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Accurate measurements of the forces and velocities at the boundaries of a dynamically loaded specimen

may be obtained using split Hopkinson pressure bars (SHPB) or other experimental devices. However, the

determination of a representative stress–strain curve based on these measurements can be challenging.

Due to transient effects, the stress and strain fields are not uniform within the specimen. Several

formulas have been proposed in the past to estimate the stress–strain curve from dynamic experiments.

Here, we make use of the theoretical solution for the waves in an elastic specimen to evaluate the

accuracy of these estimates. It is found that it is important to avoid an artificial time shift in the pro-

cessing of the experimental data. Moreover, it is concluded that the combination of the output force

based stress estimate and the average strain provides the best of the commonly used stress–strain curve

estimates in standard SHPB experiments.

1. Introduction

Split Hopkinson Pressure Bar (SHPB) systems are commonly

used to investigate the mechanical behavior of materials at high

strain rates. The widespread use of SHPB systems in experimental

dynamics is mainly due to the simplicity of the experimental

procedure. The experimental technique is based on the early work

of Hopkinson [1], who recorded a pressure-pulse profile using

a slender bar. This approach has been widely adopted since the

critical study of Davies [2]. The practical configuration consisting of

a short specimen sandwiched between two slender bars is due to

Kolsky [3]. High impedance bars made of steel are typically

employed to perform dynamic experiments on metals. After being

initially developed for compression tests, the technique was soon

extended to tensile loading by Harding et al. [4] and to torsion

loading by Duffy et al. [5]. To improve the accuracy of the

measurements, wave dispersion effects in elastic and viscoelastic

bars have been studied extensively (e.g. Davis [2], Yewand Chen [6],

Follansbee and Franz [7], and Gorham [8], Gamby and Chaoufi [9],

Wang et al. [10], Zhao and Gary [11], Liu and Subhash [12]). Other

aspects involving the specimen response with regard to three-

dimensional effects (e.g. Davies and Hunter [13], Dharan and

Hauser [14], Bertholf and Karnes [15], Malinowski and Klepazko

[16]) and transient effects (e.g. Lindholm [17], Conn [18], Bell [19],

and Jahsman [20]) have also been investigated.

A comprehensive review of developments in SHPB testing has

been provided in the ASM Handbook [21]. Over the past two

decades, there has also been growing interest in testing soft

materials using viscoelastic low-impedance bars made of poly-

meric materials (e.g. Gary et al. [22], Zhao and Gary [23], Sogabe

et al. [24], Sawas et al. [25]). Gray III and Blumenthal [26] have

reviewed the SHPB testing of soft materials. The main aspects that

determine the accuracy of measurements in SHPB compression

tests can be classified in two types. Firstly, there are aspects related

to the accuracy of the forces and velocities at the specimen

boundaries provided by the SHPB system. These global quantities

can be obtained from the recorded wave signals without consid-

eration of the specimen. Aspects of the second type are related to

assumptions concerning the bar-specimen interaction and the

specimen behavior: interface friction, lateral inertia of the spec-

imen, uniaxial stress distribution, and stress equilibrium.

The present paper focuses on the estimation of the stress–strain

curve, which involves aspects of the second type. A common

feature of most static material tests is the existence of a zonewithin

the specimen, the so-called gage section, in which the stress and

strain fields can be considered uniform. The same conceptual

approach is taken in dynamicmaterials testing. However, due to the

presence of waves in dynamic experiments, both the stress and

strain fields within a specimen are seldom uniform. A dynamic

material test should be designed such as to minimize this inherent

non-uniformity, a condition which is typically associated with
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‘‘quasi-static equilibrium’’. However, when testing purely elastic

materials such as brittle ceramics or low-impedance materials, the

validity of this assumption needs to be checked with care (e.g.

Ravichandran and Subhash [27], Song and Chen [28]). Before

computers became generally available, the assumption of quasi-

static equilibrium of the specimen had a special importance from

a data processing point of view. This assumption allowed the

measured data to be processed through real time analog integra-

tion (e.g. Kolsky [3]), and the stress–strain curve could be plotted in

real time on an oscilloscope with a lasting image. This analog

processing procedure required identical input and output bars,

dispersion-free wave propagation in the bars as well as equilibrium

of the specimen. Also, the distance between the strain gage and the

specimen needed to be the same for the input and output bars.

