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Abstract This paper presents new approximation formulae of European options in a

local volatility model with stochastic interest rates. This is a companion paper to our

work on perturbation methods for local volatility models in Benhamou et al. (2009c)

for the case of stochastic interest rates. The originality of this approach is to model the

local volatility of the discounted spot and to obtain accurate approximations with tight

estimates of the error terms. This approach can also be used in the case of stochastic

dividends or stochastic convenience yields. We finally provide numerical results to

illustrate the accuracy with real market data.
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1 Introduction

Long term callable path dependent equity options have generated new modeling chal-

lenges as the path dependency requires consistency in the asset diffusion while the

early exercise on long period suggests interest rates risk. To appropriately account
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Laboratoire Jean Kuntzmann, Université de Grenoble and CNRS, BP 53, 38041 Grenoble cedex 9,

FRANCE. E-mail: emmanuel.gobet@imag.fr.



2

both for the asset diffusion consistency and the interest rates risk, we consider in

this paper a local volatility model with stochastic interest rates. Recent works have

mostly focused on extending stochastic volatility models to stochastic interest rates,

as described in Piterbarg (2005a), Balland (2005), Andreasen (2006) or Haastrecht

et al. (2008). However, very few works have been done on extending local volatility

models to stochastic interest rates, except some work on the explicit bias between

the Dupire local volatilities in a stochastic and deterministic interest rate models (see

Benhamou et al. (2008)).

Local volatility enables to infer a diffusion process, which is consistent with

the whole volatility surface as explained in Dupire (1994). But the introduction of

stochastic interest rates makes the calibration process much harder: indeed, the for-

ward PDE approach is now much more computationally expensive as the forward

PDE to solve includes an additional stochastic factor due to interest rates. In order

to achieve real-time pricing computations, we revisit our perturbation approach (see

Benhamou et al. (2009c)) to derive approximation formulae in the case of stochastic

interest rates.

As a preliminary to our computations, we briefly discuss the choice of the model

for the volatility of the spot process. First, owing to the absence of arbitrage, we

know that if the spot process (St)t and the interest rate instruments follow Itô-type

dynamics, then necessarily

dSt

St

= rtdt +σtdW 1
t ,

rt = f (0, t)−
∫ t

0
γ(s, t).Γ (s, t)ds+

∫ t

0
γ(s, t)dBs,

where (rt)t is the short term interest rate, ( f (0, t))t is the forward rate curve at time

0 (deduced from the initial yield curve), (σt)t is the instantaneous volatility pro-

cess, (Γ (t,T ))t is the volatility of the zero coupon bond (B(t,T ))t paying 1e at

time T , γ(t,T ) = −∂T Γ (t,T ) is the volatility of the forward rates (this is the HJM

framework). The above general decomposition is written under the risk-neutral mea-

sure Q, under which W 1 and B = (B1, · · · ,Bn) are respectively a linear and a n-

dimensional standard Brownian motions. So far, we have not defined the model for

(σt)t , (Γ (t,T )t)t and the correlation between W 1 and B: this is the topic of the fol-

lowing discussion, with a focus on the pricing and calibration features. If our pricing

problem were only for European options, a standard market practice is to model the

forward process and to perform a change of measure choosing the forward measure

as numéraire. Namely, consider the forward process FT
t for the maturity date T given

by FT
t = St

B(t,T ) . As shown in Geman et al. (1995), the pricing of a European option

with final payoff ϕ(ST ) can be reformulated in the forward measures as follows

E[e−
∫ T

0 rsdsϕ(ST )] = B(0,T )ET [ϕ(FT
T )] (1.1)

where ET is the expectation under the forward measure QT . Interestingly, the forward

process (FT
t )0≤t≤T is a martingale under the forward measure QT , meaning that only
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its volatility needs to be specified (it is known that it is equal to the difference of the

volatilities of (St)t and (B(t,T ))t up to correlation factors between W 1 and B). Thus,

the equation (1.1) is illuminating as it shows that the stochastic interest rates risk

seems to be eliminated from the pricing/calibration problem. However, this approach

that models each forward process FT under QT , leads to as many volatility models

as the number of maturities (in addition, each volatility model is written under a

specific forward measure). Furthermore, in the case of path dependent options, it is

not enough to model each FT under QT , since we can not extend the representation

(1.1) using only (FT
t ). Thus, we are forced to model the full dynamics of S under Q.

This supports the choice of a local volatility model for S with stochastic interest rates.

Being inspired by the previous arguments on modeling the forward that is martingale

under the suitable forward probability, we choose to define a model on the discounted

price process:

Sd
t = e−

∫ t
0 rsdsSt

which is also a martingale (under Q). We assume that

dSd
t

Sd
t

= σd(t,Sd
t )dW 1

t .

Equivalently, we study the log discounted process Xt = log(Sd
t ) = log(St)−

∫ t
0 rsds,

whose dynamics is

dXt = σ(t,Xt)dW 1
t − σ2

2
(t,Xt)dt, X0 = x0, (1.2)

where σ(t,Xt) is the volatility term that can be related to the local volatility of the

discounted process σ(t,Xt) = σd(t,Sd
t ).

Taking the log discounted process as a local volatility model is not very conven-

tional as the local volatility function is now a function of the log discounted process

and not of the log process itself. However, this new approach has the great advantage

to remove the influence of stochastic interest rates in the local volatility function and

presumably to lead to intuitive approximations. In addition, this approach leads to

similar types of local volatility as the one for the forward process. Both approaches

model the local volatility functions of martingale processes. For a trader accustomed

to quote local volatility for the forward process, it becomes easy to shift to our ap-

proach.

To complete our preliminary discussion related to the choice of the model, it re-

mains to specify the assumptions of the volatility of interest rates and the correlation.

