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TUNNELING AND METASTABILITY OF CONTINUOUS TIME

MARKOV CHAINS

J. BELTRÁN, C. LANDIM

Abstract. We propose a new definition of metastability of Markov processes
on countable state spaces. We obtain sufficient conditions for a sequence of pro-
cesses to be metastable. In the reversible case these conditions are expressed in
terms of the capacity and of the stationary measure of the metastable states.

1. Introduction

In the framework of non-equilibrium statistical mechanics, metastability is a
relevant dynamical phenomenon taking place in the vicinities of first order phase
transitions. There has been along the years several proposals of a rigorous math-
ematical description of the phenomenon starting with Lebowitz and Penrose [16]
who derived the canonical free energy for Kac potentials in the Van der Waals limit.
The seminal paper of Cassandro, Galves, Olivieri and Vares [6] proposed a path-
wise approach to metastability which highlighted the underlying Markov structure
behind metastability which is exploited here. In the sequel, Scoppola [19] examined
the metastable behavior of finite state space Markov chains with transition proba-
bilities exponentially small in a parameter. More recently, Bovier and co-authors
([5] and references therein) presented a new approach based on the spectral prop-
erties of the generator of the process. We refer to [18] for a recent monograph on
the subject.

We propose in this article an alternative formulation of metastability for se-
quences of Markov processes on countable state spaces. Informally, a process is
said to exhibit a metastable behavior if it remains for a very long time in a state
before undergoing a rapid transition to a stable state. After the transition, the
process remains in the stable state for a period of time much longer than the time
spent in the first state, called for this reason metastable. In certain cases, there are
two or more “metastable wells” with the same depth, a situation called by physi-
cists “competing metastable states”. In these cases, the process thermalizes in each
well before jumping abruptly to another well where the same qualitative behavior
is observed.

To describe our approach, denote by EN , N ≥ 1, a sequence of countable spaces
and by (θN : N ≥ 1) a sequence of positive real numbers. For each N ≥ 1, consider
a partition E1

N , . . . , Eκ
N , ∆N of EN and a EN -valued Markov process {ηN

t : t ≥ 0}.
Fix a state ξN

x in Ex
N , 1 ≤ x ≤ κ. We say that the sequence of Markov processes

{ηN
t : t ≥ 0}, N ≥ 1, exhibits a tunneling behavior in the time scale (θN : N ≥

1) with metastates E1
N , . . . , Eκ

N , attractors ξN
1 , . . . , ξN

κ , and asymptotic behavior
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2 J. BELTRÁN, C. LANDIM

described by the Markov process on S = {1, . . . , κ} with rates {r(x, y) : x, y ∈ S}
if the following three conditions are fulfilled:

(1) For every 1 ≤ x ≤ κ, starting from a state ηN in E
x
N , with overwhelming

probability, the process {ηN
t : t ≥ 0} reaches ξN

x before attaining
⋃

y 6=x E
y
N .

(2) Let {XN
t : t ≥ 0} be the process XN

t = ΨN (ηEN

t ), where {ηEN

t : t ≥ 0}
is the trace of the Markov process {ηt : t ≥ 0} on EN =

⋃

1≤x≤κ Ex
N and

where ΨN(η) =
∑

1≤x≤κ x1{η ∈ Ex
N}. The speed up process {XN

tθN
: t ≥ 0}

converges to the Markov process on S which jumps from x to y at rate
r(x, y).

(3) Starting from any point of EN , the time spent by the speed up Markov
process {ηtθN

: t ≥ 0} on the set ∆N in any time interval [0, s], s > 0,
vanishes in probability.

All the terminology used in the previous definition is explained in the next sec-
tion. Condition (1) states that the process thermalizes in each set Ex

N before reach-
ing another metastate set E

y
N , y 6= x. The assumption of the existence of an

attractor can clearly be relaxed, but is satisfied in several interesting examples,
as in the condensed zero-range processes [3, 4] which motivated the present work.
Condition (2) describes the intervalley dynamics and reveals the loss of memory of
the jump times from a well to another, put in evidence in [6]. In condition (3) we
assume that the starting point belongs to EN . It may therefore happen that the
discarded set ∆N hides wells deeper than the wells Ex

N , 1 ≤ x ≤ κ, but which can
not be attained from EN . When we remove in this condition the assumption that
the starting point belongs to EN , we say that the process exhibits a metastable
behavior, instead of a tunneling behavior. In this case, the wells Ex

N , 1 ≤ x ≤ κ are
the deepest ones.

In contrast with the pathwise approach to metastability [6], the present one
does not give a precise description of the saddle points between the wells nor of
the typical path which drives the system from one well to another. Its descrip-
tion of metastability is in some sense rougher, but keeps the main ingredients, as
thermalization and asymptotic Markovianity.

The main results of this article, stated in the next section, establish sufficient
conditions for recurrent Markov processes on countable state spaces to exhibit a
tunneling behavior. In the reversible case, these sufficient conditions can be ex-
pressed in terms of the capacity and of the stationary probability measure of the
metastates.

A theory is meaningless if no interesting example is provided which fits in the
framework presented. Besides the mean field models considered in [6] and the
Freidlin–Wentsell Markov chains proposed in [18], which naturally enter in the
present framework, we examine in [3, 4] a new class of processes which exhibit a
metastable behavior. This family, known as the condensed zero-range processes,
have been introduced in the physics literature [8, 13, 9] to model the Bose-Einstein
condensation phenomena. It has been proved in several different contexts [14, 10, 1]
that, above a critical density, all but a small number of particles concentrate on
one single site in the canonical stationary states of these processes. In [3, 4] we
prove that, in the reversible case, the condensed zero range processes exhibit a
tunneling behavior by showing that in an appropriate time scale the condensed site
evolves according to a random walk on S. We also prove that the jump rates of
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the asymptotic Markov dynamics can be expressed in terms of the capacities of the
underlying random walks performed by the particles.

The article is organized as follows. In Section 2, we introduce the notation, the
definitions and state the main theorems. In Section 3 we present some elementary
examples which justify the definitions proposed. In Sections 4, 5, we prove the
main results. Finally, in Section 6, we prove some results on the trace of Markov
processes needed in the article and which we did not find in the literature.

2. Notation and Results

Fix a sequence (EN : N ≥ 1) of countable state spaces. The elements of EN

are denoted by the Greek letters η, ξ. For each N ≥ 1 consider a matrix RN :
EN × EN → R such that RN (η, ξ) ≥ 0 for η 6= ξ, −∞ < RN (η, η) ≤ 0 and
∑

ξ∈EN
RN (η, ξ) = 0 for all η ∈ EN . Denote by LN the generator which acts on

bounded functions f : EN → R as

(LNf)(η) =
∑

ξ∈EN

RN (η, ξ)
{
f(ξ) − f(η)

}
. (2.1)

Let {ηN
t : t ≥ 0} be the minimal right-continuous Markov process associated to

the generator LN . We refer to [7, 11, 17] for the terminology and the main facts
on Markov processes alluded to in this article. It is well known, for instance, that
{ηN

t : t ≥ 0} is a strong Markov process with respect to the filtration {FN
t : t ≥ 0}

given by FN
t = σ(ηN

s : s ≤ t). To avoid unnecessary technical considerations, we
assume throughout this article that there is no explosion.

Denote by D(R+, EN ) the space of right-continuous trajectories e : R+ → EN

with left limits endowed with the Skorohod topology. Let PN
η , η ∈ EN , be the

probability measure on D(R+, EN ) induced by the Markov process {ηN
t : t ≥

0} starting from η. Expectation with respect to PN
η is denoted by EN

η and we

frequently omit the index N in PN
η , EN

η .
For every N ≥ 1 and any subset A ⊆ EN , denote by τA : D(R+, EN ) → R+ the

hitting time of the set A:

τA := inf
{
s > 0 : es ∈ A

}
,

with the convention that τA = ∞ if es 6∈ A for all s > 0. When the set A is a
singleton {η}, we denote τ{η} by τη. This convention is adopted everywhere below
for any variable depending on a set. In addition, for each t ≥ 0, define the additive
functional T A

t : D(R+, E) 7→ R+ as the amount of time the process stayed in the
set A in the interval [0, t]:

T A
t :=

∫ t

0

1{es ∈ A} ds , t ≥ 0 , (2.2)

where 1{B} stands for the indicator of the set B.
A sequence of states η = (ηN ∈ EN : N ≥ 1) is said to be a point in a sequence

A of subsets of EN , A = (AN ⊆ EN : N ≥ 1), if ηN belongs to AN for every N ≥ 1.
For a point η = (ηN ∈ EN : N ≥ 1) and a set A = (AN ⊆ EN : N ≥ 1), denote by
Tη, TA, the hitting times of the sets {η}, A:

Tη = T N
η := τηN , TA = T N

A := τAN
.
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For any sequence of subsets A = (AN ⊂ EN : N ≥ 1), F = (FN ⊂ EN : N ≥ 1),
denote by TA(F) the time spent on the set F before hitting the set A:

TA(F) = T N
A (F) :=

∫ τAN

0

1{ηN
s ∈ FN} ds .

2.1. Valley with attractor. We introduce in this subsection the concept of valley.
Intuitively, a subset W of the state space EN is a valley for the Markov process
{ηN

t : t ≥ 0} if the process starting from W thermalizes in W before leaving W at
an exponential random time.

To define precisely a valley, consider two sequences W, B of subsets of EN , the
second one containing the first and being properly contained in EN :

W = (WN ⊆ EN : N ≥ 1) , B = (BN ⊆ EN : N ≥ 1) , WN ⊆ BN $ EN . (2.3)

Fix a point ξ = (ξN ∈ WN : N ≥ 1) in W, a sequence of positive numbers
θ = (θN : N ≥ 1) and denote by B

c the complement of B: B
c = (Bc

N : N ≥ 1).

Definition 2.1 (Valley). The triple (W, B, ξ) is a valley of depth θ and attractor
ξ for the Markov process {ηN

t : t ≥ 0} if for every point η = (ηN : N ≥ 1) in W

(V1) With overwhelming probability, the attractor ξ is attained before the process
leaves B:

lim
N→∞

PηN

[
Tξ < TBc

]
= 1 ;

(V2) The law of TBc/θN under PηN converges to a mean 1 exponential distri-
bution, as N → ∞;

(V3) For every δ > 0,

lim
N→∞

PηN

[ 1

θN

TBc(∆) > δ
]

= 0 ,

where ∆ = (∆N : N ≥ 1) and ∆N is the annulus BN \ WN .

We refer to W as the well, and B as the basin of the valley (W, B, ξ). We
present in Section 3 examples of Markov processes on finite state spaces and triples
(W, B, ξ) in which all conditions but one in the above definition hold.

Condition (V1). The first condition guarantees that the process thermalizes in W

before leaving the basin B. We prove in Lemma 4.1 that conditions (V1), (V2)
imply that the attractor ξ is reached from any point in the well W faster than θN :

lim
N→∞

sup
η∈WN

Pη

[ 1

θN

Tξ > δ
]

= 0 . (V1’)

Conversely, this condition and (V2) warrant the validity of (V1). We may therefore
replace (V1) by (V1’) in the definition.

Example 3.2 illustrates the fact that conditions (V2), (V3) may hold while (V1)
fails. In this example, with overwhelming probability, the process, starting from
one state in the well W, leaves the basin B at an exponential time before hitting
the attractor ξ.

Of course, the existence of an attractor is superfluous, as shown by Example
3.8, where we present a valley without an attractor. This requirement could be
replaced by weaker requisites on the spectrum of the generator in the reversible
case or on the total variation distance between the state of the process and the
invariant measure restricted to the well W. Nevertheless, in several non trivial
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examples, as in the case of condensed zero-range processes [3, 4] which motivated
this paper, attractors do exist.

Condition (V2). The second condition asserts that the process leaves the basin at
an exponential time of order given by the depth of the valley. Example 3.5 presents
a situation in which conditions (V1), (V3) hold but not (V2) nor (V1’). There,
the order of magnitude of the time needed for the process to reach Bc from W

depends on the starting point of W.
Clearly, the depth of a valley is defined up to an equivalence relation: if θ

′ = (θ′N :
N ≥ 1) is another sequence of positive numbers such that limN→∞(θN/θ′N) = 1,
the valley has also depth θ′. Moreover, the depth of a valley depends on the basin.
As we shall see in Example 3.3, two different valleys (W, B, ξ), (W, B′, ξ), with
B ⊂ B′, may have depths of different order. Finally, the depth has not an intrinsic
character, in contrast with valleys, in the sense that it changes if we speed up or
slow down the underlying Markov process.

Condition (V3). The last condition requires the process starting from the well to
spend a negligible amount of time in the part of the basin which does not belong
to the well.

We prove in Lemma 4.2 that we may replace condition (V3) by the assumption
that for every point η = (ηN : N ≥ 1) in W and every t > 0,

lim
N→∞

EηN

[ ∫ min{t,θ
−1
N TBc}

0

1{ηsθN
∈ ∆N} ds

]

= 0 . (2.4)

Condition (V3) is necessary, as we shall see in Example 3.1, to ensure that W

is the well of the valley and not an evanescent set. The Markov process presented
in this example fulfills conditions (V1), (V2) but not condition (V3).

The definition of valley focus on paths of the Markov process starting from the
well W. Nothing is imposed on the process starting from the annulus ∆, which
may hide other wells, even deeper than the well W, as illustrated by example 3.7.
To rule out this eventuality, we replace condition (V3) by assumption (V3’) which
reads:

For every δ > 0,

lim
N→∞

sup
η∈BN

Pη

[ 1

θN

TBc(∆) > δ
]

= 0 . (V3’)

Fix η in ∆N and note that TW∪Bc = TW∪Bc(∆) ≤ TBc(∆) Pη almost surely.
Therefore, it follows from condition (V3’) that the process starting from ∆ imme-
diately reaches W ∪ Bc: For every δ > 0,

lim
N→∞

sup
η∈∆N

Pη

[ 1

θN

TW∪Bc > δ
]

= 0 . (2.5)

It also follows from conditions (V2), (V3’) that

lim
N→∞

sup
η∈BN

Eη

[ ∫ min{t,θ
−1
N

TBc}

0

1{ηsθN
∈ ∆N} ds

]

= 0 . (2.6)

These remarks lead naturally to a more restrictive definition of valley.
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Definition 2.2 (S-Valley). The triple (W, B, ξ) is a S-valley of depth θ and at-
tractor ξ for the Markov process {ηN

t : t ≥ 0} if, for every point η = (ηN : N ≥ 1)
in W, assumptions (V1), (V2), (V3’) are fulfilled.

In Example 3.7 we present a triple (W, B, ξ) satisfying assumptions (V1), (V2),
(V3) but not (V3’), (2.5) and (2.6) because ∆ contains a well deeper than W.

In many cases, it is possible to transfer from ∆ to Bc all points in ∆ which
do not reach immediately W ∪ Bc, in the sense of condition (2.5), to obtain from
a valley (W, B, ξ) satisfying conditions (V1), (V2), (V3) a new valley (W, B′, ξ)
satisfying conditions (V1), (V2), (V3’). We refer to Example 3.7.

We present in Example 3.4 a triple which satisfies conditions (V1), (V2), (2.5)
but not (V3). In particular, the first three conditions do not imply (V3). In this
example, there is a state in the annulus ∆N which immediately jumps to the well
WN , but which is visited several times before leaving the basin BN .

2.2. Tunneling and Metastability. Given a sequence of Markov processes {ηN
t :

t ≥ 0} with values in EN , we might observe a complex landscape of valleys with a
wide variety of depths. We describe in this subsection the inter-valley dynamics.

Fix a finite number of disjoint subsets E
1
N , . . . , Eκ

N , κ ≥ 2, of EN : E
x
N ∩E

y
N = ∅,

x 6= y. Let EN = ∪x∈SEx
N and let ∆N = EN \ EN so that

EN = E
1
N ∪ · · · ∪ E

κ
N

︸ ︷︷ ︸

EN

∪∆N .

Denote by ΨN : EN 7→ S = {1, 2, . . . , κ}, the projection given by

ΨN(η) =
∑

x∈S

x1{η ∈ E
x
N}

and let

Ĕ
x
N := EN \ E

x
N , E

x = (Ex
N : N ≥ 1) and Ĕ

x = (Ĕx
N : N ≥ 1) .

For a subset A of EN , let SA
t be the generalized inverse of the additive functional

T A
t introduced in the beginning of this section:

SA
t (e

·
) := sup{s ≥ 0 : T A

s (e
·
) ≤ t} .

It is clear that SA
t < +∞ for every t ≥ 0 if, and only if, T A

t → +∞ as t → +∞.
To circumvent the case SA

t = ∞, add an artificial point d to the subset A. For any
path e

·
∈ D(R+, EN ) starting at e0 ∈ A, denote by eA

·
the trace of the path e

·
on

the set A defined by eA
t = eSA

t
if SA

t < +∞, and eA
t = d otherwise. Clearly, if

eA
t = d for some t, then eA

s = d, for every s > t.