With the general availability of numerical data acquisition and

computer systems, most limitations associated with analog data

processing could be overcome. For instance, the input and output

bars no longer need to be identical; the waves do not need to be

dispersion-free anddifferent strain gagepositionsmaybe chosenon

the input and output bars. Furthermore, two independent force

measurements may be obtained (so-called input and output force)

which allow the evaluation of the validity of the assumption of

quasi-static equilibrium. Knowing that specimen equilibrium is

never achieved exactly, we seek the best of the commonly used

stress–strain curve estimates in a SHPB experiment. In the present

paper, we therefore evaluate the accuracy of some widely used

stress–strain curve estimates. The time shift of thewaves is found to

play a critical role as far as the accuracy is concerned. More specifi-

cally, it is found that theomissionof artificial time shifts provides the

best stress–strain curveestimates. In otherwords, once the forceand

displacement histories are known at the specimen boundaries,

accurate estimates of the stress–strain curves should be made

without further shifting the signals on the time axis.

This study is inspired by the processing of the experimental

measurements obtained from compression tests. However, it is

emphasized that we consider the SHPB apparatus as a device which

allows us to obtain the forces and displacements at the boundaries of

a dynamically loaded specimen. Therefore, parts of our analysis are

relevant also for other testing systems in dynamics, for example

systems combining the use of quartz load cells and digital image

correlation based displacement measurements. Furthermore, all

conclusions apply to dynamic compression, tension and torsion tests.

2. Preliminaries

In our discussion, we distinguish between ‘‘waves’’ and ‘‘time

histories’’1. A wave is represented by a function that depends on

both the spatial coordinate x and time t. A time history on the other

hand is a function that depends on time only. For example, if awave

described by the function passes by the point x¼ x* in space, we call

the function 3*ðtÞ ¼ 3ðx*; tÞ a time history associated with this

wave. The wave may be reconstructed from e*ðtÞ, but this requires

further knowledge of the mechanical system.

Frequently, relations will be expressed in frequency space. We

denote theFourier transformofa time-dependent function f ðtÞbybf ðuÞ,
with the transformation relationships bf ðuÞ ¼ 1=2p

R
N

�N f ðtÞe�i6tdt

and f ðtÞ ¼
R
N

�N
bf ðuÞei6tdu, where u denotes the angular frequency.

We recall here that the Fourier transforms of the time derivative of f ðtÞ

and of the delayed function f ðt � aÞ are iubf ðuÞ and e�iuabf ðuÞ,
respectively.

2.1. Split Hopkinson pressure bar compression test

Fig. 1 shows a schematic of a standard SHPB compression test. A

cylindrical specimen is placed between the input and output bars.

When a striker hits the free end of the input bar, a compressive

strain wave is generated in this bar (the incident wave 3iðx; tÞ).

When reaching the input bar/specimen interface, this wave is

partially transmitted and partially reflected towards the input bar/

striker interface (the reflected wave 3rðx; tÞ). When the compressive

wave inside the specimen reaches the specimen/output bar inter-

face, it is partially reflected and partially transmitted into the

output bar (the transmitted wave 3tðx; tÞ).

In addition to loading and supporting the specimen, the input

and output bars are used to obtain accurate force and displacement

history measurements at the bar/specimen interfaces. Based on

strain history recordings at selected positions on the input and

output bars, the strainwaves within the bars are reconstructed and

used to calculate the force and displacement histories at the bar/

specimen interfaces. Subsequently, a stress–strain curve is esti-

mated for the material of the specimen. As mentioned, the SHPB

procedure involves key assumptions regarding:

(1) Dispersion in the bars. The shapes and amplitudes of the waves

traveling in the bars may change due to geometric and material

dispersion. It is important to take these effects into accountwhen

calculating the strain histories at the bar/specimen interfaces

based on strain history measurements at different locations.

(2) Separation of the waves in the input bar. The strain history in

the input bar is typically measured near the center of the bar to

avoid the superposition of the incident and reflected waves at

the measurement location. Unless signal deconvolution tech-

niques are used, it is important to verify that the incident wave

has ceased before the appearance of the reflected wave.

(3) Planarity of the bar/specimen contact surfaces. The diameter of

the specimen is typically smaller than those of the input and

output bars. Thus, the compressive loading of the specimen

may result in local indentations of the input and output bars. In

other words, the bar surfaces do not remain flat which reduces

the accuracy of the interface displacement predictions based

on 1-D wave propagation theory for cylindrical bars.

(4) Correction for radial inertia and interface friction. Except for

materials with Poisson’s ratio zero, the diameter of a cylindrical

specimen changes during a compression test. As a result, radial

inertia effects on the specimen level may come into play.

Correction formulas have been developed in the past to correct

for both radial inertia and bar/specimen interface friction.

However, most dynamic compression specimens are designed

to make both effects small.

(5) Shifting of the waves. Due to the axial inertia and stiffness of

the specimen, the force histories at the bar/specimen interfaces

are not identical. Only in the case of quasi-static equilibrium,

these differences become negligibly small. It is common prac-

tice to artificially shift the waves on the time axis to decrease

the difference between the input and output force histories. In

most experiments, the effect of shifting is more pronounced at

small strains than at large strains.