We consider Gaussian model for interest rates, by assuming that Γ ,γ : R+×R+
� Rn

are deterministic functions (n is the number of Gaussian factors). The Brownian mo-

tions W 1 and B = (B1, · · · ,Bn) are correlated using deterministic functions (ρS,r
i,t )i,t :

d〈W 1,Bi〉t = ρS,r
i,t dt 1 ≤ i ≤ n.
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Now, our aim is to give an analytical accurate approximation of any European option

price, written as the expected value under the risk neutral probability measure of a

payoff function h evaluated at the maturity time T :

A = E[e−
∫ T

0 rsdsh(
∫ T

0
rsds+XT )], (1.3)

where h(x) = ϕ(ex). The important cases are related to call/put for which h(x) =

(ex −K)+ and h(x) = (K − ex)+.

Using the zero coupon B((t,T ))t as a numéraire, one has

A = B(0,T )ET [h(
∫ T

0
rsds+XT )], (1.4)

where ET is the expectation under the forward neutral probability QT . The process

(Xt)t has the following dynamics under the probability QT :

dXt = σ(t,Xt)dW
1,T

t +(ρS,r
t .Γ (t,T )σ(t,Xt)−

σ2

2
(t,Xt))dt, X0 = x0, (1.5)

where (W 1,T )t is a Brownian motion under QT .

Black formula. An important case in our study is associated to time dependent

volatility σ(t,x) = σt for which the price is given explicitly by the Black formula for

call/put payoffs. This feature relies on the Gaussian property of
∫ t

0 rsds + XT under

QT . One has
∫ T

0
rsds+XT =

1

2

∫ T

0
|Γ (t,T )|2dt −

∫ T

0
Γ (t,T )dBt +

∫ T

0
f (0, t)dt

+ log(S0)+
∫ T

0
σtdW 1

t − 1

2

∫ T

0
σ2

t dt

= log(
S0

B(0,T )
)+

∫ T

0
σtdW

1,T
t −

∫ T

0
Γ (t,T )dBT

t

− 1

2

∫ T

0
|Γ (t,T )|2dt − 1

2

∫ T

0
σ2

t dt +
∫ T

0
σtρ

S,r
t .Γ (t,T )dt, (1.6)

where (W 1,T ,BT ) is a QT -Brownian motion (with the same correlation than under

Q). Denote by σBlack the equivalent Black volatility defined by

(σBlack)2T =
∫ T

0
[σ2

t + |Γ (t,T )|2 −2σtρ
S,r
t .Γ (t,T )]dt.

Thus,
∫ T

0 rsds + XT is QT -distributed as a Gaussian r.v. with mean log( S0

B(0,T ) )−
1
2
(σBlack)2T and variance (σBlack)2T . In particular for call options (h(x) = (ex −

K)+), it follows that

A = B(0,T )[
S0

B(0,T )
N (

1

σBlack
√

T
log(

S0

B(0,T )K
)+

1

2
σBlack

√
T )

−KN (
1

σBlack
√

T
log(

S0

B(0,T )K
)− 1

2
σBlack

√
T )].
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General local volatility models. Then, to obtain the analytical approximation for

general local volatility models, we follow the ideas from the paper Benhamou et al.

(2009c) and we introduce a parameterized process given by:

dXε
t = ε(σ(t,Xε

t )dW
1,T

t +(ρS,r
t .Γ (t,T )σ(t,Xε

t )− σ2

2
(t,Xε

t ))dt),Xε
0 = x0, (1.7)

where the parameter ε lies in the range [0,1]. Obviously, this parameterized process is

equal to the initial one for ε = 1. Remarkably, it is much easier to calculate the price

(1.4) as an expansion formula with respect to ε (this is related to Black formula).

Once we have derived all the terms of the expansion, we see that the price of the

European option is obtained by taking ε = 1 in the expansion.

Before giving the details of this expansion, in Section 2 we expose the general

methodology underlying our approximations. This is based on the idea of using a

proxy model (in the current paper, this is the Black model). Actually, the proxy

model is strongly connected to the expansion of the model w.r.t. some parameter

ε (see Equation (1.7)). From this point of view, our approach seems to be very close

to Watanabe’s expansion Watanabe (1987) of Wiener functionals. However, this is

different and in Section 2, we emphasize these differences.

In Section 3, we state the assumptions used in the paper and define the notation. Then

we give the main results (Theorems 3.3 and 3.6). An extension to commodities (local

volatility with stochastic convenience yield) is performed in Section 4. In Section 5,

we present some numerical results to illustrate the accuracy of the formulas. Proofs

of main results are given in Section 6.

2 Our methodology and comparison with Watanabe’s approach

2.1 Methodology

There are many expansion methods. See Labordère (2005) for geodesic expansion,

see Fouque et al. (2000) for ergodic approach, see Lee (2004) for extremes strikes, see

Piterbarg (2005b) for parameter averaging. We refer to Benhamou et al. (2009a) for

a discussion and more detailed references. Our approach is different and presumably

can be applied in a wider framework.

To simplify the exposure of our methodology, we assume in this section that the

quantity of interest is E[h(XT )] (i.e. compared to (1.4) we do not write the terms
∫ T

0 rsds and omit to specify the probability measure). To ensure that a perturbation

method can be efficiently used in practice, the quantity of interest (i.e. the price)

should be decomposed as a summation of explicit terms, namely a principal part plus

some correction terms. The main idea is that the principal part is given by the price in

a proxy model. The distance to the proxy model is represented by a small parameter

∆ . Below, we cite some examples of proxy and ∆ that we used in our previous works.
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– In Heston model Benhamou et al. (2009a), a possible proxy could be a Black

Scholes model by taking the vol of vol ξ equal to 0. In that case, we could define

∆ = ξ .