Denote by {ηEN

t : t ≥ 0} the EN ∪ {d}-valued Markov process obtained as the
trace of {ηt : t ≥ 0} on EN , and by {XN

t : t ≥ 0} the stochastic process defined

by XN
t = ΨN(ηEN

t ) whenever ηEN

t ∈ EN and XN
t = d otherwise. Clearly, besides

trivial cases, XN
·

is not Markovian.
Let θ = (θN : N ≥ 1) denote a sequence of positive numbers and, for each

x ∈ S, let ξx = (ξN
x : N ≥ 1) be a point in Ex. In order to describe the asymptotic

behaviour of the Markov process on the time-scale θ we use a Markov process
{P x : x ∈ S} defined on the canonical path space D(R+, S).

Definition 2.3 (Tunneling). A sequence of Markov processes {ηN
t : t ≥ 0}, N ≥ 1,

on a countable state space E = (EN : N ≥ 1) exhibits a tunneling behaviour on the
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time-scale θ, with metastates {Ex : x ∈ S}, metapoints {ξx : x ∈ S} and asymptotic
Markov dynamics {P x : x ∈ S} if, for each x ∈ S,

(M1) The point ξx is an attractor on Ex in the sense that

lim
N→∞

inf
η∈Ex

N

Pη

[
Tξx

< T
Ĕx

]
= 1 ;

(M2) For every point η = (ηN : N ≥ 1) in Ex, the law of the speeded up process
{XN

tθN
: t ≥ 0} under PηN converges to P x as N ↑ ∞;

(M3) For every t > 0,

lim
N→+∞

sup
η∈Ex

N

Eη

[ ∫ t

0

1{ηN
sθN

∈ ∆N} ds
]

= 0 .

Let ∆ denote the sequence (∆N : N ≥ 1) and consider the triple (Ex, Ex∪∆, ξx)
for a fixed x in S. Clearly, if x is not an absorbing state for the asymptotic Markov
dynamics, the triple (Ex, Ex ∪ ∆, ξx) is a valley of depth of the order of θ. In
this case, it may happen that the triple (Ex, Ex ∪ ∆, ξx) is an inaccessible valley
in the sense that once the process escapes from Ex it never returns to Ex. This is
illustrated in Example 3.6. In contrast, if x is an absorbing state for the asymptotic
Markov dynamics not much information is available on the triple (Ex, Ex ∪∆, ξx).
Example 3.5 presents a Markov process which exhibits a tunneling behavior in
which a triple is not a valley. In this example the triple contains a well of larger
order depth than θ.

Suppose that property (M2) is satisfied for a sequence of Markov processes and
denote by S∗ ⊂ S the subset of non-absorbing states for {Px : x ∈ S}. For the
states in S∗ we may replace requirement (M3) by property (V3) of valley, namely:
For each x ∈ S∗,

lim
N→∞

sup
η∈Ex

N

Pη

[ 1

θN

T
Ĕx(∆) > δ

]

= 0 . (C1)

Proposition 2.4. Assume that (M2) is fulfilled for a sequence of Markov processes
{ηN

t : t ≥ 0}, N ≥ 1. If (M3) is satisfied for each x ∈ S \ S∗ and if (C1) holds for
any x ∈ S∗, then (M3) is in force for any x ∈ S.

We arrive to the same conclusion in Proposition 2.4 if we assume instead that
(C1) holds for every state x ∈ S. This is the content of Lemma 4.7. Actually, for
an absorbing state x, property (C1) is stronger than (M3) because in this case
θ−1

N T
Ĕx diverges.

The definition of tunneling examines the inter-valley dynamics between wells
with depths of the same order. It is far from a global description since it does
not exclude the possibility that ∆ contains a landscape of valleys of depths of
larger order than θ. This situation is illustrated in Example 3.7. We have also
just seen that if x is an absorbing state for the asymptotic Markov dynamics, the
set Ex may also contain a landscape of valleys of larger order depth. In order to
exclude these eventualities, we impose more restrictive conditions in the definition
of metastability. We replace (M1) by (M1’) to ensure that there are no wells in Ex

of depth of order θN if x is an absorbing point for the asymptotic Markov dynamics;
and we replace (M3) by (M3’) to avoid wells in ∆ of depth of order θN or larger.

Definition 2.5 (Metastability). A sequence of Markov processes {ηN
t : t ≥ 0},

N ≥ 1, on a countable state space E = (EN : N ≥ 1) exhibits a metastable behaviour
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on the time-scale θ, with metastates {Ex : x ∈ S}, metapoints {ξx : x ∈ S} and
asymptotic Markov dynamics {P x : x ∈ S}, if for each x ∈ S,

(M1’) The point ξx is an attractor on Ex in the sense that for every δ > 0

lim
N→∞

sup
η∈Ex

N

Pη

[
Tξx

> δθN

]
= 0 ;

(M2) For every point η = (ηN : N ≥ 1) in Ex, the law of the speeded up process
{XN

tθN
: t ≥ 0} under PηN converges to P x as N ↑ ∞;

(M3’) For every t > 0,

lim
N→+∞

sup
η∈EN

Eη

[ ∫ t

0

1{ηN
sθN

∈ ∆N} ds
]

= 0 .

As for valleys, it follows from (M3’) that ∆ is evanescent in the sense that for
every δ > 0,

lim
N→∞

sup
η∈∆N

Pη

[
TEN

> δθN

]
= 0 . (2.7)

Example 3.5 presents a Markov process which exhibits a tunneling behaviour
and fulfills condition (M3’) but violates assumption (M1’). Example 3.7 presents
a Markov process with the opposite properties. It fulfills conditions (M1’), (M2),
(M3) but violates assumption (M3’). This latter example is very instructive. It
shows that the same Markov process may have distinct metastable behaviors at
different time scales. This occurs when on one time scale there is an isolated point
in the asymptotic Markov dynamics. In longer time scales this metastate is reached
by other metastates, previous metastates coalesce in one larger metastate, and a
new metastable picture emerges.

We conclude this subsection observing that we may define metastability without
referring to trace processes. Indeed, consider the S-valued stochastic process X̂N

t

defined as

X̂N
t = ΨN (ηN

σ(t)) ,

where σ(t) := sup{s ≤ t : ηN
s ∈ EN}. Note that X̂N

t is well defined whenever ηN
t

starts from a point in EN .

Proposition 2.6. In condition (M2) of Definitions 2.3, 2.5, we may replace the

stochastic process {XN
tθN

: t ≥ 0} by {X̂N
tθN

: t ≥ 0}.

2.3. The positive recurrent case. The purpose of this subsection is to provide
sufficient conditions to ensure tunneling. Assume from now on that the Markov
process {ηN

t : t ≥ 0} is irreducible and positive recurrent, and denote by µN its
unique invariant probability measure. It follows from these hypotheses that the
holding rates λN (η) = −RN(η, η) are strictly positive, and that the discrete time
Markov chain on EN which jumps from η to ξ at rate RN (η, ξ)/λN (η) is irreducible
and recurrent.

Furthermore, for every η ∈ EN and A ⊆ EN , T A
t diverges. Consequently, the

trace of the Markov process {ηN
t : t ≥ 0} on the set A, denoted by {ηA

t : t ≥ 0},
is well defined and takes values in A. In fact, we prove in Proposition 6.1 that the
trace {ηA

t : t ≥ 0} is an irreducible and positive recurrent Markov process with
invariant probability measure equal to the measure µN conditioned on the set A.
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Consider two sequences of sets W and B satisfying (2.3). To keep notation simple,
let ∆N = BN \ WN , ∆ = (∆N : N ≥ 1), and EN = WN ∪ Bc

N , E = (EN : N ≥ 1).
Denote by

RE

N (η, ξ) , η , ξ ∈ EN , η 6= ξ ,

the transition rates of the Markov process {ηEN

t : t ≥ 0}, the trace of {ηN
t : t ≥ 0}

on EN . Let RW
N : WN → R+ be the rate at which the trace process jumps to Bc

N :

RW

N (η) :=
∑

ξ∈Bc
N

RE

N (η, ξ) ,

and let rN (W, Bc) be the average of RW
N over WN with respect to µWN

N , the measure
µN conditioned on WN :

rN (W, Bc) :=
1

µN (WN )

∑

η∈WN

RW

N (η)µN (η)

=
1

µN (WN )

∑

η∈WN

∑

ξ∈Bc
N

RE

N (η, ξ)µN (η) .
(2.8)

Next theorem presents sufficient conditions for W and B to be the well and the
basin of a valley.

Theorem 2.7. Assume that there exists a point ξ = (ξN : N ≥ 1) in W such that
for every point η = (ηN : N ≥ 1) in W,

lim
N→∞

EηN

[ ∫ Tξ

0

RW

N (ηN
s )1{ηN

s ∈ WN} ds
]

= 0 , (2.9)

lim
N→∞

rN (W, Bc)EηN [Tξ(W)] = 0 (2.10)

and

lim
N→∞

rN (W, Bc)EηN

[
TBc(∆)

]
= 0 . (2.11)

Then, (W, B, ξ) is a valley with depth θ = (θN : N ≥ 1) where θN = 1/rN(W, Bc),
N ≥ 1.

Conditions (2.9) and (2.10) clearly follow from the stronger condition

lim
N→∞

sup{RW

N (η) : η ∈ WN}EηN [ Tξ ] = 0 .

To state sufficient conditions for a tunneling behaviour, recall the notation in-
troduced in Subsection 2.2. Let RE

N : EN ×EN → R+ be the transition rates of the

trace process {ηEN

t : t ≥ 0}, let Rx,y
N : Ex

N → R+, x, y ∈ S, x 6= y, be the rate at
which the trace process jumps to the set E

y
N :

Rx,y
N (η) :=

∑

ξ∈E
y
N

RE

N (η, ξ) ,

and let Rx
N : Ex

N → R+, x ∈ S, be the rate at which it jumps to the set Ĕx
N : Rx

N =
∑

y 6=x Rx,y
N . Observe that Rx

N coincides with RW
N if (WN , BN ) = (Ex

N , Ex
N ∪ ∆N ).

Let µx
N stand for the probability measure µN conditioned on Ex

N . Denote by
rN (Ex, Ey) the µx

N -expectation of Rx,y
N :

rN (Ex, Ey) :=
1

µN (Ex
N )

∑

η∈Ex
N

Rx,y
N (η)µN (η)
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and by rN (Ex, Ĕx
N ) the µx

N -expectation of Rx
N so that

rN (Ex, Ĕx
N ) =

∑

y 6=x

rN (Ex, Ey) .

To guarantee that the process {ηN
t : t ≥ 0} exhibits a tunneling behavior, we

first require that each subset {Ex : x ∈ S} satisfies conditions (2.9) and (2.10): For
each x ∈ S, there exists a point ξx = (ξN

x : N ≥ 1) in Ex such that

lim
N→∞

EηN

[ ∫ Tξx

0

Rx
N (ηN

s )1{ηN
s ∈ E

x
N} ds

]

= 0 (C2)

and
lim

N→∞
rN (Ex, Ĕx)EηN [Tξx

(Ex)] = 0 (C3)

for every point η = (ηN : N ≥ 1) in Ex.

Theorem 2.8. Suppose (C2), (C3) and that there exists a sequence θ = (θN :
N ≥ 1) of positive numbers such that, for every pair x, y ∈ S, x 6= y, the following
limit exists

r(x, y) := lim
N→∞

θN rN (Ex, Ey) . (H0)

Assume, furthermore, that (M3) is satisfied for each absorbing state x of the
Markov process on S determined by the rates r and that (C1) holds for any non-
absorbing state. Then, the sequence of Markov processes {ηN

t : t ≥ 0}, N ≥ 1,
exhibits a tunneling behaviour on the time-scale θ, with metastates {Ex : x ∈ S},
metapoints {ξx : x ∈ S} and asymptotic Markov dynamics characterized by the
rates r(x, y), x, y ∈ S.

Notice that in the previous theorem we might get
∑

x∈S\{x0}

r(x, x0) = 0 and
∑

x∈S\{x0}

r(x0, x) > 0

for some x0 ∈ S∗. In this case, the triple (Ex0 , Ex0 ∪ ∆, ξx0
) turns out to be an

inaccessible valley, as it is illustrated in Example 3.6, even tough it has the same
depth than all the other wells involved in the tunneling.

2.4. The reversible case, potential theory. In addition to the positive recur-
rent assumption, let us now further assume that µN is a reversible probability
measure. In this case, we may list simple conditions, all of them expressed in
terms of the capacities and the reversible measure µN , which ensure the existence
of valleys and the tunneling behaviour.

As we have already seen, we need good estimates for the mean of entry times.
In the reversible case, the mean of an entry time has a simple expression involving
capacities, which are defined as follows. For two disjoint subsets A, B of EN define

CN (A, B) := {f ∈ L2(µN ) : f(η) = 1 ∀ η ∈ A and f(ξ) = 0 ∀ ξ ∈ B} .

Let 〈·, ·〉µN
stand for the scalar product in L2(µN ). Denote by DN the Dirichlet

form associated to the generator LN :

DN (f) := 〈−LNf, f〉µN
,

for every f in L2(µN ). An elementary computation shows that

DN(f) =
1

2

∑

η,ξ∈EN

µN (η)RN (η, ξ) {f(ξ) − f(η)}2 .
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The capacity of two disjoint subsets A, B of EN is defined as

capN (A, B) := inf
{

DN(f) : f ∈ CN(A, B)
}

.

In the reversible context, the expressions appearing in Theorems 2.7 and 2.8
can be computed by using capacities. Denote by fN

AB : EN → R the function in
CN(A, B) defined as

fN
AB(η) := Pη

[
τA < τB

]
.

In addition, for two points ξ = (ξN : N ≥ 1) and η = (ηN : N ≥ 1) in W, ηN 6= ξN ,
N ≥ 1, set fN (η, ξ) = fN

{ηN}{ξN} and capN (η, ξ) = capN ({ηN}, {ξN}).

Consider two sequences of sets W and B satisfying (2.3) and recall the notation
introduced in the previous subsection. By (6.16),

EηN

[ ∫ Tξ

0

RW

N (ηN
s )1{ηN

s ∈ WN} ds
]

=
〈RW

N 1{WN} , fN(η, ξ) 〉µN

capN (η, ξ)
, (2.12)

EηN [Tξ(W)] =
〈1{WN} , fN (η, ξ) 〉µN

capN (η, ξ)
, (2.13)

and, by Lemma 6.7,

rN (W, Bc) =
capN (W, Bc)

µN (W)
· (2.14)

In the last identity capN (W, Bc) := capN (WN , Bc
N) and µN (W) := µN (WN ). The

previous relations can be used to check conditions (2.9) and (2.10) in Theorem 2.7
as well as assumptions (C2) and (C3) in Theorem 2.8.

Furthermore, since 0 ≤ fN(η, ξ) ≤ 1, and since, by (2.8), 〈RW
N 1{WN}〉µN

=
µN (W)rN (W, Bc), by (2.14),

EηN

[ ∫ Tξ

0

RW

N (ηN
s )1{ηN

s ∈ WN} ds
]

≤
capN (W, Bc)

capN (ξ)

and rN (W, Bc)EηN [Tξ(W)] ≤
capN (W, Bc)

capN (ξ)
,

where capN (ξ) = inf{capN (η, ξN ) : η ∈ W \ {ξN}}. Hence, conditions (2.9) and
(2.10) follow from the stronger condition

lim
N→∞

capN (W, Bc)

capN (ξ)
= 0 . (2.15)

Theorem 2.9. Assume that (2.15) holds for some point ξ = (ξN : N ≥ 1) in W

and that

lim
N→∞

µN (BN \ WN )

µN (WN )
= 0 . (2.16)

Then, for all points ζ in W, (W, B, ζ) is a valley of depth µN (W)/capN (W, Bc),
N ≥ 1.

Assumption (2.15) is also powerful in the context of tunneling. Recall the nota-
tion introduced at the beginning of Subsection 2.2.

Theorem 2.10. Suppose that for each x ∈ S, there exists a point ξx = (ξN
x : N ≥

1) in Ex such that

lim
N→∞

capN (Ex, Ĕx)

capN(ξx)
= 0 . (H1)
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Suppose, furthermore, that (H0) holds for some θ = (θN : N ≥ 1), that (M3) holds
for each absorbing state of the Markov dynamics on S determined by the rates r
and that

lim
N→∞

µN (∆)

µN (Ex)
= 0 , (H2)

for each non-absorbing state x. Then, the sequence of Markov processes {ηN
t : t ≥

0}, N ≥ 1, exhibits a tunneling behaviour on the time-scale θ, with metastates {Ex :
x ∈ S}, metapoints {ξx : x ∈ S} and asymptotic Markov dynamics characterized
by the rates r(x, y), x, y ∈ S.

Remark 2.11. In the previous theorem, we may replace condition (M3) for ab-
sorbing states and condition (H2) for non-absorbing states by the assumption

lim
N→∞

1

θN rN (Ex, Ĕx)

µN (∆)

µN (Ex)
= 0 (H2’)

for all states x.

