y) such that
Zsk ⊢ ∀x∃y φ(x, y) while there is no term t(x) depending on x (in the language
of Zsk) such that Zsk ⊢ ∀x φ(x, t(x)). An example is the following:

Let φ(x, y) be a predicate expressing that ‘x is a natural number and y is the
xth powerset of ω’. A possible definition of φ(x, y) is the following:

φ(x, y) ≡ ∃f
(

f function ∧ dom(f) = s(x) ∧ nat(x) ∧

f(0) = ω ∧ ∀z ∈x f(s(z)) = P(f(z)) ∧ f(x) = y
)

We then check that:

Proposition 9. — If Zsk is consistent, then:

1. Zsk ⊢ ∀x∈ω ∃!y φ(x, y);
2. There is no term t(x) in Zsk such that Zsk ⊢ ∀x∈ω φ(x, t(x))
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Proof. 1. By induction on x ∈ ω (independently from the consistency of Z).
2. If there is a term t(x) such that ∀x∈ω φ(x, t(x)), then we can form the

set a = {t(x) | x ∈ ω} (Prop. 8) and prove that a contains ω (as an element)
and is closed under the powerset operation. But it is well-known [2] that the
existence of such a set cannot be proved in Zermelo’s set theory unless it is
inconsistent. ⊣
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