– In local volatility models Benhamou et al. (2009b) Benhamou et al. (2009c), the

Black Scholes model could be a proxy by freezing the local volatility function σ

at its initial value. In that case, ∆ could be the sup norm of the derivatives of σ .

Actually, this measure of the distance to the proxy is too rough and it needs to be

specified for each model. Furthermore, the stochastic representation of the distance

to the proxy is obtained by using a suitable parameterization of the model. Denoting

by (Xt)t the true model for the underlying asset price (or log-asset price) and by

(XP
t )t the proxy model, assume the existence of a smooth parameterization (Xε

t )t≥0

(0 ≤ ε ≤ 1) such that Xε
t |ε=1 = Xt . Then usually the proxy coincides with the first

order Taylor expansion XP
t = Xε

t |ε=0 +∂ε Xε
t |ε=0. This step is very model specific, it

is not possible to write a general theory and we refer for the details to the introduction

of our works Benhamou et al. (2009b), Benhamou et al. (2009c) Benhamou et al.

(2009a), the PhD manuscript of the third author (Miri (2009)) or the next section for

the current model. Now, at least formally we can write a Taylor expansion for the

price of a vanilla option h on the asset X maturing at time T :

E[h(XT )] = E[h(XP
T )]+E[h(1)(XP

T )(XT −XP
T )]+ · · ·+E[h( j)(XP

T )
(XT −XP

T ) j

j!
]+Resid j.

(2.1)

The leading term E[h(XP
T )] is explicit, because usually the prices in the proxy model

are explicit (actually, it is somehow a constraint in the choice of our proxy model).

The second term E[h(1)(XP
T )(XT −XP

T )] plays the role of the first correction term, but

it is not explicit for general processes and has to be approximated. The trick is to

decompose this term as a summation of Greeks (in the proxy model) plus a residual

term:

E[h(1)(XP
T )(XT −XP

T )] =
n1

∑
i=1

a
(1)
i ∂ i

xE[h(XP
T + x)]|x=0 +O(∆ k). (2.2)

The above error magnitude O(∆ k) (for a given k > 0) is the expected global accuracy

of our final formula. The Greeks in the proxy model arising in (2.2) have to be ex-

plicit as well. The derivation of this decomposition is strongly model-dependent and

we derive it using Malliavin calculus combined with the parameterization (Xε
t )t≥0.

For the convenience of the reader, we shall explain why Greeks appear naturally in

(2.2). The identification using Greeks can be seen as an inverse procedure used in the

literature about integration by parts formula and Malliavin calculus (Fournié et al.

(1999)). Indeed, we know that ∂ i
xE[h(XP

T + x)]|x=0 = E[h(i)(XP
T )] = E[h(XP

T )H i
T ] for

some ”Malliavin weights” H i
T and to get (2.2), we should identify (a

(1)
i )i such that

∑
n
i=1 a

(1)
i H i

T ≈ (XT −XP
T ). Then, we repeat the decomposition (2.2) for each term of
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the type E[h( j)(XP
T )

(XT−XP
T ) j

j!
], by writing E[h( j)(XP

T )
(XT−XP

T ) j

j!
] = ∑

n j

i=1 a
( j)
i ∂ i

xE[h(XP
T +

x)]|x=0 + O(∆ k). Finally, we bring together all these contributions in (2.1) up to the

minimal order jk verifying Resid jk = O(∆ k). This gives

E[h(XT )] = E[h(XP
T )]+

jk

∑
j=1

[
n j

∑
i=1

a
( j)
i ∂ i

xE[h(XP
T + x)]|x=0]+O(∆ k)

= E[h(XP
T )]+

max j≤ jk
n j

∑
i=1

(
jk

∑
j=1

a
( j)
i ✶i≤n j

)∂ i
xE[h(XP

T + x)]|x=0 +O(∆ k).

The general form is the following:

E[h(XT )] = E[h(XP
T )]+ weighted sum of Greeks ∂ i

xE[h(XP
T + x)]|x=0 + error.

(2.3)

Of course, these formal arguments need to be mathematically clarified with many

respects:

– the payoff h is not smooth (the second derivative of a call payoff does not exist in

the classical sense, which avoids to write directly (2.1)).

– one has to carefully use Malliavin calculus to derive explicit expansions for the

coefficients (a
( j)
i )i.

– the estimate of error terms is a very difficult task and actually, it depends on the

model and the payoff.

2.2 Comparison with Watanabe’s approach

It is worth emphasizing that the Watanabe approach (Watanabe (1987)) using an

asymptotic expansion of Wiener functionals is a very important reference and there

exist similarities and significant differences between Watanabe’s approach and ours.

In his work, Watanabe considers a family (Fε)ε≥0 of random variables defined on

the Wiener space and smooth in the Malliavin sense. Below, we follow his notation.

Suppose that we can write an asymptotic expansion of Fε in powers of ε at any order

k:

Fε − (F0 + εF1 + · · ·+ εkFk) = O(εk+1) as ε � 0+ (2.4)

The random variables (Fi)i are smooth in the Malliavin sense and the above equality

with Landau symbol has to be understood w.r.t. the Sobolev norms ‖ · ‖Dl,p . Assume

additionally a uniform non degeneracy condition:

limsup
ε�0+

‖1/det(γFε )‖p < ∞ for all p ≥ 1 (2.5)
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where γFε is the Malliavin covariance matrix of Fε . Then, Watanabe shows that, for

any function h with polynomial growth, we have:

E[h(Fε)] = E[h(F0)]+ εE[h(F0)π1]+ · · ·+ εkE[h(F0)πk]+O(εk+1) (2.6)

where (πi)i is a sequence of random variables. This equality can be extended to dis-

tributions h (Theorem 2.3 in Watanabe (1987)).