Note that condition (H2) and (H2’) are equivalent for non-absorbing states if
(H0) holds. This latter condition can be expressed in terms of capacities since, by
Lemma 6.8, µN (Ex)rN (Ex, Ey) can be written as

1

2

{

capN (Ex, Ĕx) + capN (Ey , Ĕy) − capN

(
E

x ∪ E
y , E \ (Ex ∪ E

y)
) }

for every x, y ∈ S, x 6= y.

One of the main steps in the proof of metastability is the replacement result pre-
sented in Lemma 6.4 and in Corollary 6.5. This statement proposes a mathematical
formulation of the notion of thermalization by identifying this phenomenon with
the possibility of replacing the time integral of a function by the time integral of its
conditional expectation with respect to the σ-algebra generated by the metastable
states. The existence of attractors allows a simple estimate, presented in Corollary
6.5, which plays a key role in all proofs.

The propositions stated above are proved in Section 4, while the theorems and
the remark are proved in Section 5.

3. Some examples

We present in this section some examples to justify the definitions of the previous
section and to illustrate some unexpected phenomena which may occur.

We start with a general remark concerning valleys on fixed state spaces. Consider
a sequence of Markov processes {ηN

t : t ≥ 0} on some given countable space E with
generator LN described by (2.1). Denote by λN (η) =

∑

ξ 6=η RN (η, ξ) the rate at

which the process leaves the state η. Clearly, the triple ({η}, {η}, η) is a well of
depth λN (η)−1 in the sense of Definition 2.1.

The first example highlights the role of condition (V3) in preventing some evanes-
cent sets to be called wells.

Example 3.1. Consider the sequence of Markov processes {ηN
t : t ≥ 0} on E =

{−1, 0, 1} with rates given by

RN (−1, 0) = RN (1, 0) = N , RN (0,−1) = RN (0, 1) = 1 ,

and RN (j, k) = 0 otherwise.
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Obviously, we do not wish the triple ({−1}, {−1, 0},−1) to be a valley. Never-
theless, this triple satisfies conditions (V1) and (V2) of Definition 2.1. The first
one is satisfied by default. To check the second one, note that starting from −1

T
B̆

=

M∑

j=1

{Sj + Tj} ,

where {Sj : j ≥ 1}, {Tj : j ≥ 1} are independent sequences of i.i.d. exponential
random variables of parameter N , 1, respectively, and M is geometric random vari-
able of parameter 1/2, independent of the sequences. Hence, (1/2)TBc converges
in distribution, as N ↑ ∞, to a mean 1 exponential random variable.

It is condition (V3) which prevents the triple ({−1}, {−1, 0},−1) to be a valley
since the time spent at 0 before reaching {−1, 1} is a mean 1/2 exponential random
variable. �

Next example illustrates the fact that conditions (V2), (V3) may hold while
(V1) fails.

Example 3.2. Consider the Markov process on {0, 1, 2, 3} with rates given by

RN (1, 0) = RN (2, 3) = 1 − (1/N) , RN (1, 2) = RN (2, 1) = 1/N ,

RN (0, 0) = a , RN (3, 3) = b

for some a, b > 0, and RN (i, j) = 0 otherwise.

Consider the tripe ({1, 2}, {1, 2}, 1). It is clear that condition (V1) does not
hold since the process starting from 2 reaches Bc = {0, 3} before hitting 1 with
probability 1−(1/N). Condition (V2) is fulfilled for θ = 1 because TBc converges to
a mean one exponential time, independently from the starting point, and condition
(V3) is in force by default. �

The third example illustrates the fact that the depth of a valley depends on the
basin.

Example 3.3. Consider the sequence of Markov processes {ηN
t : t ≥ 0} on E =

{−1, 0, 1} with rates given by

RN (−1, 0) = RN (1, 0) = 1 , RN (0,−1) = RN (0, 1) = N ,

and RN (j, k) = 0 otherwise.

By the observation of the beginning of this section, the triple ({−1}, {−1},−1) is
a valley of depth 1. On the other hand, the triple ({−1}, {−1, 0},−1) is a valley of
depth 2. Condition (V1) is satisfied by default, and condition (V2) can be verified
by representing the time needed to reach Bc as a geometric sum of independent
exponential random variables, as in Example 3.1. Requirement (V3) is readily
checked. �

Next example shows that conditions (V1), (V2) and (2.5) do not imply (V3).

Example 3.4. Consider the sequence of Markov processes {ηN
t : t ≥ 0} on E =

{1, 2, 3} with rates given by RN (1, 2) = N , RN (2, 1) = N − 1, R(2, 3) = 1 and
RN (i, j) = 0 otherwise.
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Let ξ = 1, W = {1} and B = {1, 2}. Condition (V1) is fulfilled by default.
Condition (V2) is easily checked for θN = 2. In fact, the hitting time τN

3 of 3
starting from 1 can be written as

∑

1≤j≤M{Sj+Tj}, where {Sj : j ≥ 1}, {Tj : j ≥ 1}

are independent sequences of i.i.d. mean 1/N exponential random variables and M
is a geometric random variable of parameter 1/N , independent of both sequences.
It follows from this representation that τN

3 /2 converges in distribution to a mean 1
exponential random variable.

For similar reasons, conditions (V3) fails: With the notation just introduced,
starting from 1, the time spent at state 2 before hitting 3, denoted in Section 2 by
T N

3 (2), converges to a mean 1 exponential random variable.
Condition (2.5), however, is in force, since the hitting time of the set {1, 3}

starting from 2 is of order 1/N . �

The fifth example shows that metastates might not be wells of valleys. It presents
also a triple which fulfills condition (V1), (V3) but not (V2) nor (V1’).

Example 3.5. Consider the sequence of Markov processes {ηN
t : t ≥ 0} on E =

{0, 1, 2} with rates given by

RN (1, 0) = N − 1 , RN (1, 2) = 1 , RN (2, 1) = N−1 , RN (0, 1) = N2 ,

and RN (j, k) = 0 otherwise.

The triple ({1, 2}, {1, 2}, 2) is not a well because condition (V1) is violated. With
overwhelming probability the process starting from 1 leaves the set {1, 2} before
reaching 2. The triple ({1, 2}, {1, 2}, 1) is not a well either. While conditions (V1),
(V3) are clearly satisfied, it is not difficult to show that condition (V2) is violated.
In fact, starting from 1, TBc converges to a mean one exponential random variable,
while starting from 2, N−1TBc converges to a mean one exponential random vari-
able. It is also clear that condition (V1’) fails in this case since on the scale of
order 1 the process starting from 2 never reaches 1.

At the scale N−2 the process exhibits a tunneling behaviour, as described in
Definition 2.3, with metastates E1 = {0} and E2 = {1, 2}, ξ2 = 1, and asymptotic
Markov dynamics characterized by the rates r(1, 2) = 1, r(2, 1) = 0. It does not
exhibit a metastable behaviour, as described in Definition 2.5, because condition
(M1’) is violated. Starting from state 2 ∈ E

2, the process never reaches the attrac-
tor 1 in the time scale N−2. We have also here an example of an absorbing set for
the asymptotic dynamics which is not a valley due to the existence of the well {2}
in the the set E2 of depth N ≫ N−2. �

Next example shows that there might exist inaccessible valleys.

Example 3.6. Consider the sequence of Markov processes {ηN
t : t ≥ 0} on E =

{1, . . . , 5} with rates given by

RN (j, k) = 1 if j is even, k odd and |j − k| = 1 ,

RN (1, 2) = RN (3, 4) = RN (5, 4) = N−1 , RN (3, 2) = N−2 ,

RN (j, k) = 0 otherwise .

The triples ({1}, {1, 2}, 1), ({3}, {3, 4}, 3), ({5}, {4, 5}, 5) are valleys of depth
2N . Moreover, at the time scale N the process exhibits a metastable behaviour,
as described in Definition 2.5, with metastates E1 = {1}, E2 = {3}, E3 = {5}
and asymptotic Markov dynamics characterized by the rates r(1, 2) = r(2, 3) =
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r(3, 2) = 1/2, r(i, j) = 0, otherwise. Note that the metastate E1 is inaccessible in
the sense that r(2, 1)+r(3, 1) = 0. This means that in the time scale N the process
starting from 1 eventually leaves this state, never to return. �

The penultimate example, very instructive, shows that different phenomena may
be observed on different scales. It also highlights the role of conditions (V3), (V3’).

Example 3.7. Consider the sequence of Markov processes {ηN
t : t ≥ 0} on E =

{1, . . . , 5} with rates given by

RN (j, k) = 1 if j is even, k odd and |j − k| = 1 ,

RN (1, 2) = N−2 , RN (3, 2) = N−3 , RN (3, 4) = RN (5, 4) = N−1 ,

RN (j, k) = 0 otherwise .

A simple computation shows that the measure mN on E given by mN (1) = N2,
mN(2) = 1, mN(3) = N3, mN (4) = N2, mN(5) = N3 is reversible for the Markov
process. We leave to the reader to check that ({3}, {3, 4}, 3), ({5}, {4, 5}, 5) are val-
leys of depth 2N , and that ({1}, {1, 2}, 1), ({3, 4, 5}, {3, 4, 5}, 3), ({3, 4, 5}, {2, 3, 4,
5}, 3) are valleys of depth 2N2, 2N3, 4N3, respectively. The presence of valleys of
different depths leads to diverse tunneling behaviors at different time scales.

This example illustrates that we may have valleys satisfying conditions (V1),
(V2) and (V3), but not (V3’) and (2.5). This is the case of the triple ({3}, {1, 2, 3,
4}, 3). The latter conditions are violated because the annulus {1, 2, 4} contains
the valley ({1}, {1, 2}, 1) of depth 2N2, larger than 2N which is the depth of
({3}, {3, 4}, 3). On the scale N , the process starting from 1 never reaches 3 with
positive probability. However, condition (V3) holds because on the scale N the
process starting from 3 never reaches {1, 2}.

Note that transferring the points 1, 2 from ∆ to Bc, we transform the the valley
({3}, {1, 2, 3, 4}, 3) in the S-valley ({3}, {3, 4}, 3).

At the scale N one observes a tunneling between E1 = {3} and E2 = {5},
characterized by the asymptotic Markov rates r(1, 2) = r(2, 1) = 1/2. Assumption
(M3’) is not satisfied because the set ∆N contains a well of depth larger than the
depth of the metastates. However, this well is never visited if the process starts
from one of the metastates.

To turn the tunneling behavior into a metastable one, we may add the metastate
E3 = {1} and show that at scale N , the process exhibits a metastable behaviour
with metastates E1 = {3}, E2 = {5}, E3 = {1} and asymptotic Markov dynamics
characterized by the rates r(1, 2) = r(2, 1) = 1/2, r(i, j) = 0, otherwise. Observe
that an isolated state has appeared in the asymptotic dynamics.

At scale N2, the metastates E1 = {3}, E2 = {5} coalesce into one deeper well.
In this scale the process exhibits the metastable behaviour with metastates E1 =
{1}, E

2 = {3, 4, 5}, and asymptotic Markov dynamics characterized by the rates
r(1, 2) = 1/2, r(2, 1) = 0. Note that we have here an absorbing asymptotic state
and that {3, 4, 5} is not the well of a valley of depth of order N2, but the well of a
valley of depth of order N3. �

The last example shows that the existence of an attractor is superfluous in the
definition of a valley. Denote by EN = (Z/NZ)d ∪ (Z/NZ)d the union of two d-
dimensional torii of length N and denote by (x, j), x ∈ (Z/NZ)d, j = ±1, the
elements of EN .
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Example 3.8. Consider the sequence of Markov processes {ηN
t : t ≥ 0} on EN

with rate jumps given by

RN ((x, j), (x′, j)) =
1

2d
1{|x − x′| = 1} , RN ((x, j), (x,−j)) =

1

θN

,

for some rate θN such that N2 << θN << Nd, and RN ((x, i), (y, j)) = 0 otherwise.

It is well known that the spectral gap of the symmetric simple random walk on
the torus (Z/NZ)d is of order N−2. The evolution of the process ηN

t is therefore
quite clear. In a time scale of order N2, the process thermalizes in the torus where
it started from, and after an exponential time of order θN it jumps to the other
torus, replicating there the same qualitative behavior.

Hence, each torus satisfies all reasonable conditions to be qualified as a valley of
depth θN . Nevertheless, there is no attractor in this example since a specific state
is visited by the symmetric simple random walk only in the scale Nd. �

4. Valleys and metastability

In this section we prove some results on valleys and on tunneling. The first lemma
states that we may replace condition (V1) by condition (V1’) in the definition of
a valley.

Lemma 4.1. In Definition 2.1, condition (V1) may be replaced by condition (V1’).

Proof. Let us denote by Θt := ΘN
t , t ≥ 0, the time-shift operators on the path

space D(R+, EN ). Let (W, B, ξ) be a valley of depth θ = (θN : N ≥ 1). Fix a point
η = (ηN : N ≥ 1) in W as the starting point. Consider the pair of random variables
Tξ, TBc ◦ ΘTξ

, which are independent by the strong Markov property. According
to assumption (V1), the event {Tξ < TBc} has asymptotic probability equal to

one. On this event Tξ + TBc ◦ ΘTξ
= TBc . Since, by assumption (V1), θ−1

N TBc

converges to a mean one exponential random variable, θ−1
N {Tξ + TBc ◦ ΘTξ

} also
converges to a mean one exponential random variable.

Suppose by contradiction that there exist δ, ǫ > 0 such that

lim sup
N→∞

PηN

[ 1

θN

Tξ > δ
]

= ǫ . (4.1)

By assumptions (V1), (V2), θ−1
N (TBc ◦ ΘTξ

) converges to a mean one exponential

random variable and, by (4.1), θ−1
N Tξ > δ with strictly positive probability. In

particular, θ−1
N {Tξ+TBc◦ΘTξ

} may not converge to an exponential random variable,
in contradiction with the conclusion reached above.

Conversely, the event {Tξ < TBc} contains the event {Tξ < δθN}∩{TBc > δθN}
for every δ > 0. By assumptions (V1’), (V2), the PηN

- probability of this event
converges to 1 as N ↑ ∞ and then δ ↓ 0. This concludes the proof of the lemma. �

The second result examines the assumptions (V3) and (V3’) in the definition of
valleys.

Lemma 4.2. In Definition 2.1, assumption (V3) may be replaced by (2.4), and in
Definition 2.2 assumption (V3’) may be replaced by (2.6).
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Proof. The time integral in (2.4) is bounded above by min{t, θ−1
N TBc(∆)}. There-

fore, (2.4) follows from (V3).
Conversely, the time integral in (2.4) is bounded below by θ−1

N TBc(∆)1{TBc ≤

tθN}. This expression is itself bounded below by min{θ−1
N TBc(∆), a}1{TBc ≤ tθN}

for every a > 0. Therefore,

min{θ−1
N TBc(∆), a} ≤

∫ min{t,θ
−1
N TBc}

0

1{ηsθN
∈ ∆N} ds + a1{TBc > tθN}

for every a > 0. Fix a point η = (ηN : N ≥ 1) in W. By (2.4), the expectation
with respect to PηN of the first term on the right hand side vanishes as N ↑ ∞
for every t > 0. By (V2), the expectation with respect to PηN of the second term
vanishes as N ↑ ∞ and then t ↑ ∞. Therefore, for every a > 0

lim
N→∞

EηN

[

min{θ−1
N TBc(∆), a}

]

= 0 .

This proves (V3).
In the same way we prove that we may substitute assumption (V3’) by (2.6) in

Definition 2.2. This concludes the proof of the lemma. �

Next lemma is needed in the proof of Proposition 4.4, one of the main results of
this section.

Lemma 4.3. Consider a subset A = (AN : N ≥ 1) of (EN : N ≥ 1). Assume that
there exists t > 0 and ǫ < 1 such that

lim sup
N→∞

sup
η∈WN

Pη

[
TA > tθN

]
< ǫ . (4.2)

Then, supη∈WN
Eη[TA(W)] ≤ [t/(1 − ǫ)]θN for every N sufficiently large and

lim
K→∞

lim sup
N→∞

sup
η∈WN

Eη

[

θ−1
N TA(W)1{TA(W) > KθN}

]

= 0 . (4.3)

Proof. The proof is a simple consequence of the strong Markov property and as-
sumption (4.2). Consider the sequence of stopping times {Ik : k ≥ 1}, {Jk : k ≥ 1}
defined as follows. I1 = 0, J1 = tθN ,

Ik+1 = inf
{
t > Jk : ηN

t ∈ WN

}
, Jk+1 = Ik+1 + tθN , k ≥ 1 ,

with the convention that Jk = Ik+1 = ∞ if Ik = ∞ for some k ≥ 1. Let M be the
first time interval [Ik, Jk] in which the process visits AN :

M = min
{
k ≥ 1 : ηN

t ∈ AN for some t ∈ [Ik, Jk] or Ik = ∞
}

.