As discussed by Subhash and Ravichandran [29] in the context of

SHPB testing of ceramics, additional assumptions regarding state of

stress and strain within the specimen may be necessary.

2.2. Measurement and reconstruction of thewaves in the SHPB system

Strain measurements on the bar surfaces are typically used to

determine the strain waves in a SHPB system. Such measurements

1 As the word ‘‘history’’ implies the notion of ‘‘time’’, we frequently use the term

‘‘history’’ instead of ‘‘time history’’ in the sequel of this manuscript.
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only provide the surface strain as a function of time at a particular

location x¼ x* along the bar axis, 3*ðtÞ ¼ 3ðx*; tÞ. However, if the

measured strain history is associated with a single wave of known

propagation direction, three-dimensional single mode wave prop-

agation theory may be used to reconstruct the full wave as a func-

tion of time and space. Using the Fourier transform of themeasured

strain history be*ðuÞ, we have the reconstructed wave

3ðx; tÞ ¼

ZN

�N

b3*ðuÞeigxðx�x*Þei6tdu; (1)

where g ¼ �1ðg ¼ 1Þ for a wave traveling in the positive (nega-

tive) x-direction. The complex wave number is defined as

xðuÞ ¼ u=cðuÞ � iadðuÞ, where the functions cðuÞ > 0 and x ¼ ls=2

represent the phase velocity and the damping, respectively. In a 3-D

context, both functions depend on the bar diameter as well as the

viscoelastic bar material properties.

Using Eq. (1), we may reconstruct the incident and reflected

waves in the input bar and then evaluate the corresponding strain

histories at the input bar/specimen interface. If 3aðtÞ is the strain

history recorded by a strain gage positioned at a distance a from the

specimen interface, the Fourier transform of the strain history 3iðtÞ

associated with the incident wave at the input bar/specimen

interface is represented by

b3iðuÞ ¼ b3aðuÞe�ixaa: (2)

Analogously, the strain history 3rðtÞ associated with the reflected

wave at the input bar/specimen interface is represented by

b3rðuÞ ¼ b3aðuÞeixaa: (3)

These relations hold true only if there is no superposition of the

incident and reflected waves at the location of the strain gage.

In the output bar, the strain history associated with the trans-

mitted wave at the specimen interface is given by

b3tðuÞ ¼ b3bðuÞeixbb; (4)

where 3bðtÞ is the strain history measured at a distance b from the

output bar/specimen interface. Different subscripts have been used for

thewavenumbers x in the input andoutput bars to highlight that these

maybemadeofdifferentmaterials and/orhavedifferentdiameters. It is

emphasized that all strain histories are defined on the same time axis t.

Fig. 2a shows an example of strain history recordings in a SHPB

experiment. At the input bar strain gage location, we record the

strain histories associated with the incident and reflected waves.

Similarly, at the output bar strain gage location, we record the

strain history associated with the transmitted wave. Fig. 2b shows

the strain histories at the bar/specimen interfaces. On the time axis,

the incident wave strain history at the input bar/specimen interface

shows non-zero values later than at the strain gage position.

Conversely, the strain history associated with the reflected wave

rises earlier to non-zero values. The same applies to the strain

histories associated with the transmitted wave in the output bar.

2.3. Forces and velocities at the bar/specimen interfaces

Based on the strain histories at the bar/specimen interfaces, the

forces acting on the specimen aswell as the interface velocities may

be calculated using 1 D theory. At the input bar/specimen interface,

the contact force and the interface velocity are

FinðtÞ ¼ ciZi½3iðtÞ þ 3rðtÞ�; (5)

vinðtÞ ¼ ci½ � 3iðtÞ þ 3rðtÞ�; (6)

where ci ¼
ffiffiffiffiffiffiffiffiffiffi
Ei=ri

p
is the wave speed, Zi ¼ EiAi=ci is the charac-

teristic impedance, Ai is the cross-sectional area, Ei is the Young’s

modulus, and ri is the mass density. Similarly, we have the contact

force and the velocity at the output bar/specimen interface,

FoutðtÞ ¼ coZo3tðtÞ; (7)

voutðtÞ ¼ �co3tðtÞ: (8)

The characteristic impedance of the output bar, Zo, is defined by the

corresponding output bar properties Ao, Eo and ro. The forces are

defined as positive in tension, while the velocities are defined as

positive in the positive direction of the x-axis.

2.4. Wave propagation in an elastic specimen

In the previous subsection, we expressed the interface forces

and velocities in terms of the waves in the input and output bars. In

the case of an elastic specimen, the interface forces and velocities

may also be expressed in terms of the waves inside the specimen.

