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Displacement correction for punching at a dynamically loaded bar end

K. Safa, G. Gary*

Laboratoire de Mécanique des Solides, Ecole Polytechnique, 91128 Palaiseau, France

The object of this work is to provide a 3-D displacement correction for local punching due to axial load at

the end of a bar. For this purpose, an analytical calculation of the indentation at the end of an elastic

isotropic bar subjected to a dynamic loading is carried out. It provides a first-order correction of the

displacement obtained through the 1-D wave analysis commonly used in SHPB processing. This

correction improves the results obtained for the dynamic behavior of the specimen, in particular at early

instants of loading where its response is often purely elastic. Tabulated values are provided for easy use

in SHPB testing.

1. Introduction

We are interested in the evaluation of the local displacement

induced at the end of a bar by a central axial load, a phenomenon

referred to as punching. The elementary 1-D theory of wave

propagation in bars, and also some more advanced theories that

consider wave dispersion due to lateral inertia effects [1–3], do not

tackle this problem. Rather they investigate wave propagation at

large distances from the bar end [4]. The determination of the local

displacement at a bar end is of practical importance for the use of

the SHPB device, as suggested by some authors [5].

The SHPB device, also called Kolsky apparatus, is widely used to

measure the stress–strain behavior of materials at high rates of

loading. This behavior is derived from the forces and velocities at

the specimen faces. These quantities are obtained from the axial

strains recorded by use of strain gauges glued to the sides of the

input and output bars. The 1-D force deduced from this measured

strain is assumed to be equal to the resulting applied force at the

end of the bar, as validated in [6,7]. These forces and speeds allow

for the use of inversemethods to investigate the specimen behavior

[8]. A particular use of such methods is to compute the initially

elastic response of the specimen as it was proposed in [9] for an

optimized determination of the relative position of the origin of the

three waves involved. This technique has been intensively used in

our laboratory [10], where we have observed that the calculated

value of the Young’s modulus of the specimen is always smaller, in

particular with small-diameter specimens, than the expected or

known value. We have suspected that this systematic error was due

to an imperfect measurement of the average strain of the specimen.

The bar face in contact with the specimen does not remain plane as

it is non-uniformly loaded, i.e. subjected to a local elastic punching.

The corresponding displacement field is restricted to the impact

zone and is not recorded by the strain gauges located far from the

bar end. This is in agreement with a recommendation for SHPB

found in the book of Buchar, Bilek and Dusek [11], that the spec-

imen diameter must be large enough compared with that of the

bars (less than 10% difference).

We propose to determine more accurately the displacement of

the bar face by use of a local 3-D approach divided into two parts.

The first part is based on transient wave analysis, valid at the early

instants of loading. Oliver [12], followed by Safford [13], addressing

the force measurement at these early instants, mentioned some

limitations of the Pochhamer and Chree model to describe a punc-

tual loading. Field et al. [14] mentioned the local displacement due

to the indentation of a half space. In the second part of the solution

of our problem that applies at later times, a quasi-static analysis is

used. This problem has been studied by Knowles and Horgan [15]

who only addressed the force measurement. The quasi-static

solution that we obtain is the same as the dynamic, except for

highest frequencies seen as radial oscillations of the section of the

bar. The temporal juxtaposition of both solutions gives an estima-

tion of the punching displacement.
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Numerical and experimental studies were also carried out. They

provide estimations of the consequence of the proposed displace-

ment correction to the dynamic response of a specimen. A closed-

form expression for this correction is provided that has practical

advantages for implementation. The correction is especially

significant at the beginning of the loading where it permits esti-

mation of the elastic modulus of the tested material. Tabulated

values are provided for easy use in SHPB testing.

2. Statement of the problem

A typical SHPB device for compression testing is shown in Fig. 1.

Three waves are involved in the experiment: an incident

compressive wave generated by the impact of the striker, a reflec-

ted tensile wave due to the lower impedance of the specimen, and

a transmitted compressive wave. The incident and reflected waves

3i(x, t) and 3r(x, t) are recorded at gauge A of the input bar and the

transmitted wave 3t(x, t) at gauge B of the output bar.

By use of wave theory, usually taking account of dispersion, the

strains measured at A and B are obtained at the bar–specimen

interfaces. Forces, velocities and displacements at each bar face are

obtained subsequently.

In Fig. 2, the sample is shown together with the output bar,

with a deformed configuration of the bar end under a uniformly

distributed force F(t). The SHPB displacement is u(t). The addi-

tional displacement p(t) resulting from the local elastic 3-D

axisymmetric deformation of the bar is referred to as elastic

punching. It appears when the diameter of the specimen is

smaller than that of the bar. The determination of the elastic

punching makes it possible to correct the SHPB measured 1-D

displacement and to obtain the displacement at the specimen–bar

interface as d(t)¼ u(t)þ p(t).

We make the following assumptions which are usually accepted

in SHPB practice:

– The friction between the sample and the bar faces is

negligible.

– The uniaxial stresses within the specimen are uniformly

distributed through the cross section.

Based on these two assumptions, the problem becomes that of

a semi-infinite elastic bar with traction-free lateral faces, axisym-

metrically loaded at its end by a uniform distribution of time-

dependent normal stress. The resulting force F(t) and the

corresponding uniform axial stress in the specimen s(t) are

assumed to be known. The 3-D dynamic problem can be solved to

a good approximation through superposition of the 1-D dynamic

and a 3-D quasi-static loading solutions, as shown in Fig. 3.

– The first loading case is obtained by applying a uniform stress

to the whole section of the bar such that the resulting force

equals F(t). This case can be approximated as a 1-D dynamical

loading case, provided that the highest frequencies f in the

Fig. 1. Split Hopkinson pressure bar (SHPB) setup.

Nomenclature

p(t) Average local axial displacement under the specimen

(called punching displacement in the paper)

u(t) Axial displacement at the specimen–bar interface

obtained by classical SHPB processing

F(t) Axial force applied on the specimen measured by the

SHPB device

s(t) Axial stress in the specimen, corresponding to F(t)

Jn(x) Bessel function of the first kind

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2R=c

2
1

q
, q1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2R=c

2
2

q
:

c1, c2 Dilatational and shear waves velocities in a medium

l, m Lame’s parameters for the constitutive material of the

input or output bar

c0 Longitudinal waves velocity in a thin rod

n Poisson ratio

Kp Punching correction coefficient. 1/Kp is homogeneous

to a spring stiffness

r Radial cylindrical coordinate

R Radius of the SHPB input or output bar

a Radius of the specimen

a Rate of the axial stress in the specimen at the

beginning of the loading, assumed as constant s(t)¼ at

r Ratio of the radial coordinate of a point to that of the

input or output bar r¼ r/R

ra Ratio of the specimen radius to that of the input or

output bar ra¼ a/R

cR Rayleigh (surface) waves velocity

K(x), E(x) Respectively the complete elliptic integrals of the first

and second kind, respectively

t1 Time after which the punching correction p(t) becomes

valid

t Time variable

d(t) Total average displacement under the specimen

d(t)¼ u(t)þ p(t)
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spectrum of the force are negligible compared with c0/2R [16].