Clearly, TA(W) ≤ tθNM . On the other hand, for N sufficiently large, by definition
of the stopping times {Ik : k ≥ 1} and by assumption (4.2), M is stochastically
dominated by a random variable M ′ with geometric distribution given by P [M ′ =
k] = (1 − ǫ)ǫk−1, k ≥ 1. This concludes the proof of the lemma. �

Next proposition gives an equivalent definition of a valley with attractor.

Proposition 4.4. Assume that (W, B, ξ) is a valley of depth θ and attractor ξ.
Then, for any point η = (ηN : N ≥ 1) in W,
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(i) The hitting time of the attractor ξ is negligible with respect to the escape
time from the basin B in the sense that

lim
N→∞

EηN [Tξ(W)]

EηN [TBc(W)]
= 0 ;

(ii) Under PηN , the law of the random variable TBc(W)/EηN [TBc(W)] con-
verges to a mean-one exponential distribution ;

(iii) For every δ > 0,

lim
N→∞

PηN

[ TBc(∆)

EηN [TBc(W)]
> δ

]

= 0 .

Moreover, the sequences θN and EηN [TBc(W)] are asymptotically equivalent in the

sense that limN→∞ θ−1
N EηN [TBc(W)] = 1,

Conversely, if (W, B, ξ) is a triple satisfying (2.3) for which (i) – (iii) hold, then
for any point η = (ηN : N ≥ 1) in W, the sequence EηN [TBc(W)] is asymptotically
equivalent to EξN [TBc(W)]:

lim
N→∞

EηN [TBc(W)]

EξN [TBc(W)]
= 1 ;

and (W, B, ξ) is a valley of depth θ, where θN = EξN [TBc(W)].

It is implicit in the statement of this proposition that the time spent in the well
W before leaving the basin B, TBc(W), has finite expectation with respect to any
PηN for sufficiently large N , as well as the time spent in the well W before reaching
the attractor ξ, Tξ(W).

Proof of Proposition 4.4. Assume that (W, B, ξ) is a valley of depth θ and attractor
ξ. We first claim that

lim
N→∞

sup
η∈WN

Eη

[
θ−1

N Tξ(W)
]

= 0 . (4.4)

This assertion follows from (V1’) and the previous lemma with A = {ξ}, t = δ,
ǫ = 1/2.

Fix a point η = (ηN : N ≥ 1) in W. We claim that

lim
N→∞

EηN

[
θ−1

N TBc(W)
]

= 1 . (4.5)

Three ingredients are needed to prove this result. The convergence of θ−1
N TBc to a

mean one exponential random variable, a bound on EηN [θ−1
N TBc(W)] provided by

the previous lemma, and the fact that the process does not spend too much time
in ∆.

We start with the proof of the lower bound. Fix δ > 0, t > 0. On the set
{TBc(∆) ≤ δθN}, we have that TBc(W) ≥ TBc − δθN . Therefore,

TBc(W) ≥ −δθN + TBc 1{TBc(∆) ≤ δθN} .

Replacing TBc by min{TBc , tθN} we obtain the estimate

TBc(W) ≥ −δθN − tθN1{TBc(∆) > δθN} + min{TBc , tθN}

which holds for all δ > 0, t > 0.
By (V3), the expectation with respect to PηN of the second term on the right

hand side divided by θN vanishes as N ↑ ∞ for any fixed δ > 0, t > 0. By (V2), the
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expectation with respect to PηN of the third term on the right hand side divided
by θN converges to 1 as N ↑ ∞ and then t ↑ ∞. Therefore,

lim inf
N→∞

EηN

[
θ−1

N TBc(W)
]
≥ 1 .

The proof of the upper bound is simpler. For every A > 0,

EηN

[
TBc(W)

]
≤ EηN

[
min{TBc , AθN}

]
+ EηN

[
TBc(W)1{TBc(W) > AθN}

]
.

By (V2), the first term on the right hand side divided by θN converges to 1 as
N ↑ ∞ and then A ↑ ∞. By (V2), (4.2) holds with A = Bc, ǫ = 1/2 and some
t < ∞. Therefore, by (4.3), the second term divided by θN vanishes as N ↑ ∞ and
then A ↑ ∞. This concludes the proof of (4.5).

Assertion (i) follows from (4.4) and (4.5), and assertion (iii) from (V3) and (4.5).
Finally, TBc(W) = TBc − TBc(∆). By (V2), θ−1

N TBc converges in distribution to

a mean one exponential random variable, and, by (V3), θ−1
N TBc(∆) converges to

0 in probability. Assertion (ii) follows from these facts and from (4.5). The final
claim of the first part of the proposition has been proved in (4.4).

To prove the converse, suppose that conditions (i) – (iii) hold. We first prove
that (V1), (V2), (V3) are in force with θN replaced by the sequence θ(ηN ) =
EηN [TBc(W)], which depends on the point η = (ηN : N ≥ 1). In this case, condition
(V3) corresponds to (iii). To prove (V2), note that TBc = TBc(W) + TBc(∆). By
(ii), θ(ηN )−1TBc(W) converges in distribution to a mean one exponential random
variable and, by (iii), θ(ηN )−1TBc(∆) vanishes in probability. Therefore, (V2)
holds. Finally, on the set {Tξ < TBc}, Tξ = Tξ(W) + Tξ(∆) and Tξ(∆) ≤ TBc(∆).
By (i) and (iii), θ(ηN )−1Tξ(W) and θ(ηN )−1TBc(∆) vanish in probability as N ↑ ∞.
On the other hand, by (V2), already proved, θ(ηN )−1TBc converges in distribution
to a mean one exponential variable. This proves (V1).

It remains to show that the sequences θ(ηN ) = EηN [TBc(W)] and EξN [TBc(W)]
are asymptotically equivalent in the sense that their ratio converges to 1.

By (ii) and Lemma 4.3, the sequence θ(ηN )−1TBc(W) is uniformly integrable
with respect to PηN . Therefore, by (V1),

lim
N→∞

1

θ(ηN )
EηN

[

TBc(W)1{Tξ < TBc}
]

= 1 .

By the strong Markov property and the explicit form of TBc(W), the expectation
is equal to

1

θ(ηN )
EηN

[

Tξ(W)1{Tξ < TBc}
]

+
1

θ(ηN )
EξN

[

TBc(W)
]

PηN

[
Tξ < TBc

]
.

By (i), the first term vanishes as N ↑ ∞. Since by (V1) PηN [Tξ < TBc ] converges
to 1, EηN [TBc(W)] and EξN [TBc(W)] are asymptotically equivalent. This concludes
the proof of the proposition. �

We conclude this section with the proofs of Propositions 2.4 and 2.6. Let us first
fix a metric in the path space D(R+, S∪{d}) which induces the Skorohod topology.
In what follows, we identify the point d with 0 ∈ Z so that S∪{d} is a metric space
with the metric induced by Z.

For each integer m ≥ 1, let Λm denote the class of strictly increasing, continuous
mappings of [0, m] onto itself. If λ ∈ Λm, then λ0 = 0 and λm = m. In addition,
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consider the function

gm(t) =







1 if t ≤ m − 1 ,
m − t if m − 1 ≤ t ≤ m ,
0 if t ≥ m .

For any integer m ≥ 1 and e, ê ∈ D(R+, S ∪{d}), define dm(e, ê) to be the infimum
of those positive ǫ for which there exists in Λm a λ satisfying

sup
t∈[0,m]

|λt − t| < ǫ

and

sup
t∈[0,m]

| gm(λt) eλt
− gm(t) êt | < ǫ .

Finally, we define the metric in D(R+, S ∪ {d}) by

d(e, ê) =
∞∑

m=1

2−m(1 ∧ dm(e, ê)) .

This metric induces the Skorohod topology in the path space D(R+, S ∪ {d}) (cf.
[2]).

For any path e ∈ D(R+, S ∪ {d}) denote by (τn(e) : n ≥ 0) the sequence of
jumping times of e: Set τ0(e) = 0 and, for n ≥ 1, we define τn(e) as

τn(e) := inf{t > τn−1(e) : et 6= eτn−1(e)} ,

with the convention that τn = ∞ if τn−1 = ∞ and, as usual, inf ∅ = +∞.

Proposition 2.6 is a consequence of the following result.

Proposition 4.5. Suppose that {ηN
t : t ≥ 0}, N ≥ 1, satisfies (M3) for any x ∈ S.

Then, for any x ∈ S and point η = (ηN : N ≥ 1) in Ex,

lim
N→∞

EηN

[
d(XN , X̂N)

]
= 0 .

Proof. Fix arbitrary integers m ≥ 1 and N ≥ 1. To keep notation simple, set
τn := τn(XN ) and τ̂n := τn(X̂N ), n ≥ 0. Define the random variables

n := sup{j ≥ 0 : τ̂j < m}

and

T (XN) := τn+1 ∧ m .

In Lemma 4.6 below we show that PηN -a.s.,

dm(XN , X̂N) ≤ |S| max
{
τ̂n − τn ; m − T (XN)

}
. (4.6)

To estimate the right hand side in (4.6), observe that

τ̂n − τn = T ∆N

τ̂n

≤ T ∆N
m ,

where T ∆N

t is the time spent by {ηN
t : t ≥ 0} in ∆N in the time interval [0, t],

introduced in (2.2). On the other hand, in the case τn+1 < m, m − T (XN) can be
written as m − {τ̂n + [τn+1 − τn]} + [τ̂n − τn]. Since τ̂n − τn is the time spent by
{ηN

t : t ≥ 0} in ∆N in the time interval [0, τ̂n] and m − {τ̂n + [τn+1 − τn]} is the
time spent in ∆N in the time interval [τ̂n, m],

m − T (XN) ≤ T ∆N
m .
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Therefore, by (4.6) we have just shown that

d(XN , X̂N) ≤

∞∑

m=1

2−m(1 ∧ |S|T ∆N
m ) .

The desired result follows from this estimate and property (M3). �

Lemma 4.6. For any integers N, m ≥ 1, (4.6) holds PηN -almost surely.

Proof. Fix two integers N, m ≥ 1. All assertions in what follows must be under-
stood in the PηN -a.s. sense. Recall the notation introduced in the previous lemma.

Let us list some evident properties of XN and X̂N : First notice that for all
0 ≤ j ≤ n − 1, we have τ̂j+1 − τ̂j ≥ τj+1 − τj and XN

s = X̂N
t for (s, t) ∈

[τj , τj+1[×[τ̂j , τ̂j+1[. Furthermore, τn < T (XN) ≤ m, XN
τn

6= d and XN
s = X̂N

t for

(s, t) ∈ [τn, T (XN)[×[τ̂n, m[.
In particular, since τ̂n < m, we may choose ǫ > 0 small enough such that

τn < T (XN)− ǫ and τ̂n < m− ǫ. Now, let λ ∈ Λm be given by: λτ̂j
= τj , for j ≤ n,

λm−ǫ = T (XN) − ǫ, λm = m and we complete λ on [0, m] by linear interpolation.
Then,

sup
t∈[0,m]

|λt − t| ≤ max{τ̂n − τn, m − T (XN)} .

Moreover, since λt ≤ t, 0 ≤ t ≤ m,

sup
t∈[0,m−ǫ]

∣
∣gm(λt)X

N
λt

− gm(t)X̂N
t

∣
∣ ≤ |S| sup

t∈[0,m−ǫ]

|gm(λt) − gm(t)|

≤ |S| sup
t∈[m−1,m−ǫ]

|λt − t|

and

sup
t∈[m−ǫ,m]

∣
∣gm(λt)X

N
λt

− gm(t)X̂N
t

∣
∣ ≤ |S| sup

t∈[m−ǫ,m]

(
|gm(λt) − gm(t)| + 2|gm(t)|

)

≤ |S| sup
t∈[m−ǫ,m]

|λt − t| + 2κǫ .

Since ǫ may be taken arbitrary small, the claim is proved. �

We now turn to the poof of Proposition 2.4. For every e ∈ D(R+, S ∪ {d}),
denote by Jt(e) the number of jumps up to time t:

Jt(e) := sup{j ≥ 0 : τj(e) ≤ t} .

Proof of Proposition 2.4. Fix an arbitrary non-absorbing state x∗ ∈ S for the
Markov process {Px : x ∈ S}, a point η = (ηN : N ≥ 1) in Ex∗ and a time

t > 0. It suffices to show that EηN [T ∆N

t ] → 0 as N → ∞.
For any integer K ≥ 1,

T ∆N

t ≤ 1{Jt(X̂
N ) ≥ K} t + 1{Jt(X̂

N) < K} T ∆N

t , (4.7)

PηN -almost surely. The subset {Jt ≥ K} ⊆ D(R+, S ∪ {d}) is closed for the
Skorohod topology. Therefore, by property (M2),

lim sup
N→∞

PηN [Jt(X̂
N ) ≥ K] ≤ lim sup

N→∞
PηN [Jt(X

N ) ≥ K] ≤ Px∗ [Jt ≥ K] .

The right hand side vanishes as K ↑ ∞. From this and (4.7), it follows that

lim sup
N→∞

EηN [T ∆N

t ] ≤ lim sup
K↑∞

lim sup
N→∞

EηN [1{Jt(X̂
N ) < K} T ∆N

t ] .
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In consequence, in order to conclude the proof it is enough to show that

lim
N→∞

EηN [1{Jt(X̂
N) = i} T ∆N

t ] = 0 , ∀i ≥ 0 . (4.8)

Fix some integer i ≥ 0. To keep notation simple, denote Ĵt := Jt(X̂
N) and let

(τ̂n : n ≥ 0) stand for the jumping times of X̂N . Recall that we denote by S∗ the
set of non-absorbing states for {Px : x ∈ S} and set E∗

N = ∪x∈S∗
Ex

N . On the event

{Ĵt = i} let us define

I := inf
{
0 ≤ j ≤ i : X̂N

τ̂j
∈ S \ S∗

}
,

so that I = ∞ if and only if X̂s ∈ S∗, for all 0 ≤ s ≤ t. On the one hand, PηN−a.s.,

1{Ĵt = i ; I = ∞}T ∆N

t ≤ 1{Ĵt = i ; I = ∞}

i+1∑

j=1

∫ τ̂j∧t

τ̂j−1

1{ηN
s ∈ ∆N} ds

≤
i+1∑

j=1

1{ηN
τ̂j−1

∈ E
∗
N}

∫ τ̂j∧t

τ̂j−1

1{ηN
s ∈ ∆N} ds .

Thus, applying the strong Markov property we get

EηN

[
1{Ĵt = i ; I = ∞}T ∆N

t

]
≤ (i + 1) sup

x∈S∗

sup
η∈Ex

N

EN
η

[
t ∧ T

Ĕx(∆)
]

.

The right hand side vanishes as N → 0 by assumption (C1) for the non-absorbing
states. On the other hand, for any 0 ≤ ℓ ≤ i we have that, PηN−a.s., on the event

{Ĵt = i ; I = ℓ},

T ∆N

t ≤

ℓ∑

j=1

∫ τ̂j∧t

τ̂j−1

1{ηN
s ∈ ∆N} ds +

∫ τ̂ℓ+t

τ̂ℓ

1{ηN
s ∈ ∆N} ds .

By applying the strong Markov processes as before, we show that EηN

[
1{Ĵt =

i ; I = ℓ} T ∆N

t

]
is bounded above by

ℓ sup
x∈S∗

sup
η∈Ex

N

EN
η

[
t ∧ T

Ĕx(∆)
]

+ sup
η∈S\S∗

EN
η

[
T ∆

t

]
.

As N ↑ ∞, the first term vanishes as before while the second one vanishes by
assumption (M3) for absorbing states. This concludes the proof. �

The same proof yields the following version of Proposition 2.4 which does not
distinguish between absorbing and non-absorbing states.

Lemma 4.7. Assume that (M2) is fulfilled for a sequence of Markov processes
{ηN

t : t ≥ 0}, N ≥ 1. Then, condition (M3) is satisfied if for each x in S,

lim
N→∞

sup
η∈Ex

N

Pη

[ 1

θN

T
Ĕx(∆) > δ

]

= 0 .

Proof. The proof is simpler than the previous one. We do not need to introduce
the variable I. We estimate T ∆N

t as in the case I = ∞ to get that

EηN

[
1{Ĵt = i} T ∆N

t

]
≤ (i + 1) sup

x∈S

sup
η∈Ex

N

EN
η

[
t ∧ T

Ĕx(∆)
]

.

This expression vanishes as N ↑ ∞ by assumption. �
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5. Proof of the main theorems

We prove in this section the main results of the article. The proofs rely on some
results on recurrent Markov processes presented in Section 6.

Proof of Theorem 2.7. Next statement plays a central role in the proof of The-
orem 2.7.