Fig. 1. Schematic of conventional SHPB test set-up with detail of specimen. The input and output bar strain gages are positioned at a distance of a and b from the respective

specimen/bar interfaces.
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These relationships are obtained from the solution of the wave

equation within the specimen. Consider a cylindrical specimen of

length ls, cross-sectional area As, Young’s modulus Es, mass density

rs, wave speed cs ¼
ffiffiffiffiffiffiffiffiffiffiffi
Es=rs

p
, and characteristic impedance

Zs ¼ AsEs=cs. As illustrated in Fig. 1, we define the origin of the

spatial coordinate system at the center of the specimen. Following

Mousavi et al. [29], we write the strain in the specimen as

b3ðx;uÞ ¼ b3PðuÞe�iux=cs þ b3NðuÞeiux=cs ; (9)

where b3PðuÞ and b3NðuÞ are the strains associated with the right-

ward and leftward traveling waves at the mid-section of the

specimen. Thus, the force and velocity at the input bar/specimen

interface ðx ¼ �ls=2Þ read

bF inðuÞ ¼ csZs
h
ab3PðuÞ þ bb3NðuÞ

i
; (10)

bvinðuÞ ¼ cs
h
� ab3PðuÞ þ bb3NðuÞ

i
; (11)

with

aðuÞ ¼ eiuts=2; bðuÞ ¼ e�iuts=2 (12)

where ts ¼ ls=cs denotes the transit time for an elastic wave

propagating through the specimen. Analogously, we have the force

and velocity at the output bar/specimen interface ðx ¼ ls=2Þ,

bFoutðuÞ ¼ csZs
h
bb3PðuÞ þ ab3NðuÞ

i
; (13)

bvoutðuÞ ¼ cs
h
� bb3PðuÞ þ ab3NðuÞ

i
: (14)

In a SHPB compression experiment, the output bar may be

considered semi-infinite (between the strain gage location and the

output bar/specimen interface, there are only waves traveling away

from the specimen during the interval of measurement). Thus, the

output force

bFoutðuÞ ¼ �ZobvoutðuÞ (15)

is directly proportional to the output velocity bvoutðuÞ. Introducing
this relation in Eqs. (13) and (14), we find for the frequency-

dependent ratio of the two strain waves inside the specimen,

b3NðuÞ
b3PðuÞ

¼ Re�iuts ; (16)

where R ¼ ðZo � ZsÞ=ðZo þ ZsÞ. It is worth noting that this ratio does

not depend on the impedance of the input bar. Eq. (16) is valid for

SHPB systems with different input and output bars.

3. Stress–strain curve estimates

Even though the forces and velocities at the boundaries of

a dynamically loaded specimen can be determined to a high degree of

accuracy, it can be difficult to determine the stress–strain curve from

suchdata. Under static loading conditions, both the stresses and strains

are uniform within cylindrical specimens. However, in a dynamic

experiment, the stress and strain fields are non-uniform. As the stress

and strain field variations are a priori unknown, exact stress and strain

calculations need to be substituted by estimates. The challenge is to

come up with accurate estimates of the stress history sðtÞ and the

corresponding strain history 3ðtÞ such that their combination

sð3Þ ¼ sðtÞ+3�1ðtÞ (17)

provides an accurate estimate of the stress–strain curve sð3Þ of the

dynamically tested material. In the following, we investigate esti-

mates that are widely used.

3.1. Direct estimates

The spatial average of the axial strain field within the specimen

is chosen to estimate the strain history. It can be expressed in terms

of the interface velocities vin(t) and vout(t) as

3deavðtÞ ¼
1

ls

Zls=2

�ls=2

3ðx; tÞdx ¼
1

ls

Zt

0

½voutðtÞ � vinðtÞ�dt; (18)

and correspondingly

b3deavðuÞ ¼
1

iuls

h
bvoutðuÞ � bvinðuÞ

i
: (19)

Fig. 2. Strain histories of the incident wave (solid red line), the reflected wave (dashed

red line) and the transmitted wave (solid blue line) at different locations in the input

bar (red curves) and output bar (blue curves): (a) at the positions of the strain gages,

(b) at the bar/specimen interfaces. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article).
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It is not possible to express the spatial average of the stress field in

a similar manner. Instead, two distinct stress-time history esti-

mates are considered. Firstly, the stress is estimated as the average

of the forces at the input and output bar/specimen interfaces

(which is not the same as the spatial average of the stress field), i.e.

sdeavðtÞ ¼
FinðtÞ þ FoutðtÞ

2As
: (20)

In most standard SHPB experiments, we have a compressive inci-

dent wave and a tensile reflected wave. Thus, in terms of absolute

measurements, the input force is determined from the difference of

two strain history measurements (see Eq. (5)). As a result, the

corresponding standard uncertainty in the input force measure-

ment is usually higher than that of the output force which is

directly proportional to the strain history of the transmitted wave

(cf. Grolleau et al. [30]). Therefore, as an alternative to Eq. (20), the

stress is frequently estimated based on the output force history

only, i.e.

sdeoutðtÞ ¼
FoutðtÞ

As
: (21)

Combining these two stress estimates with the average strain

estimate yields two direct estimates of the stress–strain curve.