At first sight, (2.3) and (2.6) are of the same type by taking XT = Fε and F0 =

XP
T . Within this analogy, we may try to relate the Greeks in (2.3) with the terms

(E[h(F0)πi])i in (2.6), but actually this identification is not straightforward at all.

An important feature of Watanabe’s approach is that the expansion accuracy is

written in terms of the small parameter ε . The parameterization w.r.t. ε is crucial (for

instance, see small noise and small time expansion in Watanabe (1987)). Last but not

least, the impact of other model parameters do not enter in the estimates. And this

point is a significant drawback of such computations. To illustrate this, consider the

toy model

Fε = σW1 +
√

εB1

where (W,B) is a two-dimensional Brownian motion, and σ is positive. Let us expand

E[h(Fε)] in powers of ε for h(x) = x2 and h(x) = x+. We use that Fε is distributed as

a N (0,σ2 + ε). Clearly F0 = σW1.

1. Case h(x) = x2. We have

E[h(Fε)] = E[(Fε)2] = σ2 + ε = E[h(F0)]+ ε.

2. Case h(x) = x+. By a scaling argument, we have:

E[h(Fε)] =
√

σ2 + εE[(W1)
+] =

√

σ2 + ε

σ2
E[(σW1)

+]

= E[h(F0)]+
1

2

ε

σ
E[(W1)

+]+O(
ε2

σ3
).

These two computations are coherent with the Watanabe expansion results:

E[h(Fε)] = E[h(F0)]+ εc1 +O(ε2).

But the coefficient c1 depends strongly on the model and on the function h (in the

second case, εc1 = 1
2

ε
σ E[(W1)

+]). In case where σ is small as well, the expansion

accuracy is heavily related to ratio of ε
σ and thus not only to ε . This is another strong

argument against a direct application of the Watanabe asymptotic expansion. In our

works, we provide non-asymptotic estimates, which crucially enables us to deduce

the domain of validity of our formulas regarding all the model parameters. In other

words, a significant part of our work emphasises the impact of model parameters

on the approximation. This is confirmed by numerous numerical experiments (see
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Benhamou et al. (2009b), Benhamou et al. (2009c), Benhamou et al. (2009a)). We

also show that the magnitude of the error is impacted by the payoff smoothness. The

previous toy example is a convincing illustration of this phenomenon, whereas within

Watanabe’s approach, the payoff regularity does not play any role in the estimates.

We now discuss in more details the differences in the proofs and methodologies.

1. In our approach, we quantify the error according to the payoff smoothness: We

perform a Taylor expansion for smooth options as we show before. Then, we

use a regularisation method and integration by parts (Malliavin calculus) in order

to upper bound the errors and express the truncated terms as a combination of

Greeks of the first term.

2. As a difference, Watanabe gives asymptotic expansions of the density of the pro-

cess by expressing the density as an expectation of a Dirac distribution. In The-

orem 2.3 in Watanabe (1987) for the pull-back of distributions by Wiener func-

tionals, he uses the integration by parts formula (Malliavin calculus) applied to

the distributions in order to retrieve smooth test functions. Then, he uses Tay-

lor expansions in order to express the corrections as a function of the distribution

derivatives. We guess that the expansion of Malliavin integration by parts formula

is less tractable compared to our direct approach. In other words, in view of hav-

ing closed formulas, it is easier to ”expand and integrate by parts” than ”integrate

by parts and expand”.

3. As a common fact within the two approaches, it is both assumed that the proxy

model (XP
T or F0) is related to a Gaussian process or a Gaussian random variable.

Actually, in our case, we also use log-normal proxys.

4. Another technical difference lies in the assumptions used for the expansions. In

Watanabe results, C ∞ smoothness of the model coefficients is usually required.

In our framework, we assume optimal regularity assumptions to achieve a given

accuracy (for instance, see Assumption (RN) in Section 3). In Benhamou et al.

(2009a), we also handle non smooth cases like Heston model (because of the

square root in the diffusion coefficient).

Finally, to complete our comparative discussions, we refer to the works Siopacha

and Teichmann (2009), Yoshida (1992a), Yoshida (1992b), Kunitomo and Taka-

hashi (2001) where Watanabe’s approach is applied to computational finance.

3 Notation and main results

3.1 Notations, definitions, assumptions

The following notation will be used extensively throughout the paper.

Notation 3.1 Differentiation.

If these derivatives have a meaning, we write:
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– ψ
(i)
t (x) = ∂ iψ

∂xi (t,x) for any function ψ of two variables.

– σt = σ(t,x0),σ
(i)
t = σ (i)(t,x0).

– Xε
i,t =

∂ iXε
t

∂ε i is the ith derivative of the parameterized process with respect to ε .

– Xi,t =
∂ iXε

t

∂ε i |ε=0 . These processes play a crucial role in this work.

The following notation of Greeks will be useful for interpreting the expansion terms.

Notation 3.2 Greeks.

Let Z be a random variable. Given a payoff function h, we define the ith Greek for the

variable Z by the quantity (if it has a meaning) :

Greekh
i (Z) =

∂ iET [h(
∫ T

0 rsds+Z + x)]

∂xi
|x=0.

Assumptions. In order to derive tight upper bounds for our expansions, we assume

that the coefficient σ is smooth enough. In what follows, N is an integer greater than

4.

– Assumption (RN). The function σ is bounded and of class CN w.r.t x. Its deriva-

tives up to order N are bounded.

This assumption may be restrictive because σ has to be bounded as well its deriva-

tives. Actually, this statement is made only to simplify a bit our analysis, but we can

prove that our approximation remains valid if some boundedness requirements are

partially relaxed.