Proposition 5.1. Consider two sequences of sets W and B satisfying (2.3). As-
sume that there exists a point ξ = (ξN : N ≥ 1) in W such that for every point
η = (ηN : N ≥ 1) in W (2.9) and (2.10) hold. Then, condition (V1) is in force.
Moreover, the law of rN (W, Bc) TBc(W) under PηN converges to a mean-one ex-
ponential distribution, as N ↑ ∞, and

lim
N→∞

rN (W, Bc)EηN

[
TBc(W)

]
= 1 (5.1)

for any point η = (ηN : N ≥ 1) in W

The proof of this proposition is divided in several lemmas. Recall that EN =
WN ∪ Bc

N , N ≥ 1, and that {ηEN

t : t ≥ 0} stands for the trace of {ηN
t : t ≥ 0} on

EN . For any θ = (θN : N ≥ 1), properties (2.9) and (2.10) hold for {ηEN

t : t ≥ 0}

if and only if they do so for the speeded up process {ηEN

θN t : t ≥ 0}. Furthermore,

condition (V1) remains invariant by any re-scale of time, while (5.1) and the as-

sertion preceding it are implied by the corresponding claims for {ηEN

θNt : t ≥ 0}. In
consequence, speeding up the process appropriately, we may assume in Proposition
5.1 that

rN (W, Bc) = 1 ∀N ≥ 1 (5.2)

and condition (2.10) becomes

lim
N→∞

sup
η∈WN

Eη[Tξ(W)] = 0 . (5.3)

To prove the last two assertions of Proposition 5.1, we show that the law of TBc(W)
under PηN converges to a mean-one exponential distribution and that

lim
N→∞

EηN [TBc(W)] = 1 . (5.4)

We identify the trace process {ηEN

t : t ≥ 0} with the first marginal of the

EN ×{0, 1}−valued Markov process {(ηEN

t , XN
t ) : t ≥ 0} defined as follows. To keep

notation simple, let x̆ = 1−x, x = 0, 1. The transition rates for {(ηEN

t , XN
t ) : t ≥ 0}

are the following:

• From each (η, x) ∈ WN ×{0, 1}, the process jumps to (ξ, x) (resp. to (ξ, x̆))
with rate RE

N (η, ξ) for any ξ ∈ WN (resp. for any ξ ∈ Bc
N ).

• From each (η, x) ∈ Bc
N × {0, 1}, the process jumps to (ξ, x) with rate

RE
N (η, ξ), for any ξ ∈ EN .

Let P(η,x), (η, x) ∈ EN ×{0, 1}, be the probability measure on D(R+, EN ×{0, 1})

induced by the Markov process {(ηEN

t , XN
t ) : t ≥ 0} starting from (η, x). Hence,

for any starting point (η, x) ∈ EN × {0, 1}, the law of the marginal {ηEN

t : t ≥ 0}
on D(R+, EN ) under P(η,x) is Pη.

By Proposition 6.3, the conditioned probability measure µE
N ( · ) := µN ( · |EN ) is

the invariant probability measure for the trace process {ηEN : t ≥ 0}. Define the
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probability measure on EN × {0, 1} by

mN(η, x) = (1/2)µE

N(η) , for (η, x) ∈ EN × {0, 1} .

We may check that mN is an invariant probability measure for {(ηEN

t , XN
t ) : t ≥ 0}.

In particular, {(ηEN

t , XN
t ) : t ≥ 0} is positive recurrent.

Clearly, for any η ∈ WN , the law of TBc(W) under Pη coincides with the law of
the first jump

inf
{
t > 0 : XN

t 6= XN
0

}

under P(η,x), for any x ∈ {0, 1}. Hence, to prove that TBc(W) converges to a mean
one exponential law it is enough to show that the second coordinate of the trace
of the process {(ηEN

t , XN
t ) : t ≥ 0} on WN × {0, 1} converges to a Markov process

on {0, 1} which jumps from x to 1 − x at rate 1. This is done in two steps. We
first prove in Lemma 5.3 that the sequence of processes {XN

t : t ≥ 0} is a tight
family. Then, we characterize in Lemma 5.6 all limit points by showing that they
solve a martingale problem. Both statements rely on a replacement result, stated
in Lemma 5.2 and Lemma 5.5, which allows the substitution of a function by its
conditional expectation.

Conditions (2.9) and (5.3) imply that

lim
N→∞

sup
η∈WN

Eη

[ ∫ Tξ(E)

0

{
RW

N (ηEN
s ) + 1

}
1
{
ηEN

s ∈ WN

}
ds

]

= 0 , (5.5)

where Tξ(E) = T N
ξ (E) := inf{t ≥ 0 : ηEN

t = ξN}. As a consequence of (5.5), we get
the following lemma.

Lemma 5.2. For every t > 0,

lim
N→+∞

sup
η∈EN

∣
∣
∣Eη

[ ∫ t

0

(
RW

N (ηEN
s ) − 1

)
1
{
ηEN

s ∈ WN

}
ds

]∣
∣
∣ = 0 .

Proof. Recall the notation introduced in Subsection 6.2. Let g : EN → R be given
by g(η) = RW

N (η)1{η ∈ WN} so that the expectation of g with respect to µE
N is

equal to µN (WN )/µN(EN ) in view of (5.2). Consider the partition π = {WN , Bc
N}

of EN and note that the conditional expectation 〈g|π〉µE

N
= 1{η ∈ WN}. Since g is

integrable with respect to µE
N , the statement follows from (5.5) and Corollary 6.5

applied to the process {ηEN

t : t ≥ 0}. �

We use this lemma to show tightness for the sequence {XN
t : t ≥ 0}.

Lemma 5.3. Fix an arbitrary point η = (ηN : N ≥ 1) in W and z ∈ {0, 1}. For
each N ≥ 1, denote by QN the law of {XN

t : t ≥ 0} under P(ηN ,z). Then the
sequence of laws (QN : N ≥ 1) is tight.

Proof. For each T > 0, let TT denote the set of all stopping times bounded by T .
By Aldous criterion (see Theorem 16.10 in [2]) we just need to show that

lim
δ↓0

lim sup
N→∞

sup
θ≤δ

sup
τ∈TT

P(ηN ,z)

[
|XN

τ+θ − XN
τ | > ǫ

]
= 0 (5.6)

for every ǫ > 0 and T > 0. Denote by LE
N the generator of (ηEN

t , XN
t )t≥0 and by

p : EN × {0, 1} → {0, 1} the projection on the second coordinate. Consider the
martingale

MN
t := XN

t − XN
0 −

∫ t

0

(LE

Np)(ηEN
s , XN

s ) ds .
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It is therefore enough to show that (5.6) holds with XN
τ+θ − XN

τ replaced by

MN
τ+θ − MN

τ and by
∫ τ+θ

τ
(LE

Np)(ηEN
s , XN

s ) ds.
Consider the integral term. By Chebychev inequality and by the strong Markov

property, we need to prove that

lim
δ↓0

lim sup
N→∞

sup
θ≤δ

sup
(η,x)∈EN×{0,1}

E(η,x)

[ ∫ θ

0

∣
∣
∣ (LE

Np)(ηEN
s , XN

s )
∣
∣
∣ ds

]

= 0 ,

where E(η,x) stands for the expectation with respect to P(η,x). A simple computa-
tion provides

(LE

Np)(η, x) = {x̆ − x}RW

N (η)1
{
η ∈ WN

}
.

The proof is thus reduced to the claim

lim
δ↓0

lim sup
N→∞

sup
η∈EN

Eη

[ ∫ δ

0

RW

N (ηEN
s )1

{
ηEN

s ∈ WN

}
ds

]

= 0 . (5.7)

Since the expectation above is less than or equal to

∣
∣
∣Eη

[ ∫ δ

0

(
RW

N (ηEN
s ) − 1

)
1
{
ηEN

s ∈ WN

}
ds

]∣
∣
∣ + δ ,

the limit (5.7) follows from Lemma 5.2.
We now turn to the martingale part {MN

t : t ≥ 0}, whose quadratic variation is
given by

〈M〉Nt =

∫ t

0

{
LE

N (p2) − 2pLE

Np
}
(ηEN

s , XN
s ) ds

=

∫ t

0

RW

N (ηEN
s )1

{
ηEN

s ∈ WN

}
ds .

By Chebychev inequality

P(ηN ,z)

[
|MN

τ+θ − MN
τ | > ǫ

]
≤

1

ǫ2
E(ηN ,z)

[
〈M〉Nτ+θ − 〈M〉Nτ

]
.

Finally, by the explicit formula for the quadratic variation and by the strong Markov
property, the right hand side above is less than or equal to

1

ǫ2
sup

η∈EN

Eη

[ ∫ δ

0

RW

N (ηEN
s )1

{
ηEN

s ∈ WN

}
ds

]

.

It remains to use (5.7). �

As a consequence of Lemma 5.3 we obtain condition (V1) for the triple (W, W, ξ)

with respect to the trace process {ηEN

t : t ≥ 0}.

Lemma 5.4. For any point η = (ηN : N ≥ 1) in W,

lim
N→+∞

PηN [ Tξ(W) < TBc(W) ] = 1 .

Proof. Fix ηN in WN , N ≥ 1. Consider the modified uniform modulus of continuity
ω′

δ : D(R+, {0, 1}) → R+ given by

ω′
δ(x·

) := inf
{ti}

max
0≤i<r

sup
ti≤s<t<ti+1

∣
∣xt − xs

∣
∣ ,
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where the first infimum is taken over all partitions {ti : 0 ≤ i ≤ r} of the interval
[0, 1] such that

{
0 = t0 < t1 < · · · < tr = T
ti − ti−1 > δ , for i = 1, . . . , r .

By the previous lemma (see e.g. Theorem 1.3 in Chapter 4 of [15]),

lim
δ↓0

lim sup
N→+∞

P(ηN ,0)

[
ω′

δ(X
N
·

) = 1
]

= 0 .

Therefore, since for all δ > 0 {TBc(W) ≤ δ} ⊂ {ω′
δ(X

N
·

) = 1} P(ηN ,z)–almost
surely,

lim
δ↓0

lim inf
N→+∞

PηN

[
TBc(W) > δ

]
= 1 . (5.8)

On the other hand, by (5.3), we have

lim
N→+∞

PηN [ Tξ(W) > δ ] = 0 (5.9)

for any δ > 0. The desired result follows from (5.9) and (5.8). �

Actually, since {Tξ(W) < TBc(W)} ⊆ {Tξ < TBc} , Lemma 5.4 proves condition
(V1) for the triple (W, B, ξ) with respect to the process {ηN

t ; t ≥ 0}: For any point
η = (ηN : N ≥ 1) in W,

lim
N→+∞

PηN [ Tξ < TBc ] = 1 .

We now consider the trace of {(ηEN

t , XN
t ) : t ≥ 0} on WN × {0, 1}, denoted by

{(ηWN

t , XWN

t ) : t ≥ 0}. As we shall see in Section 6, since {(ηEN

t , XN
t ) : t ≥ 0} is

positive recurrent, the trace process {(ηWN

t , XWN

t ) : t ≥ 0} is positive recurrent as
well. Moreover, the invariant probability measure for the trace process, denoted by
mW

N , coincides with mN conditioned to WN × {0, 1}:

mW

N (η, x) := (1/2)µW

N (η) , for (η, x) ∈ WN × {0, 1} .

The marginal process {ηWN

t : t ≥ 0} corresponds to the trace of {ηEN

t : t ≥ 0} on
WN .

Let LW
N denote the Markov generator of {(ηWN

t , XWN

t ) : t ≥ 0}. Define, in
addition, the Markov generator L as

LF (x) := F (x̆) − F (x) , x ∈ {0, 1} , (5.10)

for every F : {0, 1} → R. For each N ≥ 1, let p = pN be the projection function
on the second coordinate p : WN × {0, 1} → {0, 1}. If RW

N

(
·, ·

)
stands for the

transition rates of {(ηWN

t , XWN

t ) : t ≥ 0}, we have that

LW

N (F ◦ p)(η, x) =
{
F (x̆) − F (x)

} ∑

ξ∈WN

RW

N

(
(η, x), (ξ, x̆)

)

for any (η, x) ∈ WN × {0, 1}. By applying Corollary 6.2 to the Markov process

{(ηEN

t , XN
t ) : t ≥ 0} and its trace on WN × {0, 1}, we get that

∑

ξ∈WN

RW

N

(
(η, x), (ξ, x̆)

)
= RW

N (η)

for all (η, x) ∈ WN × {0, 1}. Therefore, by (5.2), the conditional expectation of
LW

N (F ◦ p), under mW
N , given the σ-field generated by the partition

WN × {0, 1} = (WN × {0}) ∪ (WN × {1}) , (5.11)
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is (LF )◦p . Therefore, applying Corollary 6.11 to the trace process {(ηWN

t , XWN

t ) :
t ≥ 0}, the function LW

N (F ◦ p) and the partition (5.11), we obtain the following
replacement lemma.

Lemma 5.5. For every x ∈ {0, 1}, function F : {0, 1} → R and time t > 0,

lim
N→∞

sup
η∈WN

∣
∣
∣
∣
E(η,x)

[ ∫ t

0

{

LW

N (F ◦ p)(ηWN
s , XWN

s ) − LF (XWN
s )

}

ds
]
∣
∣
∣
∣

= 0 .

Proof. Recall that the conditional expectation of LW
N (F ◦ p) is (LF ) ◦ p . Since

|LW

N (F ◦ p)(η, x) − LF (x)| ≤ (RW

N (η) + 1)max{|F (0)|, |F (1)|} ,

in view of Corollary 6.5, to prove the lemma we just need to check that for any
x ∈ {0, 1},

lim
N→∞

sup
η∈WN

E(η,x)

[ ∫
T

W

(ξ,x)

0

(RW

N (ηWN
s ) + 1)1{XWN

s = x} ds
]

= 0 , (5.12)

where, for each N ≥ 1,

TW

(ξ,x) = TW

(ξ,x)(N) := inf{t ≥ 0 : (ηWN

t , XWN

t ) = (ξN , x)} .

Fix an arbitrary x ∈ {0, 1}. It follows from conditions (2.9) and (5.3) that

lim
N→∞

sup
η∈WN

Eη

[ ∫ Tξ(W)

0

(RW

N (ηWN
s ) + 1) ds

]

= 0 . (5.13)

To keep notation simple, let us denote

TN :=

∫ T
W

(ξ,x)

0

(RW

N (ηWN
s ) + 1)1{XWN

s = x} ds .

Since {Tξ(W) < TBc(W)} ⊆ {Tξ(W) = TW

(ξ,x)}, by Lemma 5.4, (5.13) and Cheby-

chev inequality, for every t > 0,

lim
N→∞

sup
η∈WN

P(η,x)[TN > t ] = 0 . (5.14)

By the strong Markov property, (5.14) and the arguments presented in the proof
of Lemma 4.3,

lim
A→∞

lim sup
N→∞

sup
η∈WN

E(η,x)[TN 1{TN > A} ] = 0 .

Hence, by Lemma 5.4,

lim sup
N→∞

sup
η∈WN

E(η,x)[TN 1{Tξ(W) ≥ TBc(W)} ] = 0 . (5.15)

On the other hand,

E(η,x)[TN 1{Tξ(W) < TBc(W)} ] ≤ Eη

[ ∫ Tξ(W)

0

(RW

N (ηWN
s ) + 1) ds

]

.

Therefore, (5.12) follows from this estimate, (5.13) and (5.15). �

We now prove the convergence in law of {XWN

t : t ≥ 0} as N ↑ ∞. Fix an
arbitrary point η = (ηN : N ≥ 1) in W. For each N ≥ 1, denote by PN the law of

{XWN

t : t ≥ 0} under P(ηN ,0). Following the same argument presented in the proof
of Lemma 5.3 we can show that (PN : N ≥ 1) is tight.
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The uniqueness of limit points for this sequence is established as follows. Assume
without loss of generality that PN → P, as N → ∞, for some probability measure P
on D(R+, {0, 1}). For t ≥ 0, let Xt denote the time-projection Xt : D(R+, {0, 1}) →
{0, 1}. We shall prove in the following lemma that P solves the martingale problem
associated to the generator L defined in (5.10). It is well known that this property
together with the distribution of X0, characterize the measure P.

Lemma 5.6. Under P, X0 = 0 a.s. and

MF
t = F (Xt) − F (X0) −

∫ t

0

LF (Xs) ds , for t ≥ 0 ,

is a martingale for any function F : {0, 1} → R.

Proof. The first claim is trivial. For the last one, fix 0 ≤ s < t, a function F :
{0, 1} 7→ R and a bounded function U : D(R+, {0, 1}) 7→ R depending only on
{Xr : 0 ≤ r ≤ s} and continuous for the Skorohod topology. Denote by E and EN

the expectation with respect to P and PN , respectively. We shall prove that

E
[
MF

t U
]

= E
[
MF

s U
]

. (5.16)

Recall that LW
N denotes the generator of {(ηWN

t , XWN

t ) : t ≥ 0}. For N ≥ 1,
consider the P(ηN ,0)-martingale {MN

t : t ≥ 0}, defined by

MN
t = F (XWN

t ) − F (0) −

∫ t

0

LW

N (F ◦ p)(ηWN
s , XWN

s ) ds , t ≥ 0 .