These two estimates are called ‘‘direct estimates’’ as the original

force and velocity measurements have not been artificially shifted

on the time axis before calculating the stress–strain curve. In other

words the force and velocity histories at the specimen interfaces

are directly used to obtain the stress–strain curve.

3.2. Foot-shifting

To simplify the processing of SHPB measurements, the original

measurement data are sometimes modified using a procedure

which we refer to as ‘‘foot-shifting’’. The idea is to shift the strain

history associated with the transmitted wave on the time axis such

that it rises to non-zero values at the same time as the incident and

reflected waves at the input bar/specimen interface. This procedure

is illustrated in Fig. 3 which magnifies a detail of Fig. 2b. The ‘‘foot’’

of the transmitted strain history indicates the point on the time axis

where the strain changes for the first time from zero to a non-zero

value. If the incident and reflected waves in the input bar have been

reconstructed correctly (which requires consideration of disper-

sion), the corresponding ‘‘foots’’ of the strain-time histories of the

incident and reflected waves at the input bar/specimen interface

will coincide. However, the transmitted wave at the output bar/

specimen interface is delayed by the transit time ts ¼ ls=cs of an

elastic wave traveling through the specimen. When using the foot-

shifting procedure, the strain history associated with the trans-

mitted wave is shifted on the time axis such that its ‘‘foot’’ coincides

with that of the strain histories at the input bar/specimen interface.

Formally, the foot-shifting estimates may be written as

follows. The average strain in the specimen reads

3fsavðtÞ ¼ ð1=lsÞ
R t
0½voutðt þ tsÞ � vinðtÞ�dt which corresponds to

b3fsavðuÞ ¼
1

iuls

h
bvoutðuÞeiuts � bvinðuÞ

i
: (22)

The corresponding stress estimate reads

bsfs
outðuÞ ¼

1

As

bFoutðuÞeiuts : (23)

The foot-shifting procedure is particularly convenient when

neglecting thewave dispersion in both the input and output bars. In

this case, it is sufficient to identify the ‘‘foots’’ of all three waves in

the strain histories which have been recorded at the strain gage

locations and then shift these to the same position on the time axis

in order to calculate the foot-shifted stress–strain curve estimates.

3.3. Kolsky estimate

In the present context, the term ‘‘Kolsky estimate’’ is used to refer

to one particular type of estimate that is based on assumptions pre-

sented in Kolsky [3]. Kolsky proposed his formulas before computers

had become generally available for data processing. He used identical

input and output bars (same length, diameter and material) and put

strain gages at the center of each bar. Neglecting the dispersion in the

bars and assuming quasi-static equilibrium, Kolsky assumed

b3iðuÞ þ b3rðuÞyb3tðuÞ; (24)

to estimate the strain as

b3KoðuÞ ¼ �
2co
iuls

b3rðuÞ: (25)

In terms of the force and velocity at the input specimen/bar

interface, this strain estimate becomes

b3KoðuÞ ¼
1

iuls

"
�

bF inðuÞ

Zo
� bvinðuÞ

#
: (26)

At the same time, Kolsky used the output force to estimate the

stress-time history. In other words, Kolsky’s stress estimate is the

same as the output force based direct stress estimate (21). It is

worth noting that the prescription of quasi-static equilibrium by

Eq. (24) involves some implicit ‘‘foot-shifting’’.

3.4. Summary

In summary, we consider four distinct stress–strain curve

estimates:

(i) Direct estimate, average force based stress and average strain:

Fig. 3. Beginning of the strain histories at the bar/specimen interfaces (detail of

Fig. 2b). The dashed blue line shows the strain history of the transmitted wave after

shifting the beginning of this wave in time (so-called ‘‘foot-shifting’’) such that all

strain histories begin simultaneously. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article).
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sIð3IÞ ¼ sdeavðtÞ+
h
3deavðtÞ

i�1
: (27)

(ii) Direct estimate, output force based stress and average strain:

sIIð3IIÞ ¼ sdeoutðtÞ+
h
3deavðtÞ

i�1
: (28)

(iii) Foot-shifted estimate, output force based stress and average

strain:

sIIIð3IIIÞ ¼ sfsoutðtÞ+
h
3fsavðtÞ

i�1
: (29)

(iv) Kolsky estimate, output force based stress and reflected wave

based strain:

sIVð3IVÞ ¼ sdeoutðtÞ+½3KoðtÞ�
�1: (30)

Other combinations of the above estimates may be considered, e.g.

evaluating Kolsky’s estimate based on the foot-shifted signals,

combining the average force based stress with the Kolsky strain,

etc. For the clarity of our presentation, however, we limit ourselves

to the above four estimates.