The displacement u(t) derived from this 1-D case is that of the

classical SHPB processing.

– The second loading case is obtained by the application of

a quasi-static self-equilibrated load as shown in Fig. 3. This

configuration leads to vanishing displacements far from the

loading zone and produces a local displacement p(t), thus

providing a quasi-static approximation of the dynamic

punching. At some time after impact, the waves propagating

radially at the bar end tend to a quasi-static state. This

approximation is valid if the load duration is large enough

compared with the time needed by the surface waves to make

several transits along the radius of the bar.

The quasi-static nature of this solution in the framework of

small displacements means that it can be expressed in terms of a

linear relation p(t)¼ KpF(t) between the total force F(t)and the

average punching p(t) linked by a constant Kp that depends on the

specimen and bar diameters and the elastic constants of the bar.

At the very early instants of the loading, when the reflected

waves at the lateral sides of the cylinder have not yet super-

imposed, the above analysis (referred to as problem B in the

following) is not valid. The problem is therefore that of a half space

suddenly loaded by a time-varying force. This will be referred to as

problem A in the following.

3. Mathematical formulation

Cylindrical coordinates (r, q, z) are used. In the axisymmetric

case considered, the non-zero components of displacement are ur
and uz and those of stress are sr, sq, sz and srz. The normal stress

applied to the specimen is s(t)¼ F(t)/pa2, where a is the radius of

the specimen. Fig. 4 shows the typical evolution of the axial stress

s(t) in the specimen (in the present example: brass specimen Ø5-

H5 mm; SHPB diameters 20 mm; average strain rate 80 s�1).The

boundary conditions are, for z¼ 0,

sz ¼ sðtÞ; 0 � r < a (1)

sz ¼ 0; a < r � R (2)

srz ¼ 0; 0 � r � R (3)

and for r¼ R;

sr ¼ srz ¼ 0; 0 � z (4)

The initial conditions are

sr ¼ sz ¼ sq ¼ srz ¼ 0; (5)

ur ¼ uz ¼ _ur ¼ _uz ¼ 0: (6)

The equations of motion are

ðlþ2mÞ
v2ur

vr2
þ
1

r

vur
vr

�
ur

r2

!
þm

v2ur

vz2
þðlþmÞ

v2uz
vrvz

¼ r
v2ur

vt2
(7)

ðlþ mÞ
v2ur
vrvz

þ
1

r

vur
vz

!
þ m

v2uz

vr2
þ
1

r

vuz
vr

!
þ ðlþ 2mÞ

v2uz

vz2

¼ r
v2uz

vt2
; (8)

where l, m are Lamé’s parameters for the bar material. In terms of

these parameters, the dilatational and shear waves velocities are

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ=ðrÞ

p
and c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmÞ=ðrÞ

p
, respectively. In the quasi-

static case, the acceleration terms vanish.

As mentioned before, the problem is divided in two parts. At

early instants, (Problem A), the waves produced by the loading are

the same as theywould be in a semi-infinite solid. This state lasts as

Fig. 3. Determination of the local displacement p(t) by superposition of states of stresses.

Fig. 2. Shape of the bar end at the bar–specimen interface.
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long as the reflected waves at the free cylindrical surface of the bar

are not superimposed. The solution of Problem A is therefore valid

for a very short time t1 (if compared with the SHPB test duration).

After a time much larger than t1, the waves propagating radially at

the bar end tend to a quasi-static state while the axial waves

produced early on in the loading are now far from the end of the bar

(Problem B). It will be shown that the solution of this problem

provides a sufficient correction for punching in SHPB applications.

4. Solution of problem A

This first part of the solution concerns the determination of the

displacement during the first stage of the loading. We assume that,

at this stage, the loading is approximated by stresses varying

linearly with time (Fig. 4). In terms of the Heaviside step function,

the boundary condition at the end of the bar can be written

sz ¼ atHða� rÞHðtÞ: (9)

The procedure used here is to apply the Laplace and Hankel

transforms to the equations of motion. To ensure the validity of the

solution, we have to assume that the waves reflected at the sides of

the cylinder have no influence on the displacement that we are

looking for, as would be the case for a half-space. This assumption is

true until a time t1 (to be determined later). The method that

follows is similar to the one used in [17,18] for a half-space medium

suddenly loaded.The Laplace transform of a function f is defined as

f ðsÞ ¼
R
N

0 f ðtÞe�stdt. By applying the Laplace transform to Eqs. (7)

and (8) we obtain:

c21
v2ur
vr

þ
1

r

vur
vr

�
ur

r2

!
þ c22

v2ur

vz2
þ
�
c21 � c22

�v2uz
vrvz

¼ s2ur (10)

�
c21 � c22

� v2ur
vrvz

þ
1

r

vur
vz

!
þ c22

v2uz

vr2
þ
1

r

vuz
vr

!
þ c21

v2uz

vz2
¼ s2uz:

(11)

The Hankel transform of a function f is defined by
ef ðxÞ ¼

R
N

0 JnðxrÞf ðrÞrdr; where Jn(xr) are Bessel functions of the first

kind. By multiplying Eqs. (10) and (11) by J1(xr)r, J0(xr)r, respectively,

and integrating with respect to r from 0 toN, we obtain

c22
v2

vz2
� c21x

2
� s2

!
eur �

�
c21 � c22

�
x
veuz
vz

¼ 0 (12)

c21
v2

vz2
� c22x

2
� s2

!
euz �

�
c21 � c22

�
x
veur
vz

¼ 0: (13)

These equations have the general solution

eur ¼ Ae�kz þ Be�qz (14)

euz ¼ Ce�kz þ De�qz; (15)

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðs2Þ=ðc21Þ

q
; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðs2Þ=ðc22Þ

q
. Putting Eqs.