Denote UN := U(XWN
·

). As {MN
t : t ≥ 0} is a martingale,

E(ηN ,0)

[
MN

t UN
]

= E(ηN ,0)

[
MN

s UN
]

so that

E(ηN ,0)

[

UN
{

F (XWN

t ) − F (XWN
s ) −

∫ t

s

LW

N (F ◦ p)(ηWN
r , XWN

r ) dr
}]

= 0 .

On the other hand, since UN is bounded and Fs-measurable, it follows from the
Markov property and Lemma 5.5 that

lim
N→∞

E(ηN ,0)

[

UN

∫ t

s

{

LW

N (F ◦ p)(ηWN
r , XWN

r ) − LF (XWN
r )

}

dr
]

= 0 .

Putting the last two assertions together we get

lim
N→∞

EN

[

U
{

F (Xt) − F (Xs) −

∫ t

s

LF (Xr) dr
}]

= 0 . (5.17)

Now, since PN converges to P, time averages of EN

[
F (Xt)U

]
and EN

[
F (Xs)U

]

converge to time averages of E
[
F (Xt)U

]
and E

[
F (Xs)U

]
, respectively. Hence,

from this last observation and (5.17) it follows that

1

ǫ

∫ ǫ

0

dr E
[

U
{

F (Xt+r) − F (Xs+r) −

∫ t+r

s+r

LF (Xs)
}]

= 0

for every ǫ > 0. It remains to let ǫ ↓ 0 and use the right continuity of the process
to deduce (5.16), which concludes the proof of the lemma. �
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Under P, {Xt : t ≥ 0} is therefore a Markov chain on {0, 1} with generator L
and starting at 0. We have thus shown that, the law of

TBc(W) = inf
{
t > 0 : XWN

t = 1
}

,

under P(ηN ,0), converges to a mean-one exponential distribution. To conclude the
proof of Proposition 5.1 it remains to check (5.4). By Lemma 5.4 and the conver-

gence in law of TBc(W), (W, W, ξ) is a valley for the trace process {ηEN

t : t ≥ 0}
with depth 1. Therefore, applying item (ii) of Proposition 4.4 to (W, W, ξ) and

{ηEN

t : t ≥ 0} we get (5.4). This concludes the proof of Proposition 5.1 �

We are now in a position to prove Theorem 2.7. Condition (V1) follows from
Proposition 5.1 and Condition (V3) from (2.11) and Chebychev inequality. Con-
dition (V2) follows from (V3) and the convergence in law of rN (W, Bc)TBc(W)
stated in Proposition 5.1.

Proof of Theorem 2.8. Next result is the main step in the proof of Theorem 2.8.

Proposition 5.7. Recall the notation introduced in Subsection 2.2. If conditions
(C2), (C3) and (H0) are in force, then so are (M1) and (M2).

The proof of this result is divided in three lemmas. As in the proof of Proposition
5.1, without loss of generality, we may assume that θN = 1, ∀N ≥ 1. In this way,
condition (H0) guarantees that, for every x, y ∈ S, x 6= y,

lim
N→∞

rN (Ex, Ey) = r(x, y) , (5.18)

and we shall prove the convergence in law of the sequence {XN
t : t ≥ 0}, N ≥ 0.

Clearly, conditions (C2) and (C3) imply

lim
N→∞

sup
η∈Ex

N

Eη

[ ∫ Tξx

0

{
Rx

N (ηEN
s ) + rN (Ex, Ĕx)

}
1{ηEN

s ∈ E
x
N} ds

]

= 0 (5.19)

for any x ∈ S, where {ηEN

t : t ≥ 0} stands for the trace process of {ηt : t ≥ 0} on
EN . Let us define VN : EN 7→ R as

VN (η) :=
∑

x∈S

Rx
N (η)1{η ∈ E

x
N} , η ∈ EN .

Let µE
N be the measure µN conditioned to EN and denote by V̂N the µE

N -conditional
expectation of VN given the σ-algebra generated by the partition EN = ∪x∈SEx

N :

V̂N (η) :=
∑

x∈S

rN (Ex, Ĕx)1{η ∈ E
x
N} , ∀η ∈ EN .

Since VN is integrable with respect to µE
N , it follows from Corollary 6.5 and from

(5.19) that, for any t > 0,

lim
N→∞

sup
η∈EN

∣
∣
∣Eη

[ ∫ t

0

{
VN − V̂N

}
(ηEN

s ) ds
] ∣
∣
∣ = 0 . (5.20)

In order to prove (M2), fix some x ∈ S and a point η = (ηN : N ≥ 1) in Ex. For
each N ≥ 1, denote by PN the law of {XN

t : t ≥ 0} under PηN . The convergence of
the sequence (PN : N ≥ 1) stated in (M2), follows from tightness and uniqueness
of limit points. We first examine the tightness.

Lemma 5.8. The sequence (PN : N ≥ 1) is tight.
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Proof. For each T > 0, let TT denote the set of all stopping times bounded by T .
By Aldous criterion (see Theorem 16.10 in [2]) we just need to show that

lim
δ↓0

lim
N→∞

sup
θ≤δ

sup
τ∈TT

PηN

[
|XN

τ+θ − XN
τ | > ǫ

]
= 0 (5.21)

for every ǫ > 0 and T > 0.
Let LE

N be the generator of the trace process {ηEN

t : t ≥ 0} and let {MN
t : t ≥ 0}

be the martingale defined by

MN
t = XN

t − XN
0 −

∫ t

0

LE

NΨN(ηEN
s ) ds .

To prove tightness, it is therefore enough to show that (5.21) holds with the differ-

ence XN
τ+θ − XN

τ replaced by MN
τ+θ − MN

τ and by
∫ τ+θ

τ
LE

NXN
s ds.

Consider the integral term. By Chebychev inequality and by the strong Markov
property, we need to prove that

lim
δ↓0

lim
N→∞

sup
θ≤δ

sup
η∈EN

Eη

[ ∫ θ

0

∣
∣LE

NΨN(ηEN
s )

∣
∣ ds

]

= 0 .

An elementary computation shows that

LE

NΨN (η) =
∑

x,y∈S

{y − x}Rx,y
N (η)1{η ∈ E

x
N} ,

for any η ∈ EN . Since |LE
NΨN | ≤ κVN , the proof is reduced to the claim

lim
δ↓0

lim
N→∞

sup
η∈EN

Eη

[ ∫ δ

0

VN (ηEN
s )ds

]

= 0 .

The left hand side can be written as

lim
δ↓0

lim
N→∞

sup
η∈EN

{

Eη

[ ∫ δ

0

{
VN − V̂N

}
(ηEN

s )ds
]

+ Eη

[ ∫ δ

0

V̂N (ηEN
s )ds

]}

.

The first term converges to zero as N ↑ ∞, for any δ > 0, by (5.20). The second
term is bounded above by

lim
δ↓0

lim
N→∞

δ
∑

x∈S

rN (Ex
N , Ĕx

N ) ,

which is equal to zero by (5.18).
We now turn to the martingale part, whose quadratic variation, denoted by

〈MN〉t, is given by

〈MN 〉t =

∫ t

0

{
LE

N (ΨN )2(ηEN
s ) − 2XN

s (LE

NΨN )(ηEN
s )

}
ds , t ≥ 0 .

An elementary computation shows that this expression is equal to

∑

x,y∈S

{y − x}2 Rx,y
N (η)1{η ∈ E

x
N} .
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By the explicit formula for the quadratic variation, by Chebychev inequality and
by the strong Markov property,

PηN

[ ∣
∣MN

τ+θ − MN
τ

∣
∣ > ǫ

]
≤

1

ǫ2
EηN

[
〈MN〉τ+θ − 〈MN 〉τ

]

≤
κ2

ǫ2
sup

η∈EN

Eη

[ ∫ δ

0

VN (ηEN
s ) ds

]

.

It remains to repeat the arguments presented for the integral term of the decom-
position. �

Now we turn to the uniqueness of limit points. Assume without loss of generality
that the sequence QN converges to a measure P . Denote by LN and L the Markov
generators on the state space S = {1, . . . , κ} given by

(LNF )(x) =
∑

y∈S\{x}

{F (y) − F (x)}rN (Ex, Ey)

and
(LF )(x) =

∑

y∈S\{x}

{F (y) − F (x)} r(x, y) .

For t ≥ 0, let Xt denote the projection D(R+, S) 7→ S. The probability P is
completely determined by the properties stated in the following lemma.

Lemma 5.9. Under P , X0 = x and

Mt = F (Xt) − F (X0) −

∫ t

0

LF (Xs) ds (5.22)

is a martingale for any function F : S 7→ R.

The proof of this lemma follows closely the one of Lemma 5.6. It suffices, in par-
ticular, to show the following replacement lemma. Let LE

N stand for the generator

of {ηEN

t : t ≥ 0}.

Lemma 5.10. For any t > 0,

lim
N→∞

sup
η∈EN

Eη

[ ∫ t

0

{
LE

N (F ◦ ΨN ) − (LF ) ◦ ΨN

}
(ηEN

s ) ds
]

= 0 .

Proof. First, by condition (H0), we have that

lim
N→∞

sup
η∈EN

Eη

[ ∫ t

0

{
(LNF )(XN

s ) − (LF )(XN
s )

}
ds

]

= 0 .

It remains to prove that

lim
N→∞

sup
η∈EN

Eη

[ ∫ t

0

{
LE

N(F ◦ ΨN) − (LNF ) ◦ ΨN

}
(ηEN

s ) ds
]

= 0 . (5.23)

The µE
N -conditional expectation of LE

N (F ◦ ΨN ) given the σ-algebra generated by
the partition EN = ∪x∈SEx

N is (LNF )◦ΨN . The expectation of |LE
N(F ◦ΨN) | with

respect to µE
N is bounded by C(F )

∑

x∈S rN (Ex, Ey) for some finite constant C(F ),

depending only on F , and, for any η ∈ EN , |LE
N (F ◦ ΨN )(η) − (LNF ) ◦ ΨN (η)| is

bounded above by

2 max
z∈S

|F (z)|
∑

x∈S

{
Rx

N (η) − rN (Ex, Ey)
}
1{η ∈ E

x
N} .
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By Corollary 6.5, applied to g = LE
N (F ◦ ΨN) and by (5.19), (5.23) holds, which

concludes the proof of the lemma. �

This concludes the proof of condition (M2). Condition (M1) follows from Propo-
sition 5.1 with W = Ex, B = Ex ∪ ∆, which concludes the proof of Proposition
5.7. �

For Theorem 2.8, it remains to check condition (M3) for non-absorbing states.
This follows from Proposition 2.4 since condition (M2) has already been deduced.

Proof of Theorem 2.9. We assume in this subsection that the process is reversible
and adopt all notation introduced in Section 2. The proof of Theorem 2.9 relies on
the following result which states the important fact that, under condition (2.15), the
capacity between W and Bc is asymptotically equivalent to the capacity between
any point ζ of W and Bc.

Proposition 5.11. Consider two sequences of sets W and B satisfying (2.3).
Assume that condition (2.15) holds for some point ξ = (ξN : N ≥ 1) in W.
Then, the assertions of Proposition 5.1 are in force. Moreover, for every point
ζ = (ζN : N ≥ 1) in W,

lim
N→∞

capN (W, Bc)

capN (ζ, Bc)
= 1 , (5.24)

and
lim

N→∞
inf

η∈WN

Pη[ Tζ < TBc ] = 1 . (5.25)

Proof. We have shown just before the statement of Theorem 2.9 that conditions
(2.9), (2.10) follow from (2.15). In particular, the assertions of Proposition 5.1 hold.

Fix an arbitrary point ζ = (ζN : N ≥ 1) in W. By (6.16) applied to {ηN},
g = 1{W}, {ξN}, and to {ξN}, g = 1{W}, {ζN}, for any η = (ηN : N ≥ 1) in W,

EηN [ Tζ(W) ] ≤ EηN [ Tξ(W) ] + EξN [ Tζ(W) ]

≤
µN (W)

capN (η, ξ)
1{ηN 6= ξN} +

µN (W)

capN (ζ, ξ)
1{ζN 6= ξN}

≤
2 µN (W)

capN (ξ)
·

From this estimate, identity (2.14) and hypothesis (2.15), it follows that

lim
N→∞

rN (W, Bc)EηN [ Tζ(W) ] = 0 ,

which, by (5.1) in Proposition 5.1, implies that

lim
N→∞

EηN [ Tζ(W) ]

EηN [TBc(W)]
= 0 . (5.26)

This limit corresponds to item (i) of Proposition 4.4 with the point ζ instead of ξ.
Item (ii) of Proposition 4.4 follows from the last two assertions of Proposition 5.1.
From items (i) and (ii) we conclude that (W, W, ζ) is a valley for the trace process

{ηEN

t : t ≥ 0}. Hence,

lim
N→∞

PηN [ Tζ(E) < TBc(E) ] = 1 ,

which implies condition (V1) for the triple (W, Bc, ζ) because {Tζ(E) < TBc(E)} ⊆
{Tζ < TBc}, proving (5.25).
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By Proposition 6.10 with A = {η}, B = Bc and g = 1{W}, and by identity
(2.14), the limit (5.1) can be re-written as

lim
N→∞

〈1{WN}, fN(η, Bc)〉µN
capN(W, Bc)

µN (W) capN (η, Bc)
= 1 .

Replace η by ζ in this formula. By (5.25), the infimum of fN(ζ,Bc) over WN

converges to 1 as N ↑ ∞. Therefore, (5.24) follows from this observation and the
previous identity. �

We are now in a position to prove Theorem 2.9. We first show that (W, B, ξ) is
a valley of depth θN = rN (W, Bc)−1 = µN (W)/capN (W, Bc). Identity (2.14) and
Proposition 6.10 show that

rN (W, Bc)EηN [TBc(∆)] =
〈1{∆N}, fN(η, Bc)〉µN

capN (W, Bc)

µN (W) capN (η, Bc)
·

By Proposition 5.11, (5.24) holds. Since fN (η, Bc) is bounded by one, (5.24) along
with hypothesis (2.16) proves (2.11). Since (2.9) and (2.10) follow from (2.15), all
the hypotheses of Theorem 2.7 are fulfilled. Therefore, (W, B, ξ) is a valley of depth
θN = rN (W, Bc)−1 = µN (W)/capN (W, Bc). Last identity follows from Lemma 6.7.

Fix now a point ζ in W. To prove that (W, B, ζ) is a valley, we check condi-
tions (i)–(iii) of Proposition 4.4. Property (i) has been proved in (5.26). Since
(W, B, ξ) is a valley, conditions (ii) and (iii) are in force due to the first part of
Proposition 4.4. Hence, by the second part of this proposition, (W, B, ζ) is a valley
of depth EζN [TBc(W)]. Finally, since (W, B, ξ) is a valley, by the first part of this
proposition, θN and EζN [TBc(W)] are asymptotically equivalent sequences.

Proof of Theorem 2.10. We need to check that all assumptions of Theorem 2.8
are satisfied. As in the proof of Theorem 2.9, conditions (C2), (C3) follow from
assumption (H1). It remains to show that (C1) is fulfilled for all non-absorbing
states. Fix such a state x. It is enough to prove that

lim sup
N→∞

sup
η∈Ex

N

1

θN

Eη

[

T
Ĕx(∆)

]

= 0 . (5.27)

By Proposition 6.10 and since f
ηĔx is bounded by 1, the expectation is less than or

equal to µN (∆)/cap(η, Ĕx). By (5.24), we may replace asymptotically η by Ex in

the previous capacity. By Lemma 6.7, cap(Ex, Ĕx) is equal to µN (Ex)rN (Ex, Ĕx).
In conclusion, we have shown that

lim sup
N→∞

sup
η∈Ex

N

1

θN

Eη

[

T
Ĕx(∆)

]

≤ lim sup
N→∞

1

θN rN (Ex, Ĕx)

µN (∆)

µN (Ex)
· (5.28)

Since x is a non-absorbing point, by assumptions (H0), (H2), the right hand side
is equal to 0. This concludes the proof.

Proof of Remark 2.11. We need to show that (H2) holds for non-absorbing
states and that (M3) holds for absorbing states. Clearly, (H2) follows from (H2’)
for non-absorbing states. On the other hand, by Proposition 5.7, (M2) is fulfilled.
Hence, by Lemma 4.7, (M3) for absorbing (and non-absorbing) states is a conse-
quence of (5.27). By (5.28), assumption (H2’) implies (5.27), which concludes the
proof.



34 J. BELTRÁN, C. LANDIM

6. Continuous time Markov chains

We state in this section several properties of continuous time Markov chains
used throughout the article. We start assuming that the holding rates are strictly
positive and finite and that the jump chain associated is irreducible and recurrent.
We add assumptions as we progress. At the end, we consider the case of positive
recurrent, reversible Markov chains whose holding times belong to L1(µ), where µ
is the unique invariant probability measure.

Consider a countable set E and a matrix R : E × E → R such that R(η, ξ) ≥ 0,
η 6= ξ, −∞ < R(η, η) < 0,

∑

ξ 6=η R(η, ξ) = 0, η ∈ E. Let λ(η) = −R(η, η).