4. Evaluation

It is of interest to evaluate the stress–strain curve estimates in

both the elastic and elastic–plastic range. Here, the evaluation is

limited to the elastic case where the choice of estimate appears to

have the greatest importance. In this case, the quality of the stress–

strain curve estimatesmay be evaluated by comparing the apparent

modulus EðuÞ with the real modulus Es of the elastic specimen

material. Given the Fourier transform of the stress history bsðuÞ, and
the strain-time history beðuÞ, we have the apparent complex

modulus

EðuÞ ¼ E0ðuÞ þ iE00ðuÞ ¼
bsðuÞ
beðuÞ

; (31)

where E0ðuÞ and E00ðuÞ denote the real and imaginary parts,

respectively. For a perfect estimate, E0ðuÞ should be constant and

equal the Young’s modulus, E0ðuÞ ¼ Es, while the imaginary part

should be zero, E00ðuÞ ¼ 0.

4.1. Direct estimates

Using the elastic solution for the waves within the specimen

(see Eqs. (11) and (14)), we write the average strain estimate (19) as

b3deav ¼
1

iuls

h
bvout � bvin

i
¼

a� b

iuts

�
b3P þ b3N

�
: (32)

Also, by Eqs. (10) and (13), the average force based stress estimate

(20) becomes

bsde
av ¼

1

2
Esðaþ bÞ

�
b3P þ b3N

�
: (33)

Analogously, we may make use of the exact elastic solution for the

waves within the specimen to express the output force based stress

estimate as

bsde
out ¼ Es

�
bb3p þ ab3N

�
: (34)

Using the expressions for stress and strain above, we can now

calculate the apparent complex moduli corresponding to the

stress–strain curve estimates given by Eqs. (27) and (28). Combi-

nation of the average force based stress estimates with the average

strain estimate yields the modulus estimate

EIðuÞ ¼
bsde
av

b3deav
¼

1

2
Esiuts

aþ b

a� b
¼ Es

uts=2

tanðuts=2Þ
: (35)

Similarly, the modulus estimate based on the output force and the

average strain becomes

EIIðuÞ ¼
bsde
out

b3deav
¼ Ese

�iuts=2
uts=2

sinðuts=2Þ

1þ R

1þ Re�iuts
: (36)

4.2. Foot-shifting

As for the direct estimates, we make use of the exact theoretical

solution for the waves inside the specimen to evaluate the foot-

shifted estimates. Recall that the foot-shifting corresponds to a time

shift of the strain history associated with the transmitted wave.

Using Eqs. (11) and (14) in (22), we obtain the foot-shifting based

average strain estimate

b3fsav ¼
1

iuts

h�
� bb3P þ ab3N

�
eiuts þ ab3P � bb3N

i
: (37)

The output force based stress estimate reads

bsfs
out ¼ Es

�
bb3P þ ab3N

�
eiuts : (38)

Combining the strain and stress estimates, we get the corre-

sponding foot-shifted modulus estimate

EIIIðuÞ ¼
bsfs
out

b3fsav
¼

Es
1� Zs=Zo

eiuts
uts

sinðutsÞ
: (39)

4.3. Kolsky estimate

Using Kolsky’s data processing procedure along with the exact

elastic solution, the strain estimate reads

b3eqðuÞ ¼
1

iuts

�
ab3P � bb3N �

Zs
Zo

�
ab3P þ bb3N

��
: (40)

Recall that Kolsky used the output force based direct stress estimate

(37). Hence, the modulus estimate reads

EIVðuÞ ¼
bsde
out

b3eq
¼

Es

1� ðZs=ZoÞ
2

uts
sinðutsÞ

: (41)

Note that Kolsky’s formulas are applicable only to SHPB systems

with identical input and output bar properties ðZi ¼ ZoÞ.