Notation 3.3 Function amplitudes.

Under (RN), we set

M0 =max(|σ |∞, · · · , |σ (N)|∞), (3.1)

M1 =max(|σ (1)|∞, · · · , |σ (N)|∞). (3.2)

Although M0 and M1 may depend on N, we remove this dependence in our notation,

for the sake of simplicity. In our expansion, we expect these quantities to be small.

Remark 3.1 The constant M0 measures the amplitude of the objective function σ and

its derivatives w.r.t. the second variable, whereas M1 measures only the amplitude of

its derivatives. Notice that M1 ≤ M0 and in case of deterministic function σ , one has

M1 = 0.

In real market, the correlation between the asset and the short rate is close to zero

(see table 5.1). Therefore, the following assumption is consistent with real market

data.

– Assumption (Rho). The asset is not perfectly correlated (positively or negatively)

to the interest rate:

|ρS,r|∞ = sup
t∈[0,T ]

|ρS,r
t | < 1.
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To perform the infinitesimal analysis, we rely on smoothness properties not related to

the payoff function itself but rather to the law of the underlying stochastic models.

– Assumption (E). The function σ does not vanish and its oscillation is bounded,

meaning 1 ≤ |σ |∞
σin f

≤CE where σin f = inf(t,x)∈R+×R σ(t,x).

The assumption (E) is commonly called an ellipticity assumption.

Definition 3.2 As usual, we define C ∞
0 (R) as the space of real infinitely differen-

tiable functions h with compact support. We also define H as the space of functions

with exponential growth.

As in Benhamou et al. (2009c), our analysis depend on the payoff smoothness.

We split our analysis into three cases.

– Assumption (H1). h belongs to C ∞
0 (R). This case corresponds to smooth payoffs.

– Assumption (H2). h and h(1) belong to H . This case corresponds to vanilla

options (call/put).

– Assumption (H3). h belongs to H . This is the case of binary options (digital).

3.2 Main results

Our perturbation approach relies on the Taylor expansion of the parameterized pro-

cess (Xε
t ) defined in (1.7). We have paved the way in our previous work Benhamou

et al. (2009c). In the quoted reference, the parameterized process has the form

dXε
t = ε(µ(t,Xε

t )dt +σ(t,Xε
t )dWt)

and the aim was to approximate E[h(X1
T )]. Hence, compared to the current study, we

take a specific form for µ , namely µ(t,x) = ρS,t
t .Γ (t,T )σ(t,x)− σ2(t,x)

2
: with this

respect, the expansion on the process (Xε
t ) is very similar to that of Benhamou et al.

(2009c). On the other hand, in our case, the quantity of interest is ET [h(
∫ T

0 rsds+X1
T )]

and the extra term
∫ T

0 rsds induces significant differences when the correction terms

are computed. For the convenience of the reader, we briefly expose the computations

when similar to Benhamou et al. (2009c), and we detail the arguments when new

compared to Benhamou et al. (2009c).

From the definitions, Xi,t ≡ ∂ iXε
t

∂ε i |ε=0, we can expand the perturbed process Xε
T as

follows:

Xε
T = Xε

T |ε=0 + εX1,T +
ε2

2!
X2,T + . . . (3.3)

Indeed, under the assumption (R5), almost surely for any t, Xε
t is C4 w.r.t ε (see The-

orem 2.3 in Kunita (1984)). The diffusion dynamics of (Xε
i,t ≡

∂ iXε
t

∂ε i )t≥0 is obtained by
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a straight differentiation of the parameters of the diffusion equation of Xε . The first

order term Xε
1,t is easily obtained as follows:

Xε
1,0 =0,

dXε
1,t =σt(X

ε
t )dW

1,T
t +(ρS,r

t .Γ (t,T )σt(X
ε
t ))− σ2

t (Xε
t )

2
)dt

+εXε
1,t(σ

(1)
t (Xε

t )dW
1,T

t +(ρS,r
t .Γ (t,T )σ

(1)
t (Xε

t )−σt(X
ε
t )σ

(1)
t (Xε

t ))dt). (3.4)

From the definitions, we have σt ≡ σ(t,x0) and σ
(i)
t ≡ σ (i)(t,x0). Then, we obtain

dX1,t =σtdW
1,T

t +(ρS,r
t .Γ (t,T )σt −

σ2
t

2
)dt, X1,0 = 0, (3.5)

dX2,t =2X1,t(σ
(1)
t dW

1,T
t +(ρS,r

t .Γ (t,T )σ
(1)
t −σtσ

(1)
t )dt), X2,0 = 0. (3.6)

Applying the expansion (3.3) at ε = 1, we conclude that x0 +X1,T is a proxy for XT .

It follows the notation:

XB
T = x0 +X1,T = x0 +

∫ T

0
(ρS,r

s .Γ (s,T )σs −
σ2

s

2
)ds+

∫ T

0
σsdW 1,T

s , (3.7)

where the exponent B stands for Black, which is the proxy. To obtain an approxima-

tion formula as in Benhamou et al. (2009c), we assume that h is smooth and then,

we obtain approximations which are valid even if h is not smooth, which allows us

to handle finally the case of arbitrary payoffs. Use the Taylor formula twice: first, for

X1
T at the second order w.r.t ε around x0, secondly for smooth function h at the first

order w.r.t x around XB
T . This leads to:

A = B(0,T )ET [h(
∫ T

0
rsds+XT )] = B(0,T )ET [h(

∫ T

0
rsds+XB

T +
X2,T

2
+ ...)]

= B(0,T )(ET [h(
∫ T

0
rsds+XB

T )]+ET [h(1)(
∫ T

0
rsds+XB

T )
X2,T

2
]+ ...).