(14) and (15) into Eqs. (12) and (13), we obtain

C ¼ ðk=xÞA; D ¼ ðx=qÞB which gives

eur ¼ Ae�kz þ Be�qz (16)

euz ¼
k

x
Ae�kz þ

x

q
Be�qz: (17)

Fig. 4. Experimental axial stress curve s(t).

Fig. 5. Axial displacement at the origin (0, 0) for a cylinder of radius R subjected to uniform distributions of pressure of different radii ai applied linearly with time.
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The parameters A and B are obtained from the boundary conditions

for esz and esrz at z¼ 0. Their derivation and subsequent results are

given in Appendix 1 and summarized here. When eur and euz are

obtained, applying the inverse Laplace transform leads to

a complex integral. Its solution relies on the use on Cauchy’s residue

theorem. Applying the inverse Hankel transform to this solution,

one finally obtains the axial surface displacement under a specimen

of radius a at radius r� a and time t. (Eqs. (71) and (72)).

It becomes

uz ¼ �
aa

m

8
>>>>>>><
>>>>>>>:

2

p
ð1� vÞE

�r
a

�
t

þ

k1cR

Zp

0

a� rcosf

W2

�
cRt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 � c2Rt

2
q

þW2arcsin
cRt

W

�
df

8c22

"
c2R
c22

2�
c2R
c22

!
�
q1c

2
R

k1c
2
1

�
k1c

2
R

q1c
2
2

#

9
>>>>>>>=
>>>>>>>;

(18)

for cRt< (aþ r), and

uz ¼ �
aa

m

8
><
>:
2

p
ð1� vÞE

�r
a

�
t þ

p2k1cRa

16c22

"
c2R
c22

2�
c2R
c22

!
�
q1c

2
R

k1c
2
1

�
k1c

2
R

q1c
2
2

#

9
>=
>;

(19)

for cRt� (aþ r).

The conditions leading to Eq. (18) or to Eq. (19) define a time

tr¼ (aþ r)/cR for which the Rayleigh waves propagating from every

part of the loaded area have reached the point at radius r, as (aþ r)

is the distance of the most distant point.

We recognize the first term of Eq. (18) as the quasi-static

displacement of a half-space subjected to a disk r< a of uniform

pressure at [19] (chapter 13 x124). The second term of Eq. (18)

which is a function of time for t< tr reduces to a constant for t� tr.

Then, Eq. (19) shows that the displacement at any point of the

loaded area is a linear function of time for t� tr. The greatest

possible value of tr is obtained when r¼ a. Consequently, the

solution for Problem A shows the existence, for t> 2a/cR, of

a displacement that increases linearly with time in every part

0< r< a of the loaded area. In order to illustrate the above result

and to obtain the time t1 after which this solution diverges from

that for a cylinder, the displacement at the origin (r¼ 0) is

compared in Fig. 5 with that obtained from numerical simulations

(see Appendix 3) for a cylinder of radius R subjected to the same force

uniformly distributed over disks of different radii 0< a< R. In this

particular case (r¼ 0) the response is linear with time for t> a/cR.

It is expected that this holds true until the first return of

Rayleigh waves from the lateral surface of the cylinder, that is, for

a/cR< t< (2R� a)/cR. The linear parts of the solutions, given by

Eq. (19), are plotted for each case of loading. We notice that as

a becomes closer to R, this linear solution lasts a shorter and shorter

time till it vanishes at a¼ R. The values of a/cR give the time where

starts the linear time–displacement relation (Eq. (19)), while those

of (2R� a)/cR correspond to its upper limit after which the half-

space solution is no longer applicable. The intensity of the force

being unchanged, the corresponding domain is limited by a hori-

zontal line (t varying with a/cR) and a hyperbola (t varying with

(2R� a)/cR). This domain (hatched in Fig. 5) represents the interval

of time corresponding to each loaded diameter where the

displacement at the point r¼ 0 is obtained by Eq. (19).

The average axial displacement u0 under the sample at a given

time t can be obtained by integrating Eq. (19) along r� a. It gives

u0ðtÞ ¼
1

pa2

Za

0

2puzrdr

¼
aa

m

8
<
:

8

3p
ð1� vÞt þ

p2k1a

32cR

�
4q1k1 �

q1
k1

1� 2v

2ð1� vÞ
�
k1
q1

�

9
=
;;

(20)

where k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc2RÞ=ðc

2
1Þ

q
; q1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc2RÞ=ðc

2
2Þ

q
:

This integration is valid provided that Eq. (19) applies for any

value of r such as 0< r�a. Consequently it applies for 2a/cR<t< t1.

t1¼2(R� a)/cR is the time needed by Rayleigh waves to travel forth

and back between the edge of the specimen and that of the bar.

We now have to calculate the displacement at the bar end for

t> t1.

5. Solution of problem B

As explained in the statement of the problem, to determine the

correction p(t) at large times we consider the quasi-static self-

equilibrated end-loading problem of a semi-infinite cylinder. The

solution of this problemwill provide the correction p(t) to be added

to the measured displacement u(t) at any time t> t1. In this section

the force F(t) can be of any form.

The problem of self-equilibrated axisymmetric loadings acting

on the ends of a cylinder with stress-free lateral sides has received

wide attention in the frame of the theory of elasticity. The solutions

hold true for any value of the load. A solution in the form of

eigenfunction expansions has been proposed by Lurie [20] (Section

5.7.9). The method consists in finding a set of tractions (of the

desired form) at the end surface that approximates the exact

boundary conditions (the least squares method of error control is

used). The unknown quantities that multiply the eigenvalues in the

eigenfunction expansions are called participation factors, and

cannot be directly obtained because these expansions are not

orthogonal.

Later, Little and Childs [21] developed a set of orthogonal vectors

that allow the determination of the participation factors in a direct

way but only for the case of mixed boundary conditions (traction

and displacement prescribed at the plane face). When only trac-

tions are prescribed, the participation factors need to be obtained

by truncation of an infinite set of equations. Horvay and Mirabal

Fig. 6. Long cylinder (H> 2R) subjected to self-equilibrated tractions with resultant F.
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[22] have proposed another approach for the problem based on the

use of a variational approximate solution that did not present

practical advantages and was lacking completeness [23]. These

methods have been used to solve particular end-loading problems,

mainly the thermal one. The prescribed tractions on the end face

when using the methods mentioned are continuous and slowly

varying from the center of the cylinder to its boundary. In the case

of discontinuous and irregular loading functions, as in our case, the

convenient way to approach the cylinder problem is to expand the

tractions on the end face in Fourier–Bessel series. Benthem and

Minderhood [24] solved the problem of a cylinder compressed

between two rough rigid stamps by using the orthogonal functions

of Little and Childs [21] and by developing the stresses at the

boundary in Fourier–Bessel series. Recently, Wei et al. [25] devel-

oped a displacement potential for solving the axisymmetric

problem of a finite cylinder subjected to rigid axisymmetric

indenters. Even though this solution applies for finite cylinders, the

exponential stress decay near the boundary leads to the same field

of stresses as the one in semi-infinite cylinders subjected to the

same tractions [20] (Section 5.7.9). This happens, in particular,

when the end face of the cylinder is subjected to self-equilibrated

stresses, and when the length-to-diameter ratio is large.