4.4. Evaluation

All modulus estimates depend on the normalized angular

frequency uts. This dimensionless number is small within the

range of significant frequencies of a typical SHBP compression

test. For example, when testing a ls¼ 5 mm long steel or

aluminum specimen, we have tsy1ms. At the same time, the

maximum frequencies in a typical SHPB test are smaller than

u=2p < 100kHz. Hence, we have uts=2p � 0:1. In other words,

the period of the wave of highest frequency is still at least ten

times larger than the specimen transit time ts. For evaluation

purposes, we also calculate the second-order Taylor expansion of

the estimated moduli:

(i) Direct estimate, average force based stress and average strain:
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EIðuÞyEs

�
1�

1

12
ðutsÞ

2
�
: (42)

(ii) Direct estimate, output force based stress and average strain:

EIIðuÞyEs½1� iðuts=2ÞZs=Zo�: (43)

(iii) Foot-shifted estimate, output force based stress and average

strain:

EIIIðuÞy
Es

1� Zs=Z0
ð1þ iutsÞ: (44)

(iv) Kolsky estimate, output force based stress and reflected wave

based strain:

EIVðuÞy
Es

1� ðZs=ZoÞ
2

�
1þ

1

6
ðutsÞ

2
�
: (45)

The strain and stress estimates are ‘‘in phase’’ when the imaginary

part of the estimated modulus is zero. This is the case for the

average force based direct estimate EIðuÞ and the Kolsky estimate

EIVðuÞ. The output force based direct estimate EIIðuÞ has a negative

imaginary part for positive frequencies. This means that the stress

lags the strain, which corresponds to a hypothetical material that

delivers energy when subjected to harmonic loading. Conversely,

the imaginary part of EIIIðuÞ is positive for positive frequencies and

the stress leads the strain. Thus, the foot-shifted estimate suggests

a hypothetical material that absorbs energy.

Observe that all modulus estimates except for EIðuÞ depend on

the specimen-to-output bar impedance ratio Zs=Zo. This impedance

ratio determines the magnitude of the ratio b3N=b3P of the rightward

and leftward traveling waves inside the specimen (see Eq. (16)). In

the case of Zs=Zo ¼ 1, there is no reflection within the specimen

and hence b3N ¼ 0. For Zs=Zo/0, the specimen/output bar interface

acts as a rigid boundary. Consequently, the leftward traveling wave
b3N is equal to b3P with a delay of ts. The evaluation of Eq. (16) yields

lim
Zs=Zo/0

b3N
b3P

!
¼ e�iuts : (46)

It is worth noting that the output force based direct modulus

estimate EIIðuÞ and the Kolsky estimate EIVðuÞ, Eqs. (36) and (41),

respectively, are identical for Zs=Zo/0,

lim
Zs=Zo/0

EIIðuÞ ¼ lim
Zs=Zo/0

EIVðuÞ ¼ Es
uts

sinðutsÞ
: (47)

This can also be seen from Eqs. (19) and (26): the only difference

between these two estimates is in the estimation of the output

velocity; however, as the output velocity is zero for Zs=Zo/0, both

estimates become identical. The real-valued Kolsky estimate EIVðuÞ is

monotonic in Zs=Zo. Thus, the greater the specimen/bar impedance

mismatch (with Zs=Zo < 1), the smaller the error in the Kolsky

modulus estimate.

In order to quantify the error in the stress–strain curve esti-

mates, we define the normalized distance between the estimated

complex modulus EiðuÞ and the true material modulus Es

ei ¼
jEiðuÞ � Esj

Es
: (48)

These error functions are depicted in Fig. 4 for two distinct

impedance mismatches:

(i) Large impedance mismatch (Zs=Zo ¼ 0:02, Fig 4a). This

example corresponds to the testing of 10 mm diameter PMMA

specimen in a 20 mm diameter steel bar system.

(ii) Small impedance mismatch (Zs=Zo ¼ 0:25, Fig. 4b). This

configuration corresponds to a 10 mm diameter steel spec-

imen in a 20 mm diameter steel bar system.

Both plots show that the curves are in hierarchical order. The

smallest error is observed for the average force based direct esti-

mate EIðuÞwhile the error for the output force based estimate EIIðuÞ

appears to be sandwiched between the curve for EIðuÞ and the

Kolsky estimate EIVðuÞ. The error of the foot-shifting based estimate

EIIIðuÞ is the largest among the present estimates. It is one to two

orders of magnitude larger than the other estimates with an error

of up to 100% at high frequencies. All error functions are monotonic

with respect to the normalized frequency uts. For the direct esti-

mates, the error vanishes at low frequencies. As shown in Fig. 4 and

by Eq. (45), the error of the Kolsky estimates does not vanish at low

frequencies. The same holds true for the foot-shifted estimate

where the error at low frequencies is still larger by a factor of Zo=Zs
as compared to the Kolsky estimate. The curves in Fig. 4a also

indicate the aforementioned convergence of the estimates EIIðuÞ

Fig. 4. Modulus errors as a function of the normalized angular frequency for different

stress–strain curve estimates: (a) large impedance mismatch, (b) small impedance

mismatch.
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and EIVðuÞ for large impedance mismatch. It is concluded from the

evaluation of the modulus estimates, that all of them provide

reasonable results except the foot-shifted one. Irrespective of the

specimen/bar impedance mismatch and frequency, the foot-shifted

estimate yields poor results for the stress–strain relationship.