Since λ(η) is finite and strictly positive, we may define the transition probabilities
{p(η, ξ) : η, ξ ∈ E} as

p(η, ξ) =
1

λ(η)
R(η, ξ) for η 6= ξ , (6.1)

and p(η, η) = 0 for η ∈ E. We assume throughout this section that {p(η, ξ) :
η, ξ ∈ E} are the transition probabilities of a irreducible and recurrent discrete
time Markov chain.

We claim that there exists a unique stochastic semigroup {pt : t ≥ 0} on E
satisfying

lim
t↓0

pt(η, ξ) − p0(η, ξ)

t
= R(η, ξ) and p0(η, ξ) = δη,ξ (6.2)

for every η, ξ ∈ E, where δη,ξ is the delta of Kroenecker. To prove the existence,
we construct a Markov process {ηt : t ≥ 0} on E whose Markov semigroup satisfies
(6.2). We shall use this construction in some of the proofs below.

Let Y = {Yn : n ≥ 0} be an irreducible, recurrent, E-valued discrete time
Markov chain with transition probabilities {p(η, ξ) : η, ξ ∈ E} given by (6.1).
Let (en : n ≥ 0) be a sequence of i.i.d. mean one exponential random variables,
independent of Y . We associate to every sample path of Y the sequence of random
times T = (Tn : n ≥ 0) given by

Tn =
en

λ(Yn)
·

Since Y is recurrent,
∑

i≥0 Ti = ∞ a.s. In particular, the time-change

α(t) = min{n ≥ 0 :

n∑

i=0

Ti > t} (6.3)

is a.s. finite for every t ≥ 0 and ηt = Yα(t) is a.s. well defined for all t ≥ 0. In
Theorem 2.8.1 of [17] it is proved that {ηt : t ≥ 0} is a strong Markov process with
respect to the filtration {Ft : t ≥ 0}, Ft = σ(ηs : s ≤ t). The stochastic semigroup
corresponding to {ηt : t ≥ 0} fulfills (6.2), as follows from the proof of Theorem
2.8.4 in [17]. On the other hand, the uniqueness of the stochastic semigroup is a
consequence of Theorem (51) in Chapter 7 of [11] along with the recurrence of the
transition probabilities p(·, ·). Note that there is no explosion since

∑

i≥0 Ti = ∞
a.s.

In conclusion, a collection of nonnegative numbers {R(η, ξ) : η, ξ ∈ E} satisfying
the conditions listed at the beginning of this section determines uniquely the law of
a strong Markov process {ηt : t ≥ 0}. We shall refer to R(·, ·), λ(·) and p(·, ·) as the
transition rates, holding rates and jump probabilities of {ηt : t ≥ 0}, respectively.
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The Markov chain Y = {Yn : n ≥ 0} is called the jump chain associated to {ηt :
t ≥ 0}.

Of course, since the jump chain Y is irreducible and recurrent, so is the corre-
sponding Markov process {ηt : t ≥ 0}. In consequence, {ηt : t ≥ 0} has an invariant
measure µ which is unique up to scalar multiples. Moreover,

M(η) := λ(η)µ(η) , η ∈ E , (6.4)

is the invariant measure for the jump chain Y , also unique up to scalar multiples.
The proofs of these assertions can be found in Sections 3.4 and 3.5 of [17].

Recall that τA : D(R+, E) → R+, A ⊆ E, denotes the hitting time of the set A:

τA(e·) = inf{t > 0 : et ∈ A} .

Let TA := τA(η
·
) and Tη := T{η}, η ∈ E. Define the stopping time τ+

A : D(R+, E) →
R+ as the first return to A:

τ+
A (e·) = inf{t > 0 : et ∈ A, es 6= e0 for some 0 < s < t} ,

and let T +
A := τ+

A (η
·
), T +

η := T +
{η}, η ∈ E.

Let Pη, η ∈ E, be the probability measure under which the jump chain {Yn :
n ≥ 0} and the Markov chain {ηt : t ≥ 0} start from η. Expectation with respect
to Pη is denoted by Eη. It follows from the proof of Theorem 3.5.3 in [17] that for
any η ∈ E

µ(ξ) = Eη

[ ∫ T+
η

0

1{ηs = ξ} ds
]

, ξ ∈ E , (6.5)

is an invariant measure for {ηt : t ≥ 0}.

6.1. The trace process. We present in this subsection some elementary properties
of trace processes and we state some identities used throughout the article.

Let h : E → R+ be a nonnegative function with nonempty support F :

F := {η ∈ E : h(η) > 0} 6= ∅ . (6.6)

Define the additive functional {T h
t : t ≥ 0} as

T h
t :=

∫ t

0

h(ηs) ds .

Notice that T h
t ∈ R+, Pη-a.s. for every η ∈ E and t ≥ 0. Denote by {Sh

t : t ≥ 0}
the generalized inverse of T h

t :

Sh
t := sup{s ≥ 0 : T h

s ≤ t} .

Since {ηt : t ≥ 0} is irreducible and recurrent, limt→∞ T h
t = ∞, Pη-a.s. for every

η ∈ E. Therefore, the random path {ηh
t : t ≥ 0}, given by ηh

t = ηSh
t
, is Pη-a.s. well

defined for all η ∈ E and takes value in the set F . We call the process {ηh
t : t ≥ 0}

the h-trace of {ηt : t ≥ 0}. Clearly, {ηh
t : t ≥ 0} coincides with the trace of

{ηt : t ≥ 0} on F , defined in Section 2, if h = 1{F}.
A change of variables shows that for any subset B of F and for any function

f : F → R+,
∫ τB(ηh

·
)

0

f(ηh
t ) dt =

∫ TB

0

f(ηt)h(ηt) dt (6.7)
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Pη-a.s. for every η ∈ E. This identity also holds if we replace τB(ηh
·
), TB by

τ+
B (ηh

·
), T +

B , respectively. Furthermore, for any two disjoint subsets A, B of F , it
follows from the construction of the Markov chain {ηh

t : t ≥ 0} that

Pη

[
τA(ηh

·
) < τB(ηh

·
)
]

= Pη

[
TA < TB

]

for all η in F . This identity needs to be reformulated if we replace the hitting times
by return times. Indeed, if the process starting from η returns to F by η, while in
the original version the process returned to η, in the trace version the process never
left η. We claim that for all η ∈ F and all disjoint subsets A, B of F ,

Pη

[
τ+
A (ηh

· ) < τ+
B (ηh

· )
]

= Pη

[
T +

A < T +
B

∣
∣ T +

F = TF\{η}

]
. (6.8)

To derive this identity, intersect the event {τ+
A (ηh

· ) < τ+
B (ηh

· )} with the partition

{T +
F = TF\{η}}, {T

+
F = T +

η } and apply the strong Markov property to the second
piece to get that

Pη[τ+
A (ηh

· ) < τ+
B (ηh

· )] = Pη

[
τ+
A (ηh

· ) < τ+
B (ηh

· ) ; T +
F = TF\{η}

]

+ Pη

[
T +

F = T +
η

]
Pη

[
τ+
A (ηh

· ) < τ+
B (ηh

· )
]

.

To conclude, observe that on the set {T +
F = TF\{η}} we may replace ηh

·
by η

·
in

the event {τ+
A (ηh

· ) < τ+
B (ηh

· )}.

Proposition 6.1. Under {Pη : η ∈ F}, {ηh
t : t ≥ 0} is an irreducible, recurrent,

strong Markov chain with transition rates given by

Rh(η, ξ) =
λ(η)

h(η)
Pη

[
T +

F = T +
ξ

]
, η , ξ ∈ F , η 6= ξ .

Proof. Recall the explicit construction of the Markov chain {ηt : t ≥ 0} presented in
the previous subsection. To derive the h-trace from this construction, we consider
first the trace of the jump chain {Yn : n ≥ 0} on F .

Define the sequence of times {tn : n ≥ 0} as t0 = 0, t1 = inf{n ≥ 1 : Yn ∈ F}
and tn+1 = tn + t1 ◦ Θtn

, n ≥ 1, where {Θk : k ≥ 1} are the discrete time shift
operators. Let Y h = {Y h

n : n ≥ 0} be given by Y h
n = Ytn

. When the jump chain
{Yn : n ≥ 0} starts in F , Y h = {Y h

n : n ≥ 0} defines a F -valued discrete time
Markov chain with transition probabilities

p(η, ξ) = Pη

[
T +

F = T +
ξ

]
, η , ξ ∈ F .

Note that p(η, η) may be strictly positive and that Y h inherits the irreducibility
and the recurrence properties from Y .

Let T h = {T h
n : n ≥ 0} be the sequence

T h
n = h(Y h

n )
etn

λ(Y h
n )

, n ≥ 0 .

By definition, the h-trace of {ηt : t ≥ 0} is given by ηh
t = Y h

α(t), t ≥ 0, where α(·)

represents the time-change (6.3) with Y h and T h in place of Y and T , respectively.
Note that {etn

: n ≥ 0} is a sequence of i.i.d. mean one exponential random
variables independent of the process {Y h

n : n ≥ 0}. By this observation and by the
proof of Theorem 2.8.1 in [17], {ηh

t : t ≥ 0} is a strong Markov process on F .



TUNNELING AND METASTABILITY OF CONTINUOUS TIME MARKOV CHAINS 37

The irreducibility and the recurrence of {ηh
t : t ≥ 0} are inherited from the

process Y h. On the other hand, the transition rates {Rh(η, ξ) : η, ξ ∈ F} of the
strong Markov process {ηh

t : t ≥ 0} are given by

Rh(η, ξ) := lim
t↓0

Pη[ ηh
t = ξ ]

t
=

p(η, ξ)

Eη[ T h
0 ]

=
λ(η)

h(η)
Pη

[
T +

F = T +
ξ

]

for η, ξ ∈ F , η 6= ξ. The second identity follows from the proof of Theorem 2.8.4 in
[17]. �

It follows from this proposition that the holding rates {λh(η) : η ∈ F} and the
jump probabilities {ph(η, ξ) : η, ξ ∈ F} of the h-trace process {ηh

t : t ≥ 0} are given
by

λh(η) =
λ(η)

h(η)
Pη

[
T +

F = T +
F\{η}

]
, (6.9)

and, for η 6= ξ,

ph(η, ξ) =
Pη[T +

F = T +
ξ ]

Pη[T +
F = T +

F\{η}]
= Pη

[
TF\{η} = Tξ

]
.

Note that ph(·, ·) depends on h only through its support. The second identity is
obtained by intersecting the event {TF\{η} = Tξ} with the partition {T +

F = TF\{η}},

{T +
F = T +

η } and applying the strong Markov property to the second piece as in the
proof of (6.8).

When h is the indicator function of a set F , we obtain an explicit formula for
the transition rates of the trace process.

Corollary 6.2. Let RF stand for the transition rates of {ηh
t : t ≥ 0} when h =

1{F}. Then, for η, ξ in F , η 6= ξ,

RF (η, ξ) = R(η, ξ) +
∑

ζ∈F c

R(η, ζ)Pζ

[
TF = Tξ

]
.

Proof. By Proposition 6.1, RF (η, ξ) = λ(η)Pη[ T +
F = T +

ξ ]. Consider the stopping

time T +
F c with the convention that T +

F c = ∞ if F c = ∅. Decomposing the event

{T +
F = T +

ξ } according to the event {T +
F < T +

F c} and its complement, we get

RF (η, ξ) = λ(η)Pη

[
T +

F = T +
ξ ; T +

F < T +
F c

]
+ λ(η)Pη

[
T +

F = T +
ξ ; T +

F c < T +
F

]
.

The first probability on the right hand side is equal to Pη[ T +
E = T +

ξ ] = p(η, ξ),
while the second term, by the strong Markov property, is equal to

∑

ζ∈F c

R(η, ζ)Pζ

[
TF = Tξ

]
.

This concludes the proof of the corollary. �

The previous corollary provides an explicit formula for the rates RF in terms of
the holding times λ and the transition probabilities p in the case where F = E\{ξ0}:

RF (η, ξ) = R(η, ξ) + R(η, ξ0) p(ξ0, ξ)

for η 6= ξ, {η, ξ} ⊆ E \ {ξ0}. In particular, if E is a finite set, the rates RF can be
obtained recursively.
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Since {ηh
t : t ≥ 0} is recurrent and irreducible, it has an invariant measure which

is unique up to scalar multiplies. Let µ be an invariant measure for {ηt : t ≥ 0}
and denote by µh

o the measure on F given by

µh
o (ξ) := h(ξ)µ(ξ) , ξ ∈ F .

Proposition 6.3. µh
o is an invariant measure for {ηh

t : t ≥ 0}. In particular, if h
is µ−integrable then {ηh

t : t ≥ 0} is positive recurrent. Moreover, if µ is a reversible
measure for {ηt : t ≥ 0} then µh

o is a reversible measure for {ηh
t : t ≥ 0}.

Proof. Without loss of generality, we may suppose that µ is of the form (6.5) for
some η ∈ F . Thus, by (6.7), for any ξ ∈ E,

h(ξ)µ(ξ) = Eη

[ ∫ T+
η

0

h(ηs)1{ηs = ξ} ds
]

= Eη

[ ∫ τ+
η (ηh

·
)

0

1{ηh
s = ξ} ds

]

.

This shows that µh
o is an invariant measure for the h-trace process. The second

assertion follows from Theorem 3.5.3 in [17].
Suppose now that µ is reversible for R(·, ·). Then, the measure M defined in

(6.4) is a reversible measure for the jump chain Y = {Yn : n ≥ 0}. Since the events
{T +

F = T +
ξ } and {T +

F = T +
η } depend only on Y ,

M(η)Pη

[
T +

F = T +
ξ

]
= M(ξ)Pξ

[
T +

F = T +
η

]
,

for any η, ξ ∈ F , η 6= ξ. In consequence, by the formula for Rh(·, ·) obtained in
Proposition 6.1, µh

o is reversible for the h-trace process. �

6.2. Positive recurrent case. We assume from now on that the Markov chain
{ηt : t ≥ 0} is positive recurrent. Denote by µ its unique invariant probability
measure.

Replacement Lemma. For any probability measure ν on E, we denote by 〈·〉ν the
expected value with respect to ν.

Lemma 6.4. Fix a function g : E → R with nonempty support, integrable with
respect to µ and such that 〈g〉µ = 0. Fix also some ξ in A = {η : g(η) 6= 0}. For
every t > 0,

sup
η∈E

∣
∣
∣Eη

[ ∫ t

0

g(ηs) ds
] ∣
∣
∣ ≤ 2 sup

η∈A

Eη

[ ∫ Tξ

0

|g(ηs)| ds
]

.

Proof. Let {Θt : t ≥ 0} stand for the time shift operators on D(R+, E). Define the
random times H0 = 0, H1 = T +

ξ and Hj+1 = Hj + τ+
ξ ◦ ΘHj

(η·), j ≥ 1. Fix an
arbitrary η ∈ E and let h : E → R+ be a nonnegative function, integrable with
respect to µ. By Proposition 6.3, the trace process {ηh

t : t ≥ 0} is positive recurrent
so that

Eη

[ ∫ Tξ

0

h(ηs) ds
]

= Eη

[
τξ(η

h
· )

]
< ∞ . (6.10)
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Write

Eη

[ ∫ t

0

h(ηs) ds
]

=
∑

j≥0

Eη

[ ∫ t

0

h(ηs) ds 1{Hj ≤ t < Hj+1}
]

=
∑

j≥0

Eη

[ ∫ Hj+1

0

h(ηs) ds 1{Hj ≤ t < Hj+1}
]

−
∑

j≥0

Eη

[ ∫ Hj+1

t

h(ηs) ds 1{Hj ≤ t < Hj+1}
]

.

(6.11)

In the last equation, we used the fact that both terms on the right hand side are
finite. To prove it, notice first that the second term is bounded by the first one.
By Tonelli’s theorem, the first term is equal to

∑

j≥0

j
∑

k=0

Eη

[ ∫ Hk+1

Hk

h(ηs) ds 1{Hj ≤ t < Hj+1}
]

=
∑

k≥0

Eη

[ ∫ Hk+1

Hk

h(ηs) ds 1{Hk ≤ t}
]

.

Taking conditional expectation with respect to FHk
, by the strong Markov property,

this sum is equal to

Eη

[ ∫ H1

0

h(ηs) ds
]

+ Eξ

[ ∫ H1

0

h(ηs) ds
] ∑

k≥1

Pη

[
Hk ≤ t

]

The first term of this sum is finite by (6.10). In the second expectation, ξ appears
instead of η, and the expectation is equal to 〈h〉µ by (6.5). Finally, the sum is finite
by the strong Markov property and because Pξ[T

+
ξ ≤ t] is strictly smaller than 1.

To estimate the last term in (6.11), note that the event {Hj ≤ t < Hj+1} belongs

to Ft and that on this set Hj+1 = t+τ+
ξ ◦Θt(η·). Therefore, by the Markov property,

∑

j≥0

Eη

[ ∫ Hj+1

t

h(ηs) ds 1{Hj ≤ t < Hj+1}
]

= Eη

[

Eηt

[ ∫ H1

0

h(ηs) ds
] ]

.