We consider a cylinder of diameter 2R and height 2H(H> 2R)

subjected on its plane surfaces to self-equilibrated stresses, each

corresponding to a total normal force F, considered at any time

(t> t1). The origin of the cylindrical coordinates (r, q, z) is at the

center of the cylinder (Fig. 6).

The axial component of the displacement (denoted here as pz) is

expressed in terms of the displacement potential F as [26]:

pz ¼ �

"
2ð1� vÞ

v2

vr2
þ
1

r

v

vr

!
Fþ ð1� 2vÞ

v2F

vz2

#
: (21)

The expressions for the normal and shear stresses in terms of the

potential F are [26]

sz ¼ �2m

"
ð2� vÞ

v

vz
V2 �

v3

vz3

#
F (22)

srz ¼ �2m

"
� ð1� vÞ

v3

vr3
þ

v

vr

�
v

rvr

�!
þ v

v3

vrvz2

#
F (23)

sr ¼ �2vmV2vF

vz
þ 2m

v3F

vzvr2
; (24)

where V2 is the Laplace operator. The expression for the potential F

is [25]:

F ¼ �
R3

2m

(
A0

k3h3

6
þ C0

khr2

2
þ
XN

n¼1

sinðnphÞ

b3n
½AnI0ðbnrÞ

þ BnbnrI1ðbnrÞ� þ
XN

s¼1

J0ðlsrÞ

l3s
½CssinhðgshÞ

þ DsgshcoshðgshÞ�

)
; (25)

where r ¼ r=R; h ¼ z=H; k ¼ H=R; ls is the sth root of

J1ðxÞ ¼ 0; gs ¼ lsk; bn ¼ np=k; and A0, C0, An, Bn, Cs, Ds are the

unknown coefficients to be determined by use of the boundary

conditions. Substituting Eq. (25) into Eqs. (23) and (24), and

applying the boundary conditions srz¼ sr¼ 0 at r¼ 1 lead to the

relations [25]:

A0nþ ð2n� 1ÞC0 ¼ 0 (26)

En þ
XN

s¼1

FsQsn ¼ 0 (27)

between the unknown coefficients, where

Qsn ¼
4ð�1ÞngsðnpÞ

2J0ðlsÞsinh
2gs

Us

�
g2s þ ðnpÞ2

�2 ; Us ¼ sinhgscoshgs þ gs:

The coefficients En and Fs are related to the original unknowns An,

Bn, Cs, Ds by the relations:

An

2ð1� nÞI1ðbnÞ þ bnI0ðbnÞ

¼
Bn

�I1ðbnÞ
¼

Enhh
2ð1� nÞ þ b2n

i
I21ðbnÞ � b2nI

2
0ðbnÞ=bn

i
(28)

Cs
2nsinhgs þ gscoshgs

¼
Ds

�sinhgs
¼

�Fs
Us

: (29)

To apply the boundary conditions on the flat surfaces of the

cylinder (h¼�1), the tractions need to be expanded into Fourier–

Bessel series. The boundary conditions at h¼�1 are

sz ¼

8
>><
>>:

�
F

pR2r2a
þ

F

pR2
for r � ra

F
pR2 for r � ra

(30)

where ra ¼ a=R .The Fourier–Bessel expansion of Eq. (30) is

sz ¼
2F

praR
2

XN

s¼1

J1ðlsraÞ

lsJ20ðlsÞ
J0ðlsrÞ: (31)

Substituting Eq. (25) into Eq. (22) and identifying with Eq. (31) at

h¼�1, we obtain the relations

A0ð1� nÞ þ 2ð2� nÞC0 ¼ 0 (32)

Fs þ
XN

n¼1

EnRsn ¼
2F

praR
2

J1ðlsraÞ

lsJ20ðlsÞ
(33)

between the unknown variables, where

Rsn ¼
4ð�1Þðnþ1Þl2s b

2
nI

2
1ðbnÞhh

2ð1� nÞ þ b2n

i
I21ðbnÞ � b2nI

2
0ðbnÞ

ih
l2s þ b2n

i2
J0ðlsÞ

:

(34)

Equations (26), (27), (32) and (33) constitute a set of simultaneous

equations fromwhich coefficientsA0,C0, Fs and En canbe obtainedby

taking enough terms of the series in the calculation. A0 and C0 are

equal to zero as implied by Eqs. (26) and (32) and represent

a homogeneous state of stress.With the aid of these coefficients and

Eq. (21), the displacements inside the cylinder can be calculated.

In order to obtain the displacements at the flat end of the

cylinder, we substitute Eq. (25) into Eq. (21) and set h¼ 1, which

gives
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pz ¼
1� n

m
R
XN

s¼1

Fs
J0ðlsrÞsinh

2gs
lsUs

: (35)

6. A closed-form approximate expression for punching

Although Eq. (35) provides an analytical solution for the

problem, some numerical calculations are needed to obtain

a quantitative result. Moreover, it does not help for an estimation of

the influence of the mechanical parameters of the problem.

Therefore, we shall now search for an approximate closed-form

expression for the average displacement under the specimen that

will be more convenient for SHPB practice.

The displacement Eq. (35) depends on the material properties n,

(m¼G), and the normalized variables r, ra and h ðr ¼ r=R;

ra ¼ a=R; h ¼ z=HÞ. The height of the cylinder is sufficient to

ensure that at h¼ 0 (in the middle) the stresses and displacements

tend to zero. This is verified for ðH=RÞ � 3. When the boundary

conditions have no influence on the stress and displacement fields

at the center of the cylinder, it can be considered as ‘‘long’’

compared to the ‘‘short’’ cylinder (h� 1) in which the mechanical

fields are nowhere homogenous.