5. Application and discussion

The previous evaluation of the stress–strain estimates has been

carried out in the frequency domain. The extrapolation of the error

estimates from the frequency domain into the time domain is not

straightforward. In particular, the stress–strain curve

sð3Þ ¼ sðtÞ+3�1ðtÞ is linear only if EðuÞ is real and constant. In all

other cases, this relationship is non-linear and the modulus needs

to be estimated through linear interpolation of the measured

stress–strain curve.

To illustrate the error in the different stress–strain curve esti-

mates in the time domain, we performed a one-dimensional

numerical simulation of a SHPB experiment on a PMMA specimen

(Es¼ 5000 MPa, rs ¼ 1:2 g=cm2, Ds¼ 20 mm, ls¼ 20 mm). The

SHPB systems comprises of 20 mm diameter steel input and output

bars (Eb¼ 210 GPa, rs¼ 7.8 g/cm3); the corresponding input and

output strain gages are positioned at a¼ 1505 mm and b¼ 800 mm

from the specimen/bar interfaces. We generated an incident wave

with rise time 50 ms that imitates a striker impact at 5 m/s.

The strain histories at the strain gage locations associated with

the incident, reflected and transmittedwaves are depicted in Fig. 2a.

The corresponding strain histories at the specimen/bar interfaces

have been reconstructed in Fig. 2b. The strain signals just appear at

different times since theyhave been evaluated at different locations.

Subsequently, we evaluate the strain and stress history estimates

according to the different formulas given in Section 4. Fig. 5

summarizes the corresponding stress–strain curves. The black solid

line depicts the average force based direct stress estimate sdeav as

a function of the average strain estimate edeav . As predicted by the

frequency space analysis, this curve provides the best representa-

tion of the response of the linear elastic material. The plot of the

output force based direct stress estimate sdeout as a function of the

average direct strain estimate (dashed line) also provides a good

approximation of the linear stress–strain curve. The specimen-to-

output bar impedance ratio is relatively small ðZs=Zo ¼ 0:06Þ.

Consequently, the Kolsky estimate closely follows the output force

based direct estimate, as predicted by the theoretical analysis in the

frequency space. The plot of the foot-shifting based stress–strain

curve confirms the conclusion of the theoretical analysis: the foot-

shifted estimate provides the least accurate representation of the

stress–strain curve and deviates substantially from the linear

stress–strain relationship predicted by the other estimates.

Recall that all theoretical estimates are independent of the

amplitude of the incident wave and therefore of the impact

velocity. The effect of impact velocity only enters the problem in an

indirect manner. SHPB experiments have shown that the striker

impact velocity changes the frequency spectrum of the incident

wave, i.e. the higher the loading velocity the higher the maximum

frequency content. This is due to the circumstance that the contact

surfaces at the striker/input bar interface are neither perfectly flat

nor perfectly aligned in real experiments. As the error increases

monotonically in uts, a lower estimation accuracy is expected for

higher impact velocities. The specimen length is another variable

which enters the problem indirectly. Recall that the transit time ts is

proportional to the specimen length. Hence, based on the same

argument as for the frequency content, we may conclude that the

estimation error increases for longer specimens.

All conclusions regarding the quality of the stress–strain curve

estimates are expected to hold true in both the elastic and plastic

range of a dynamic experiment. It has been demonstrated that the

use of the average strain in combination with either the average

force based stress or output force based stress provides the best

estimate of the stress–strain curve in the elastic case. In the plastic

case, the variations of the stress and strain fields along the spec-

imen axis are anticipated to be even smaller than in the elastic case.

Consequently, we also recommend the direct estimates to

approximate the stress–strain curve in the plastic case, while other

methods should be used with care.

6. Conclusions

Different formulas have been proposed in the literature to

estimate the stress–strain curve based on the forces and displace-

ments at the boundary of a dynamically loaded specimen. A theo-

retical analysis is performedwhichmakes use of the exact transient

solution for a dynamically loaded elastic specimen. The results

demonstrate that the so-called direct estimates, which are based on

the force and displacement time histories at the specimen

boundaries without artificial time shifts, provide the most accurate

estimates of the stress–strain curve. Unless accurate input force

measurements are available, the combination of the average strain

with the output force based stress estimate is recommended for

standard SHPB experiments.
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