Note that the first term is explicit for call/put options since it is given by the Black

formula previously mentioned. To achieve a fully explicit formula, it remains to trans-

form the correction term involving X2,T into a summation of Greeks computed in the

Black proxy. This is performed using the Malliavin calculus.

Theorem 3.3 (Second order approximation price formula).

Assume that the model fulfills (R5), (E) and (Rho), and that the payoff function fulfills

one of the assumptions (H1), (H2) or (H3). Then

E[e−
∫ T

0 rsdsh(
∫ T

0
rsds+XT )] =B(0,T )

(

ET [h(
∫ T

0
rsds+XB

T )]

+
3

∑
i=1

αi,T Greekh
i (

∫ T

0
rsds+XB

T )+Resid2

)

, (3.8)
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where

α1,T =−
∫ T

0
(ρS,r

t .Γ (t,T )σt −
σ2

t

2
)(

∫ T

t
asσ

(1)
s ds)dt,

α2,T =−α1,T −α3,T ,

α3,T =
∫ T

0
atσt(

∫ T

t
asσ

(1)
s ds)dt,

at =σt −ρS,r
t .Γ (t,T ).

Additionally, estimates of the error term Resid2 is analysed according to the payoff

smoothness.

– For smooth payoff (assumption (H1)), one has:

|Resid2| ≤C sup |h( j)|∞
1≤ j≤⌊m

2 ⌋
M1M2

0(
√

T )3.

– For vanilla payoff (assumption (H2)), one has:

|Resid2| ≤C(‖h(1)(
∫ T

0
rsds+XB

T )‖2 + sup
v∈[0,1]

‖h(1)(
∫ T

0
rsds+ vXT +(1− v)XB

T )‖2)

M0

σin f

√

1−|ρS,r|2∞
M1M2

0(
√

T )3.

– For binary payoff (assumption (H3)), one has:

|Resid2| ≤C(‖h(
∫ T

0
rsds+XB

T )‖2 + sup
v∈[0,1]

‖h(
∫ T

0
rsds+ vXT +(1− v)XB

T )‖2)

(
M0

σin f

√

1−|ρS,r|2∞
)2M1M0(

√
T )2.

In the above estimates, the constant C depends (in an increasing way) on the bounds

of the model parameters and the maturity, and the norm ‖.‖2 is the L2 norm under

the probability measure QT .

The proof of the above Theorem is postponed to Subsection 6.2.

Remark 3.4 The above approximation is a summation of the leading term and a com-

bination of some Greeks of the leading term:

1. B(0,T )ET [h(
∫ T

0 rsds+XB
T )] is the leading order, corresponding to the price when

the parameters σ is deterministic. In the case of call/put option, it is given by the

Black formula previously mentioned. For other payoffs, we can use numerical

integration because the law of the random variable
∫ T

0 rsds+XB
T is Gaussian with

known parameters.

2. B(0,T )Greekh
i (

∫ T
0 rsds + XB

T ) is the ith derivative of the leading term w.r.t. the

initial value x0 = log(S0).
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3. The coefficients αi,T are explicit and depend on the function σ , its derivative at

the point x0, the zero coupon volatility Γ , its derivative γ and the correlation ρS,r.

In the next subsection, these constants will be made specified for some important

case to enlighten more their simple expressions w.r.t. the model parameters.

As in Benhamou et al. (2009c), the accuracy of the approximation has different jus-

tifications which can be related from the error estimates on Resid2. Either σ is only

time dependent (M1 = 0) and the formula is exact (Black formula). Or the shorter

the maturity T or the smaller the volatility (measured by M0), the more accurate the

approximation.

Remark 3.5 The case of the one factor Hull and white model plus time homoge-

neous diffusion

Here, we consider the case of γ1(t,T ) = ξ e−κ(T−t), a constant correlation ρ and a ho-

mogeneous volatility σ(t,x)= σ(x). Then here σ(t,x0)= σ(x0)≡σ and σ (0,1)(t,x0)=

σ (1)(x0) ≡ σ (1). Using Mathematica, we can compute exactly the correction coeffi-

cients. Their expressions are

α1,T =
e−2κT σσ (1)

4κ4
(2ρ2ξ 2 +2eκT ρ(κσ(2κT +1)+2ρ(κT −1)ξ )ξ

+ e2κT
(

σ2T 2κ4 +ρσ(κT (3κT −2)−2)ξ κ +2ρ2(κT −1)2ξ 2
)

,

α2,T =−α1,T −α3,T ,

α3,T =
e−2κT σσ (1)

(

ρξ + eκT
(

σT κ2 +ρT ξ κ −ρξ
))2

2κ4
.

3.3 Third order approximation formula

Notice also that in real market the amplitude of volatility of the Hull and White model

is ξ ≈ 1% while for the asset σ ≈ 20%. Therefore, one has presumably |Γ (.)|∞ =

O(M2
0). Thus, we expect that the third order approximation formula w.r.t. M0 does

not yield additional interest rate corrections. The proof follows the arguments of Ben-

hamou et al. (2009c) and we skip the details. Therefore, in the following higher order,

we neglect terms related to additional stochastic rate corrections.

Theorem 3.6 (Third order approximation price formula).