The correction of the 1-D SHPB displacement u is especially

significant when the radius of the specimen a is small. Moreover, it

is expected from the above theoretical results, that the correction

becomes very small when the specimen diameter is large. Conse-

quently, the subsequent analysis is carried out for 0.1� ra� 0.5. We

are looking for the displacement under the specimen for: 0� r� ra.

The Poisson’s ratio of the bar can take any value in the interval

0.1� n� 0.4. The Poisson’s ratio occurs in Eq. (35) and inside the

expression for Rsn in Eq. (34). We can evaluate its contribution in by

writing Eq. (35) in the form: pz ¼ ð1� nÞ=ðmÞ, where the factor A is

calculated for different values of n. We find that A is almost inde-

pendent of n (less than 2% variation). Therefore the term ð1� nÞ=ðmÞ

sufficiently takes into account the material properties of the bar as

far as pz is concerned.

Eq. (33) shows that the variables Fs and En are proportional to

ð2FÞ=ðpraR
2Þ since this factor multiplies the second member of the

simultaneous set of equations. As the displacement Eq. (35) is

generated by a linear summation of Fs, it can be factorized by

ð2FÞ=ðpraR
2Þ. By setting Gs ¼ ðpraR

2=2FÞFs we canwrite Eq. (35) as

pz ¼
2ð1� nFÞ

pmRra

XN

s¼1

Gs
J0ðlsrÞsinh

2gs
lsUs

¼
2ð1� nÞ

pmRra
Mðr; raÞ: (36)

To identify the behavior of the series in Eq. (36) we consider the

function Mðr; raÞ ¼
P
N

s¼1 GsðJ0ðlsrÞsinh
2gs=lsUsÞ which we have

plotted versus ra for several values of r (r¼ 0, r¼ 0.15, r¼ 0.30,

r¼ ra) (Fig. 7).

Fig. 7 shows thatM(0, ra) andM(ra, ra) have characteristic forms

and appear to be almost linear functions of ra, i.e.,

Mð0; raÞ ¼
1

2
�
ra
2

(37)

Mðra; raÞ ¼
1

p
� gðraÞra; (38)

where g(ra) is the slope of M(ra, ra), undetermined yet.

Substituting Eq. (37) into Eq. (36), we obtain the displacement at

r¼ 0 for any value of 0� ra� 0.5

pz ¼
1

p

1� n

m

1� ra
Rra

F: (39)

In order to obtain the displacement at any point under the spec-

imen, we adopt the following procedure that starts by identifying

g(ra). For this, we plot in Fig. 8 the function

gðraÞ ¼ �ð1=raÞ½Mðra; raÞ � ð1=pÞ�.

Fig. 8 shows that g(ra) can be approximated by ðEðraÞÞ=ðpÞ with

an error less than 1%, where g(ra) is the complete elliptic integral of

the second kindwith argument ra. The choice of the elliptic integral

is also justified since Eð0Þ=p ¼ 1=2 constitutes the second term of

Eq. (37). Now we suppose that M(r, ra) can be written as

Mðr; raÞ ¼
1

p
ðf ðr; raÞ � EðrÞraÞ; (40)

where f(r, ra) is a function for which two particular values are

known: f ð0; raÞ ¼ p=2 and f(ra, ra)¼ 1 as deduced from Eq. (37).

In the same manner as for g(r), we determine f(r, ra) by plotting

the function f(r, ra)¼ pM (r, ra)þ E (r, ra). We find that it can be

accurately represented by Eðr=raÞ. In order to validate these

approximations, we display in Fig. 9 both Lðr; raÞ ¼ ð1=pÞ½Eðr=raÞ �

EðrÞra� and Mðr; raÞ ¼
P
N

s¼1 GsðJ0ðlsrÞsinh
2gs=lsUsÞ for all values

of r and ra in the intervals [0; ra] and [0.1; 0.5], respectively.

Finally, the expression for the elastic punching in Eq. (35) for

r� ra reduces to

pz ¼
2

p2

1� n

m

1

Rra

�
E

�
r

ra

�
� EðrÞra

�
F: (41)

The average displacement under the specimen of radius a is

obtained by integrating Eq. (41) over the specimen area:

pðtÞ ¼ ð1=pa2Þ
R a
0 2ppzrdr. This gives:

pðtÞ ¼ KpFðtÞ; (42)

where

Fig. 7. Values of M(r, ra) for r¼ 0, 0.15, 0.30, ra. Fig. 8. Values of g(r) for r¼ ra.
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Kp ¼
4

3p2

1� n

aram

h
2ra �

�
r2a þ 1

�
EðraÞ �

�
r2a � 1

�
KðraÞ

i
: (43)

Here E(ra) is the complete elliptic integral of the second kind:

EðraÞ ¼
R p=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2asin

2qdq

q
, and K(ra) is the complete elliptic

integral of the first kind: KðraÞ ¼
R p=2
0

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2asin

2q
p .

An analysis of the behavior of the short and long term

displacement solutions in the vicinity of t1 is given in Appendix 2.

7. Application to SHPB

Based on Eq. (42): p(t)¼ KpF(t), the displacement u(t) obtained

by the SHPB standard processing at each face of the sample can be

corrected as follows, for t> t1:

dt>t1ðtÞ ¼ uðtÞ þ pðtÞ ¼ uðtÞ þ KpFðtÞ: (44)

A dynamic numerical simulation is performed with Abaqus

explicit code, in order to illustrate this result, for a cylinder of

diameter 50 mm subjected to uniform distributions of pressure of

diameters 15 and 25 mm, of the same force magnitude (see

Appendix 3 for details). Fig. 10 shows the average displacement as

calculated with formula (44); for t< t1 the solutions given by Eq.

(18) and (20) are used. The 1-D displacement at large distance from

the impact zone as it is given by the SHPB processing,

uðtÞ ¼ ð1=pR2rc0Þ
R t
0 FðsÞds is also shown.

This simulation confirms that the closed-form solution is almost

equal to the one given by the numerical simulation (which is

supposed to accurately describe the real solution). The test lasts

85 ms and simulates the behavior of a brittle material. We purposely

chose a short loading duration to conveniently visualize the solu-

tions obtained. In the present case, it appears that the amplitude of

the correction is of the order ofmagnitude of the displacement itself

up to a force of about 40 kN (250 or 90 MPa for specimens of 15 mm

or 25 mm respectively). In the case of a 25 mm diameter specimen

loaded by the same total force, the correction for punching becomes

rather small. This result also confirms that there was no need to

develop a closed-form formula for ratios a/R greater than 0.5. An

accurate correction in the interval 0.5< a/R< 1 can be obtained

through linear interpolation between the correction for a/R¼ 0.5

and the value zero for a/R¼ 1. The distance between the corrected

displacement d(t) and the 1-D displacement u(t) given by the SHPB,

constitutes the elastic punching p(t) that vanishes when a¼ R.