Putting together the previous identities, we get that the left hand side of (6.11)
is equal to

Eη

[ ∫ H1

0

h(ηs) ds
]

+ 〈h〉µ
∑

k≥1

Pη

[
Hk ≤ t

]
− Eη

[

Eηt

[ ∫ H1

0

h(ηs) ds
] ]

.

Applying the previous identity to g+ and g−, since 〈g〉µ = 0, we obtain that

Eη

[ ∫ t

0

g(ηs) ds
]

= Eη

[ ∫ H1

0

g(ηs) ds
]

− Eη

[

Eηt

[ ∫ H1

0

g(ηs) ds
] ]

.

We claim that we may replace the stopping time H1 by Tξ in both terms of the
right hand side. Indeed, if η is different from ξ, H1 = Tξ Pη-a.s. Conversely, if the
starting point η is equal to ξ, Tξ = 0 so that, by (6.5),

Eη

[ ∫ H1

0

g(ηs) ds
]

= 0 = Eη

[ ∫ Tξ

0

g(ηs) ds
]

.
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Thus, taking the supremum over E, we have proved that

sup
η∈E

∣
∣
∣Eη

[ ∫ t

0

g(ηs) ds
]∣
∣
∣ ≤ 2 sup

η∈E

∣
∣
∣Eη

[ ∫ Tξ

0

g(ηs) ds
]∣
∣
∣ .

Finally, since g vanishes outside A and since ξ belongs to A, by the strong Markov
property,

Eη

[ ∫ Tξ

0

g(ηs) ds
]

= Eη

[ ∫ Tξ

TA

g(ηs) ds
]

= Eη

[

EηTA

[ ∫ Tξ

0

g(ηs) ds
] ]

.

Therefore,

sup
η∈E

∣
∣
∣Eη

[ ∫ Tξ

0

g(ηs) ds
] ∣
∣
∣ ≤ sup

η∈A

∣
∣
∣Eη

[ ∫ Tξ

0

g(ηs) ds
] ∣
∣
∣ .

This concludes the proof of the lemma. �

Let S be a finite set and let π = {Ax : x ∈ S} be a partition of E. Denote by
µx, x ∈ S, the stationary measure µ conditioned on Ax: µx(·) = µ(·|Ax). Also, for
each µ-integrable function g denote by 〈g|π〉µ : E → R the conditional expectation
of g, under µ, given the σ-algebra generated by π:

〈g|π〉µ =
∑

x∈S

〈g〉µx 1{Ax} .

The next result shows that if the process thermalizes quickly in each set of the
partition, we may replace time averages of a bounded function by time averages of
the conditional expectation. This statement plays a key role in our investigation of
metastability. It assumes the existence of an attractor, but similar versions should
exist under weaker assumptions on thermalization.

For each x ∈ S and µ-integrable function g : E → R, let

gx := (g − 〈g〉µx)1{Ax}

and fix some state ξx in Ax, for each x in S. Next statement follows from Lemma
6.4 applied to each gx, x ∈ S. Note that the right hand side does not depend on
time.

Corollary 6.5. Let g : E → R be an integrable function. Then,

sup
η∈E

∣
∣
∣Eη

[ ∫ t

0

{
g − 〈g|π〉µ

}
(ηs) ds

]∣
∣
∣ ≤ 2

∑

x∈S

sup
η∈Ax

Eη

[ ∫ Tξx

0

|gx(ηs)| ds
]

.

Clearly, the right hand side in the previous corollary is bounded above by

4
∑

x∈S

‖g‖x sup
η∈Ax

Eη

[ ∫ Tξx

0

1{ηs ∈ Ax} ds
]

,

where ‖g‖x = sup{|g(η)| : η ∈ Ax}.
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Mean set rates. Let h : E → R+ be a nonnegative function satisfying (6.6) and
belonging to L1(µ). By Propositions 6.1 and 6.3, {ηh

t : t ≥ 0} is irreducible and
positive recurrent. Moreover, its invariant probability measure, denoted by µh, is
given by

µh(ξ) =
h(ξ)

〈h〉µ
µ(ξ) , ξ ∈ F . (6.12)

For each pair A, B of disjoint subsets of F , denote by rh(A, B) the average rate at
which the h-trace process jumps from A to B:

rh(A, B) :=
1

µh(A)

∑

η∈A

µh(η)
∑

ξ∈B

Rh(η, ξ)

=
1

〈h,1{A}〉µ

∑

η∈A

M(η)Pη

[
T +

F = T +
B

]
,

where M has been introduced in (6.4). We used relation (6.12) and Proposition 6.1
in the last equality. We shall refer to rh(·, ·) as the mean set rates associated to the
trace process.

When h is the indicator function of a set F , we denote rh by rF . In this case,

µ(A) rF (A, B) =
∑

η∈A

M(η)Pη

[
T +

B < T +
F\B

]
. (6.13)

6.3. The reversible case. From now on, we shall assume in addition that the
process is reversible with respect to the invariant probability measure µ and that
the measure M is finite:

∑

η∈E

M(η) =
∑

η∈E

λ(η)µ(η) < ∞ . (6.14)

In particular, the mean set rates rh(A, B) are finite.
Assumption (6.14) reduces the potential theory of continuous time Markov chains

to the potential theory of discrete time Markov chains. Recall from Subsection 2.4
that 〈·, ·〉M represents the scalar product in L2(M), that P : L2(M) → L2(M)
stands for the bounded operator defined by (Pf)(η) =

∑

ξ∈E p(η, ξ)f(ξ), and that

D(f) = 〈(I −P )f, f〉M , f ∈ L2(M), is the Dirichlet form associated to the Markov
process {ηt : t ≥ 0}. A simple computation shows that for every f in L2(M),

D(f) =
1

2

∑

η,ξ∈E

M(η)p(η, ξ){f(ξ) − f(η)}2 .

Fix two disjoint subsets A, B of E and recall that C(A, B) := {f ∈ L2(M) :
f(η) = 1 ∀ η ∈ A and f(ξ) = 0 ∀ ξ ∈ B}, and that the capacity of A, B is defined
by

cap(A, B) := inf
{

D(f) : f ∈ C(A, B)
}

.

As max{D(f ∧ 1), D(f ∨ 0)} ≤ D(f), ∀f ∈ L2(M), we may restrict the infimum to
functions bounded below by 0 and bounded above by 1.

Denote by fAB : E → R the function in C(A, B) defined as

fAB(η) := Pη

[
TA < TB

]
.
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An elementary computation shows that fAB solves the equation






(Lf)(η) = 0 η ∈ E \ (A ∪ B) ,
f(η) = 1 η ∈ A ,
f(η) = 0 η ∈ B .

(6.15)

Clearly, we may replace the generator L by the operator I−P in the above equation.
It is not difficult to show that (6.15) has a unique solution in L2(M) given by fAB.
Indeed, if f , g are solutions, D(f − g) = 〈(I − P )(f − g), (f − g)〉M = 0. In
particular, by the explicit expression of the Dirichlet form, f − g is constant. Since
the difference vanishes on A ∪ B, f = g.

Lemma 6.6. For any two disjoint subsets A, B of E,

cap(A, B) = D(fAB) =
∑

η∈A

M(η)Pη

[
T +

B < T +
A

]
.

Proof. We first claim that there exists a function f in C(A, B) whose Dirichlet
form is equal to the capacity cap(A, B). Indeed, we have already seen that we
may restrict the variational problem defining the capacity to functions bounded
below by 0 and bounded above by 1. Consider a sequence {fn : n ≥ 1} in C(A, B)
such that 0 ≤ fn ≤ 1, limn→∞ D(fn) = cap(A, B). Since the sequence fn is
uniformly bounded, there exist f in C(A, B), 0 ≤ f ≤ 1, and a subsequence, still
denoted by {fn : n ≥ 1}, such that f(η) = limn→∞ fn(η) for every η in E. By
Fatou’s lemma, D(f) ≤ lim infn→∞ D(fn) = cap(A, B). Since f belongs to C(A, B),
D(f) = cap(A, B), which proves the claim.

We further claim that f solves (6.15). Fix η 6∈ A ∪ B. Since f solves the
variational problem for the capacity, it is clear that f(η) is the argument which
minimizes the convex function F : R → R defined by

F (a) =
∑

ξ∼η

M(η)p(η, ξ){f(ξ) − a}2 .

In this formula ξ ∼ η means that the underlying jump chain may jump from η to
ξ, i.e., that p(η, ξ) > 0. An elementary computation shows that the minimum is
attained at a =

∑

ξ p(η, ξ)f(ξ) so that f(η) = (Pf)(η). Since fAB is the unique

solution in L2(M) of (6.15), f = fAB and cap(A, B) = D(fAB). This proves
the first statement of the lemma. The second one follows from a straightforward
computation. �

In particular, by (6.13) we have the following very useful identity between ca-
pacities and mean set rates.

Lemma 6.7. Assume that F = A ∪ B and A ∩ B = ∅. Then,

µ(A) rF (A, B) = cap(A, B) .

Next result shows that the mean set rates can be expressed in terms of capacities.

Lemma 6.8. Let A, B be subsets of F such that A ∩ B = ∅. Then,

µ(A) rF (A, B) =
1

2

{

cap(A, F \ A) + cap(B, F \ B) − cap(A ∪ B, F \ [A ∪ B])
}

.

Proof. The proof is elementary and follows from Lemma 6.7 and the identity

2 µ(A) rF (A, B) = µ(A) rF (A, F \ A) + µ(B) rF (B, F \ B)

− µ(A ∪ B) rF (A ∪ B, F \ [A ∪ B]) .
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�

By assumption (6.14), the holding rates λ : E → R+ belong to L1(µ). This
property extends to the holding rates {λh(η) : η ∈ E} of the h-trace process if h
belongs to L1(µ). Indeed, by (6.12) and (6.9),

∑

η∈E

λh(η)µh(η) =
1

〈h〉µ

∑

η∈E

M(η)Pη

[
T +

F = T +
F\{η}

]
< ∞ .

Therefore, assumption (6.14) holds for the h-trace process whenever h belongs to
L1(µ). In this case, its capacity, denoted by caph(·, ·), is well defined. Next result
shows a simple relation between caph(·, ·) and the capacity of the original process.

Lemma 6.9. Let h : E → R+ be a nonnegative µ-integrable function with nonemp-
ty support denoted by F . Then, for every subsets A, B of F , A ∩ B = ∅,

〈h〉µ caph(A, B) = cap(A, B) .

Proof. Fix a function h : E → R+ with the properties required in the statement of
the lemma and two subsets A, B of F such that A∩B = ∅. By Lemma 6.6 applied
to the process {ηh

t : t ≥ 0} and by identities (6.8), (6.12) and (6.9),

caph(A, B) =
∑

η∈A

µh(η)λh(η)Pη

[
τ+
B (ηh

· ) < τ+
A (ηh

· )
]

=
1

〈h〉µ

∑

η∈A

M(η)Pη

[
T +

B < T +
A

∣
∣T +

F = TF\{η}

]
Pη

[
T +

F = T +
F\{η}

]
.

Since for η ∈ A, the event {T +
B < T +

A } is contained in the event {T +
F = TF\{η}}

Pη-almost surely, the previous expression is equal to

1

〈h〉µ

∑

η∈A

M(η)Pη

[
T +

B < T +
A

]
.

By Lemma 6.6 this expression is equal to 〈h〉−1
µ cap(A, B), which proves the lemma.

�

We conclude this subsection proving a relation between expectations of time
integrals of functions and capacities. Fix two disjoint subsets A, B of E. Define
the probability measure νAB on A as

νAB(η) =
M(η)Pη

[
T +

B < T +
A

]

cap(A, B)
, η ∈ A .

Denote by EνAB
the expectation associated to the Markov process {ηt : t ≥ 0} with

initial distribution νAB . The proof of the following proposition is an adaptation of
the proof of identity (4.28) in [12].

Proposition 6.10. Fix two disjoint subsets A, B of E. Let g : E → R be a
µ-integrable function. Then,

EνAB

[ ∫ TB

0

g(ηt) dt
]

=
〈 g , fAB〉µ
cap(A, B)

·
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Proof. We first claim that the proposition holds for indicator functions of states.
Fix an arbitrary state ξ ∈ E. Consider the random time tB := inf{n ≥ 0 : Yn ∈ B}
and the last exit time

LAB := sup{n ≥ 0 : Yn ∈ A and n < tB}

with the convention that sup ∅ = −∞. Then,

Pξ

[
TA < TB

]
=

∑

n≥0

Pξ

[
LAB = n

]

=
∑

n≥0

∑

η∈A

Pξ

[
Yn = η ; n < tB

]
Pη

[
T +

B < T +
A

]

=
∑

η∈A

Pη

[
T +

B < T +
A

] ∑

n≥0

Pξ

[
Yn = η ; n < tB

]
.

Since Y is reversible with respect to M , the last expression is equal to
∑

η∈A

Pη

[
T +

B < T +
A

] M(η)

M(ξ)

∑

n≥0

Pη

[
Yn = ξ ; n < tB

]
.

Recall from the beginning of this section that {en : n ≥ 0} is a sequence of i.i.d.
mean one exponential random variables independent of the jump chain {Yn : n ≥ 0}.
By definition of the measure νAB, this sum can be rewritten as

cap(A, B)
∑

η∈A

νAB(η)
λ(ξ)

M(ξ)
Eη

[ tB−1∑

n=0

en

λ(ξ)
1{Yn = ξ}

]

=
cap(A, B)

µ(ξ)
EνAB

[ ∫ TB

0

1{ηs = ξ} ds
]

.

This proves the assertion for g = 1{ξ}. By linearity and the monotone convergence
theorem we get the desired result for positive and then µ-integrable functions. �

In particular, taking A = {η} and B = {ξ} for η 6= ξ we have that

Eη

[ ∫ Tξ

0

g(ηs) ds
]

=
〈 g , f{η}{ξ} 〉µ

cap({η}, {ξ})
(6.16)

for any µ-integrable function g.
This formula provides a more accurate estimate in Corollary 6.5 in the reversible

context. For each x ∈ S, let

cap(ξx) := inf
η∈Ax\{ξx}

cap({η}, {ξx}) .

Lemma 6.11. Let g : E → R be a function integrable with respect to µ. If the
measure µ is reversible then, for each x ∈ S,

sup
η∈Ax

Eη

[ ∫ Tξx

0

|gx(ηs)| ds
]

≤
2 〈 |g| 〉µx

cap(ξx)
µ(Ax) ,

where |g|(η) = |g(η)| for all η in E.

Proof. By (6.16) and the fact that 0 ≤ f{η}{ξx} ≤ 1, the left hand side is bounded
above by

sup
η∈Ax\{ξx}

〈 |gx| , f{η}{ξx} 〉µ

cap({η}, {ξx})
≤

〈 |gx| 〉µ
cap(ξx)

≤
2 〈 |g|1{Ax} 〉µ

cap(ξx)
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for each x ∈ S. This completes the proof. �

Acknowledgments: The authors would like to thank E. Olivieri for fruitful dis-
cussions on metastability and the two anonymous referees for their suggestions.

References

[1] I. Armendariz, M. Loulakis. Thermodynamic limit for the invariant measures in supercritical
zero range processes. preprint (2008).

[2] P. Billingsley, Convergence of Probability Measures, 2nd Edition. John Wiley & Sons, 1999.
[3] J. Beltrán, C. Landim: Metastability of reversible condensed zero-range processes on complete

graphs. preprint (2009).
[4] J. Beltrán, C. Landim: Metastability of reversible condensed zero-range processes on finite

graphs. preprint (2009).
[5] A. Bovier. Metastability, Lectures given at the 5th Prague Summer School on Mathematical

Statistical Physics, 2006. Online available at
http://www.wias-berlin.de/people/bovier/files/prague.pdf.

[6] M. Cassandro, A. Galves, E. Olivieri, M. E. Vares. Metastable behavior of stochastic dynam-
ics: A pathwise approach. J. Stat. Phys. 35, 603–634 (1984).

[7] K. L. Chung, Markov chains with stationary transition probabilities. Second edition. Die
Grundlehren der mathematischen Wissenschaften, Band 104 Springer-Verlag New York, Inc.,
New York 1967.

[8] M. R. Evans. Phase transitions in one-dimensional nonequilibrium systems. Braz. J. Phys.
30, 42–47 (2000).

[9] M. R. Evans, S. N. Majumdar, R. K. P. Zia: Canonical analysis of condensation in factorized
steady states. J. Stat. Phys. 123, 357–390 (2006)

[10] P. A. Ferrari, C. Landim, V. V. Sisko. Condensation for a fixed number of independent
random variables. J. Stat. Phys. 128, 1153–1158 (2007).

[11] David Freedman. Markov chains. Holden-Day, San Francisco (1971).
[12] A. Gaudillière. Condenser physics applied to Markov chains: A brief introduction to potential

theory. Online available at http://arxiv.org/abs/0901.3053.
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