Assume that the model fulfills (R7), (E) and (Rho) with |Γ (.)|∞ = O(M2
0), and that

the payoff function is a vanilla payoff (assumption (H2)). Then

E[e−
∫ T

0 rsdsh(
∫ T

0
rsds+XT )] =B(0,T )

(

ET [h(
∫ T

0
rsds+XB

T )]

+
6

∑
i=1

βi,T Greekh
i (

∫ T

0
rsds+XB

T )+Resid
′
3

)

, (3.9)
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where

β1,T =α1,T − C2,T

2
− C3,T

2
− C4,T

4
− C5,T

4
− C6,T

2
,

β2,T =α2,T +
C2,T

2
+

C3,T

2
+

5C4,T

4
+

5C5,T

4
+

7C6,T

2
+

C7,T

2
+

C8,T

4
,

β3,T =α3,T −2C4,T −2C5,T −6C6,T −3C7,T − 3C8,T

2
,

β4,T =C4,T +C5,T +3C6,T +
13C7,T

2
+

13C8,T

4
,

β5,T =−6C7,T −3C8,T ,

β6,T =2C7,T +C8,T ,

and

C2,T = ω(σ2,(σ (1))2)T
0 , C3,T = ω(σ2,σσ (2))T

0 , C4,T = ω(σ2,σ2,(σ (1))2)T
0 ,

C5,T = ω(σ2,σ2,σσ (2))T
0 , C6,T = ω(σ2,σσ (1),σσ (1))T

0 ,

C7,T = ω(σ2,σ2,σσ (1),σσ (1))T
0 , C8,T = ω(σ2,σσ (1),σ2,σσ (1))T

0 .

In the above definition of the constants, the notation ω() is defined by

ω( f1, · · · , fk) =
∫ T

0
f1(r1)

∫ T

r1

f2(r2) · · ·
∫ T

rk−1

fk(rk)dr1 · · ·drk, k ≥ 0.

In addition, the error term Resid
′
3 is estimated as follows

|Resid
′
3| ≤C

(

‖h(1)(
∫ T

0
rsds+XB

T )‖2 + sup
v∈[0,1]

‖h(1)(
∫ T

0
rsds+ vXT +(1− v)XB

T )‖2

)

× (
M0

σin f

√

1−|ρS,r|2∞
)2M1M3

0(
√

T )4

+C‖h(1)(
∫ T

0
rsds+XB

T )‖2(
M0

σin f

√

1−|ρS,r|2∞
)5M1M3

0(
√

T )3,

where the constant C depends (in an increasing way) on the bounds of the model

parameters and the maturity.

Proof Using an adaptation of Theorem 4.3 in Benhamou et al. (2009c), one has

E[e−
∫ T

0 rsdsh(
∫ T

0
rsds+XT )]

=B(0,T )(E[h(
∫ T

0
rsds+XB

T )]+E[h(1)(
∫ T

0
rsds+XB

T )
X2,T

2
]

+E[h(1)(
∫ T

0
rsds+XB

T )
X3,T

3!
]+E[h(2)(

∫ T

0
rsds+XB

T )
(

X2,T

2
)2

2
]+Resid3).
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The error Resid3 is estimated using an adaptation of Theorem 4.3 by :

|Resid3| ≤C(‖h(1)(
∫ T

0
rsds+XB

T )‖2 + sup
v∈[0,1]

‖h(1)(
∫ T

0
rsds+ vXT +(1− v)XB

T )‖2)

(
M0

σin f

√

1−|ρS,r|2∞
)2M1M3

0(
√

T )4.

The first correction term E[h(1)(
∫ T

0 rsds + XB
T )

X2,T

2
] is made explicit in Theorem 3.3.

The other correction terms E[h(1)(
∫ T

0 rsds + XB
T )

X3,T

3!
] +E[h(2)(XB

T )
(

X2,T
2 )2

2
] are com-

puted using integration by parts (Malliavin calculus) and a truncation argument of the

weights. The truncation argument consists in neglecting the additional weights which

are related to Γ since |Γ (.)|∞ = O(M2
0). Hence, the computation of these corrections

terms is reduced to the computation of the additional weights of the third order cor-

rection by taking Γ ≡ 0 (this is done in Theorem 2.4 of Benhamou et al. (2009c)).

By easy but tedious computations that are not detailed, we can prove that the related

truncation error is estimated by:

|TruncationError| ≤C‖h(1)(
∫ T

0
rsds+XB

T )‖2(
M0

σin f

√

1−|ρS,r|2∞
)5M1M3

0(
√

T )3.

Note that the above error does not decrease to 0 as quickly as before w.r.t. the maturity

T (the power is equal to 3 instead of 4).

�

Remark 3.7 In the case of homogeneous volatility σ(t,x)= σ(x). We write σ(t,x0)≡
σ , σ (0,i)(t,x0) ≡ σ (i). Then

C2,T = σ2(σ (1))2 T 2

2
, C3,T = σ3σ (2) T 2

2
,

C4,T = σ4(σ (1))2 T 3

6
= C6,T , C5,T = σ5σ (2) T 3

6
,

C7,T = σ6(σ (1))2 T 4

24
, C8,T = C7,T .

4 Extension to stochastic dividend and convenience yield

The current framework can be easily adapted to deal with stochastic dividends or

stochastic convenience yield in a local volatility model applied to commodity mar-

kets. This can be seen as an extension to Gibson Schwartz model to handle local

volatility functions for example. We recall the SDE of the underlying spot in the
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Gibson Schwartz model (see Gibson and Schwartz (1990)):

dSt

St

= (rt − yt)dt +σdW 1
t ,

dyt = κ(αt − yt)dt +ξtdW 2
t ,

d〈W 1,W 2〉t = ρtdt.