7.1. Practical implementation of the displacement correction

Now that the elastic punching p(t) is obtained, it has to be

incorporated to the end displacement of the bar. In the case of

SHPB, both displacements at input and output faces of the spec-

imen are concerned.

An example of the strain recorded at a long distance from the

bar end (5 diameters) is given in Fig. 11. We observe that it shows

a ‘‘foot’’, at the beginning of the curve. It corresponds to the time

(same order of magnitude as t1) needed to reach a homogeneous

state of stress along the radius of the bar. In other words, this result

expresses the fact that there is a delay between the beginning of the

loading and the one expected from the 1-D analysis, since the

wave-guide solution effectively begins after a time of the order of t1.

This is in agreement with some other results or remarks found in

the literature [1,27].

When the force is known, the calculated elastic punching (the

sum of the elastic punching calculated for each bar) can be used for

Fig. 9. Exact and approximate generating functions of the displacement pz.

Fig. 10. Numerical, analytical and 1-D average displacements under disks of pressure of diameters 15 and 25 mm, applied on a 50 mm diameter cylinder, according to the same

time-dependent function.
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the determination of the strain of the specimen, all along the test

duration. Note that if the bars have different diameters, the

punching will not be the same for both bars.

In Fig. 12, the shape of one bar face is shown. If we consider the

case of two identical bars andwedenote by l0 the initial length of the

specimen, its current length becomes l(t)¼ l0þ uo(t)� ui(t)þ 2p(t)

where ui(t) and uo(t) are the displacements of the input and output

bars faces, respectively, derived from the standard SHPB analysis.

The value l0þ uo(t)� ui(t) therefore under-estimates the length of

the specimen. Consequently the real strain in the specimen is less

than that given by the classical SHPB analysis, as expected if the bar

ends indent.

Recall that p(t)¼ KpF(t), where Kp defined in Eq. (43) is a function

of the specimen andbar diameters andof the elastic properties of the

bar. Clearly, 1/Kp represents the stiffness associated with punching.

Thus, for given bars and specimen, the punching effect is

equivalent to that of a spring of stiffness 1/Kp acting between each

bar and the specimen. It explains why SHPB processing without

punching corrections leads to underestimated Young’s modulus for

the specimen. Indeed, for input and output bars with the same

impedance, 1/Ereal¼ 1/Eapparent� 1/Epunch, where Epunch¼ ls/2Kpp
2a,

ls, is the specimen length, Ereal is the real modulus, Eapparent that

deduced from standard SHPB processing.

Taking account of punching, classical formulas used to derive

forces and velocities at bar ends from measured strains become

Fig. 11. Strain recorded by axial gages at long distance from the bar end (same loading

as for Fig. 9).

Fig. 12. Schematic view of the output bar end face displacement during a SHPB

experiment.

Fig. 13. Basic recorded waves of the test ‘‘Steel_08’’ – see Appendix 4 for technical

details.

Fig. 14. Waves at bar ends (test ‘‘Steel_08’’).

Fig. 15. Nominal stress–strain curve: influence of the punching correction.
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FiðtÞ ¼ AiEið3iðtÞ þ 3rðtÞÞ

ViðtÞ ¼ �c0ið3iðtÞ � 3rðtÞÞ þ Kpi
dFiðtÞ

dt
(45)

at the input interface and

FoðtÞ ¼ AoEo3tðtÞ

VoðtÞ ¼ �c0o3tðtÞ � Kpo
dFoðtÞ

dt
(46)

at the output interface.

Note that in these expressions, Fi and Fo are positive in tension. Vi

and Vo are the velocities of the input face of the specimen and of the

output face of the specimen, respectively, both positive in the

direction from the input bar towards the output bar. The nominal

strain rate is then (Vo� Vi)/ls.

7.2. Experimental illustration and applications

In the SHPB processing procedure used in our laboratory, the

waves are first transported to bar ends, taking account of disper-

sion. For an improved shifting of the waves, this procedure

involves a transient calculation called ‘‘elastic simulation’’ [9]. The

incident wave at the input face of the specimen is used in a 1-D

Fig. 16. Summary of main results for SHPB.
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transient simulation assuming an elastic behavior of the specimen.

This calculation provides reflected and transmitted waves as they

would be obtained with an elastic specimen of known Young’s

modulus.

In the example the details of which are given in Appendix 4, the

recorded waves of a test on a steel specimen (a/R¼ 0.25) are shown

(Fig. 13).

The results of the elastic simulation are presented (with a Young’s

modulus of 200 GPa, as expected for a steel specimen) in Fig. 14:

‘‘incident’’, ‘‘reflected’’ and ‘‘transmitted’’ show real waves.‘‘tr-sim1’’

and ‘‘ref-sim1’’ show simulated transmitted and reflected waves

taking account of punching. ‘‘tr-sim2’’ and ‘‘ref-sim2’’ show simu-

lated transmitted and reflected waves without punching. It is

observed that considering punching provides waves in good agree-

ment with the real ones, at the early instants of the test.

In Fig. 15, it is shown that the punching correction is significant,

as it was expected with a specimen diameter smaller than that of

the bars. When a test is processed with a specimen that has the

same diameter than the bar, there is no punching effect, and one

recovers directly the expected modulus.

The main results, for a possible easier implementation in SHPB

processing, are summarized in Fig. 16.

8. Conclusion

The problem of the local punching of a bar axially loaded at one

end has been investigated. When a known axial stress is dynami-

cally applied on a circular central part of a bar end, it induces an

axial displacement which varies with the radius of the loaded area.

The effect of punching is the same as that of a hidden spring inside

the bar end. A closed-form approximate expression for the

displacement due to punching, depending on the mechanical

parameters of the bar and of the parameters of the loading is given.

It can be easily applied to SHPB testing. It allows for the punching

correction and, consequently, for a direct measurement of material

properties at low strains, in particular the Young’s modulus.
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Appendix 1. Calculations details for solution of Problem A

The parameters A and B in Eqs. (16) and (19) are obtained with

the help of the boundary conditions for esz and esrz at z¼ 0. Let’s

write the expressions for the normal and shear stress in terms of

the displacements as:

sz ¼ l

�
vur
vr

þ
ur
r

�
þ ðlþ 2mÞ

vuz
vz

(47)

srz ¼ m

�
vur
vz

þ
vuz
vr

�
(48)

By multiplying Eqs. (47) and (48) by rJ0(xr) and rJ1(xr), respectively

and then applying the Laplace transform and integrating with

respect to r from 0 to N, we obtain

esz ¼ lxeur þ ðlþ 2mÞ
veuz
vz

(49)

esrz ¼ m
veur
vz

� mxeuz (50)

Applying Laplace and Hankel transforms on boundary condition

(Eq. (9)), we obtain

sz ¼
a

s2
Hða� rÞ (51)

esz ¼
aa

xs2
J1ðxaÞ: (52)

Substituting inEqs. (49) and (50) the expressions ofeur and euz found in

Eqs. (16) and (17), then applying the boundary conditions we obtain:

2kqAþ
s2

c22
þ 2x2

!
B ¼ 0 (53)

s2

c22
þ 2x

2

!
Aþ 2x

2
B ¼ �

aa

ms2
J1ðxaÞ: (54)

Solving Eqs. (53) and (54) we obtain

A ¼ �
aa

ms2
J1ðxaÞ

s2

c22
þ 2x2

 
s2

c22
þ 2x2

!2

�4kqx2

(55)

B ¼
aa

ms2
J1ðxaÞ

2kq
 
s2

c22
þ 2x2

!2

�4kqx2

(56)

Substituting these expressions for A and B into Eqs. (16) and (17),

we get:

eur ¼

�
aa

ms2
J1ðxaÞ

s2

c22
þ 2x

2

!2

�4kqx
2

( 
s2

c22
þ 2x2

!
e�kz � 2kqe�qz

)
(57)

euz ¼
k

x

�
aa

ms2
J1ðxaÞ

s2

c22
þ2x2

!2

�4kqx2

( 
s2

c22
þ2x2

!
e�kz�2x2e�qz

)
: (58)

By applying the inverse Laplace transform to Eq. (58), we obtain:

euz ¼
aa

2pim

J1ðxaÞ

x

ZgþiN

g�iN

k

s2

s2

c22
þ 2x2

!
e�kz � 2x2e�qz

s2

c22
þ 2x2

!2

�4kqx2

estds:

(59)

This complex integral is similar to the one obtained by Eason [18] in

the case of a half-plane loaded by a sudden constant force. In the

current problem, we have a double pole at s¼ 0 and simple poles at

s¼�ixcR, where cR is the speed of Rayleigh waves. We have branch

points at s¼�ixc2 and s¼�ixc1 resulting from variables k and q in

the numerator. These two variables are square-roots functions of

the complex number s and therefore are multi-valued at the point

s¼ 0.
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Consider the integral

I ¼

ZgþiN

g�iN

k

s2

s2

c22
þ2x

2

!
e�kz�2x

2
e�qz

s2

c22
þ2x

2

!2

�4kqx
2

estds¼

ZgþiN

g�iN

gðsÞds (60)

along the vertical path of the contour S (Fig. 17). Applying Cauchy’s

residue theorem, we obtain

#sgðsÞds ¼ 2pi½Res½g;0� þ Res½g;�ixcR�� (61)

Res½g;0� ¼ lim
s/0

v

vs

h
s2gðsÞ

i
¼

c21 þ xz
	
c21 � c22




2x
	
c21 � c22


 e�xzt: (62)

Res½g;�ixcR� ¼ lim
s/�ixcR

num½gðsÞ�

v

vs
ðdenom½gðsÞ�Þ

¼ �

pk1

��
2�

c2R
c2
2

�
e�k1xz � 2e�q1xz

�

4x2c3R

"
1

c22
2�

c2R
c22

!
�

q1

k1c
2
1

�
k1

q1c
2
2

#sinðxcRtÞ;

(63)

where k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc2RÞ=ðc

2
1Þ

q
; q1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc2RÞ=ðc

2
2Þ

q
.

Integrals along the horizontal path vanish since g/ 0; it is the

same for the integrals along the contour at infinity and around the

branches. In the present problem, we are interested in calculating

the axial component of the displacement at the surface z¼ 0; hence

we are mainly concerned with the residue of g(s) at the Rayleigh

pole, which describes the contribution of the surface waves to the

total displacement, and also at large times which corresponds to

s¼ 0. The displacements given by the remaining integrals are

related to dilatational and shear waves; they are neglected since

their contribution to the surface displacement is negligible, as it has

been shown [17,18]. The residue of g(s) at s¼ 0 and can be designed

as the pseudo-static value of the displacement; this point is clari-

fied here after. The integral Eq. (60) becomes

Iz#sgðsÞds ¼ 2pi½Res½g;0� þ Res½g;�ixcR��: (64)

Substituting Eq. (64) in Eq. (59) we obtain

euzz�
aa

m

J1ðxaÞ

x
½Res½g;0� þ Res½g;�ixcR�� (65)

With Eqs. (62) and (63) inserted, Eq. (65) gives

euzz�
aa

m

J1ðxaÞ

x

2
64
c21 þ xz

	
c21 � c22




2x
	
c21 � c22


 e�xzt

�

pk1

h 
2�

c2R
c22

!
e�k1xz � 2e�q1xz

i
sinðxcRtÞ

4x2cR

"
c2R
c22

 
2�

c2R
c22

!
�
q1c

2
R

k1c
2
1

�
k1c

2
R

q1c
2
2

#

3
75 (66)

Applying the inverse Hankel transform leads to

euzz�
aa

m

ZN

0

J0ðxrÞJ1ðxaÞ

2
64
c21 þ xz

	
c21 � c22




2x
	
c21 � c22


 e�xzt

�
pk1

h�
2�

c2
R

c2
2

�
e�k1xz � 2e�q1xz

i
sinðxcRtÞ

4x2cR

"
c2R
c22

 
2�

c2R
c22

!
�
q1c

2
R

k1c
2
1

�
k1c

2
R

q1c
2
2

#

3
75dx (67)

The two integrals of Eq. (67) will be evaluated at z¼ 0.

Integrals of the type
R
N

0 ð1=xkÞJiðxrÞJjðxaÞdx are discontinuous;

their solutions are given by Watson [28], x13.4. For r� a; we haveR
N

0 ð1=xÞJ0ðxrÞJ1ðxaÞdx ¼ ð2=pÞEðr=aÞ; where Eðr=aÞ is the complete

elliptic integral of the second kind: EðraÞ ¼
R p=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2asin

2qdq

q
.

The first term of integral (Eq. (67)) becomes

ZN

0

1

x
J0ðxrÞJ1ðxaÞ

c21
2
	
c21 � c22


tdx ¼
2ð1� nÞ

p
E
�r
a

�
t: (68)

The integral
R
N

0 ð1=x2ÞJ0ðxrÞJ1ðxaÞsinðxcRtÞdx appears in the second

term of Eq. (67). Using the property [28], x10:

J0ðxrÞJ1ðxaÞ ¼ ð1=pÞ
R p
0 J1ðxWÞða� rcosf=WÞdf,

where W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 � 2arcosf

p
, we can write:

ZN

0

1

x2
J0ðxrÞJ1ðxaÞsinðxcRtÞdx

¼
1

p

Zp

0

a� rcosf

W
df

ZN

0

J1ðxWÞ

x2
sinðxcRtÞdx

(69)

For cRt < ðaþ rÞ;Fig. 17. Mapping on s-plane.
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ZN

0

J1ðxWÞ

x2
sinðxcRtÞdx ¼

1

2W
cRt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 � c2Rt

2 þW2arcsin
cRt

W

r !

For cRt � ðaþ rÞ;

ZN

0

J1ðxWÞ

x2
sinðxcRtÞdx ¼

p

4
W

Introducing these results in Eq. (69), we get:

ZN

0

1

x2
J0ðxrÞJ1ðxaÞsinðxcRtÞdx

¼

8
>>>>>><
>>>>>>:

1

2p

Zp

0

a� rcosf

W2

�
cRt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 � c2Rt

2
q

þW2arcsin
cRt

W

�
df;

cRt < ðaþ rÞ
p

4
a; cRt � ðaþ rÞ ð70Þ

Finally, introducing Eqs. (68) and (70) in (67) we obtain the axial

surface displacement under a specimen of radius a, at radius r and

at time t:

uz ¼ �
aa

m

8
>>>>>>><
>>>>>>>:

2

p
ð1� nÞE

�r
a

�
t

þ

k1cR

Zp

0

a� rcosf

W2

�
cRt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 � c2Rt

2
q

þW2arcsin
cRt

W

�
df

8c22

"
c2R
c22

2�
c2R
c22

!
�
q1c

2
R

k1c
2
1

�
k1c

2
R

q1c
2
2

#

9
>>>>>>>=
>>>>>>>;

(71)
for cRt< (aþ r)

uz ¼ �
aa

m

8
><
>:
2

p
ð1� nÞE

�r
a

�
t þ

p2k1cRa

16c22

"
c2R
c22

2�
c2R
c22

!
�
q1c

2
R

k1c
2
1

�
k1c

2
R

q1c
2
2

#

9
>=
>;

(72)

for cRt� (aþ r)

Appendix 2. Analysis of the corrected displacement function

d(t) at the neighborhood of t1

In the solution of problem A of this paper, the instant of tran-

sition between the transient state and the pseudo quasi-static

situation at the end of the cylinder, has been estimated as

t1 ¼ ð2ðR� aÞÞ=ðcRÞ. It cannot be expected that the displacements

given by Eqs. (22) and (44) have exactly the same value at t¼ t1.

We calculate the function et1 ¼ ðdt>t1 ðt1Þ � dt�t1 ðt1ÞÞ=ðdt�t1 ðt1ÞÞ

(Fig. 18) that expresses the relative distance at t¼ t1, between the

short and long time displacement solutions.We use for the speed of

Rayleigh waves the accurate approximation [29]

cR ¼ ð0:87þ 1:12n=1þ nÞc2, and we keep in mind that in the

neighborhood of t1 we still can approximate the real applied force

F(t) by a linear loading function of time: F(t)¼ pa2at Then, u(t) can

be written: uðtÞ ¼ ð1=pR2rc0Þ
R t
0 FðsÞds ¼ ðc0r

2
aa=4ð1þ nÞmÞt2:

Fig. 18 shows that depending on ra and n, the displacements

given by solutions (20) and (44) at t¼ t1 are not equal. For a steel

bar (n¼ 0.3) the relative distance between both solutions varies

between 0 and 12%, according to the diameter of the sample

(relatively to that of the bar).

This gap is observed at the veryearly instants of the test and does

not last more than a few microseconds. Furthermore, at this time,

the value of the strain is still very small (typically less than 0.1% for

standard specimen). This point can be checked with the results of

the numerical simulation (Ref. part 7 of the present paper).

Appendix 3. Information about the numerical simulations

carried out

Numerical calculations are performed using the general-

purpose finite element code Abacus/Explicit version 6.7, with

element type CAX4R (axis symmetric element, reduced integra-

tion). An automatic time-integration scheme offered by the soft-

ware is used throughout the simulations. A structured meshing

technique was used with squaremeshes of 0.5 mm side. Non-linear

Fig. 18. Percentage of the relative error (100et1) on the displacement at t¼ t1 between

the solutions at short and long times.

Table 1

‘‘Steel_08’’.

Element Length

(m)

Diameter

(m)

Mass density

(kg/m3)

Wave speed

(m/s)

Gage position

(m)

Striker 1.204 0.0203 7960 4795

Input bar 3.01 0.02017 7960 4795 1.495

Output

bar

2.009 0.02017 79607 4795 0.375

Specimen 0.00645 0.00513 7805

Striker speed: 2.79 m/s.

Fig. 19. Basic schematics of the experimental equipment.
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geometry effects were not considered stiffness matrix remaining

the same during the calculations – since in the analytical solutions

we consider the initial and final deformed shape of the cylinder as

identical (small deformations hypothesis). The mesh distortion

correction is automatically controlled by the software and was

checked to be without influence on the results.

The loadingwas introduced by themean of tabulation, and did not

lead to numerical perturbations that are usually induced by the high

frequencies, since the beginning of the load ismainly a linear function

of time. Displacements are considered at the nodes located at the

loaded surface of the cylinder, and not at the integration points.

Appendix 4. Information about the experiments carried out

The characteristics of the steel specimen are given in the Table 1

below. The SHPB setup is made of steel bars. In Fig. 19 the basic

schematics of the experimental equipment is shown:

� Li–the length of the bars and striker

� gi–the distance between specimen faces and the strain gages
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