Here, the interest rate (rt)t is deterministic. (αt)t and (ξt)t are time dependent func-

tions. Therefore, using similar modeling like for stochastic rates, we have the follow-

ing framework:

dXt = σ(t,Xt)dW 1
t − σ2(t,Xt)

2
dt,

dyt = κ(αt − yt)dt +ξtdW 2
t ,

d〈W 1,W 2〉t = ρtdt,

where St = eXt e
∫ t

0(rs−ys)ds and σ(t,x) is the local volatility function. Hence, our aim

is to estimate:

e−
∫ T

0 rsdsE[h(
∫ T

0
(rs − ys)ds+XT )]. (4.1)

Analogously, the proxy XB
t is:

dXB
t = σtdW 1

t − σ2
t

2
dt,XB

0 = x0.

Hence, we obtain analogous corrections results:

Theorem 4.1 (Second order approximation price formula).

Assume that the model fulfills (R5), (E) and (Rho), and that the payoff function fulfills

one of the assumptions (H1), (H2) or (H3). Then

e−
∫ T

0 rsdsE[h(
∫ T

0
(rs − ys)ds+XT )] = e−

∫ T
0 rsds

(

E[h(
∫ T

0
(rs − ys)ds+XB

T )]

+
3

∑
i=1

λi,T Greekh
i (

∫ T

0
(rs − ys)ds+XB

T )+Resid2

)

, (4.2)

where

λ1,T =
∫ T

0

σ2
t

2
(
∫ T

t
σsσ

(1)
s ds)dt,

λ2,T =−
∫ T

0
btσt(

∫ T

t
σsσ

(1)
s ds)dt −

∫ T

0

σ2
t

2
(
∫ T

t
bsσ

(1)
s ds)dt,

λ3,T =
∫ T

0
btσt(

∫ T

t
bsσ

(1)
s ds)dt,

bt =σt −ρtξt

∫ T

t
e−κ(s−t)ds.

The error term Resid2 is estimated as in Theorem 3.3.
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5 Numerical Experiments

Here we give numerical examples for the accuracy of our approximation formula. As

a benchmark, we use Monte Carlo methods with a variance reduction technique. We

consider the one factor Hull and White model for interest rates, the CEV diffusion

for the spot and constant correlation ρ . Then,

γ(t,T ) = ξ e−κ(T−t),σ(t,x) = νe(β−1)x.

In this case the correction coefficients are computed in Remark 3.5. We consider the

call h(x) = (ex −K)+, ensuring that the price and the Greeks in the Black proxy are

explicit.

For the correlation, we take ρ = 15%, which is a realistic value (see Table 5.1).

Table 5.1 Historical correlation between assets and short term interest rate EUR. Period: 23-Sep-2007 to

22-Sep-09.

Asset Historical correlation

ADIDAS 18.32%

BELGACOM 4.09%

CARREFOUR 7.08%

DAIMLER -0.94%

DANONE 7.23%

LVMH 4.53%

NOKIA 4.37%

PHILIPS 5.23%

5.1 Monte Carlo with control variate

Using the HJM framework for the Hull and White short rate (rt), the integrated
∫ T

0 rsds is a Gaussian variable with mean m and variance v (see Brigo and Mercu-

rio (2006))

m =
∫ T

0
f (0, t)dt +

ξ 2

2κ2
(T +

2

κ
(e−κT −1)− 1

2κ
(e−2κT −1)),

v =
ξ 2

κ2
(T +

2

κ
e−κT − 1

2κ
e−2κT − 3

2κ
).

The simulated random variable is e−
∫ T

0 rt dt(e
∫ T

0 rt dt+XT −K)+. In order to reduce the

statistical error, we use a control variate method. Namely, the control variate is
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e−
∫ T

0 f (0,t)dt(e
∫ T

0 f (0,t)dt+XT −K)+-E[e−
∫ T

0 f (0,t)dt(e
∫ T

0 f (0,t)dt+XT −K)+]. The latter ex-

pectation is approximated analytically using the third order accurate formula using

lognormal proxy approximation derived in Benhamou et al. (2009c).

We take forward rates ( f (0, t) = 2%). Indeed, this choice is arbitrary, and it does

not influence the accuracy or the correction terms calculus.

5.2 Accuracy of the second and third order approximation formulas (3.8), (3.9)

In Tables 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9 (corresponding to the maturities 6M, 1Y ,

5Y , 10Y for a small and a large skew β = 0.8 and β = 0.2), we give detailed numer-

ical results about the accuracy of the second order formula (3.8) and the third order

formula (3.9). MC- and MC+ are the bounds of the 95%-confidence interval of the

Monte Carlo estimator. Remark also that we increase the range of strike according

to maturity in order to test our approximation formula for real quoted strikes. There-

fore, we see that our formula (3.8) is very accurate (errors in implied volatilities are

smaller1 than few bps) for β close to 1. For various values of β , we remark that our

third order formula (3.9) is extremely accurate.

Table 5.2 Implied Black-Scholes volatilities for the second order formula (3.8), the third order formula

(3.9) and the Monte Carlo simulations (3 millions simulations using Euler scheme with 50 time steps per

year) expressed as a function of strikes at the expiry T = 6M. Parameters: β = 0.8, ν = 0.2, ξ = 0.7%,

κ = 1%, ρ = 15% and x0 = 0.

Strikes 80% 90% 100% 110% 120%

Second Order formula 20.48% 20.26% 20.05% 19.86% 19.68%

Third Order formula 20.50% 20.26% 20.05% 19.86% 19.69%

MC with control variate 20.50% 20.26% 20.05% 19.86% 19.69%

MC- 20.27% 20.19% 20.01% 19.83% 19.66%

MC+ 20.72% 20.33% 20.09% 19.89% 19.72%

6 Proofs

Here, we bring together the results (and their proofs) which allow us to derive the

explicit terms in the formula (3.8). In the following, (ut) (resp. (vt)) is a square inte-

grable and predictable (resp. deterministic) process and l is a smooth function with

compact support. We recall that at = σt −ρS,r
t .Γ (t,T ).

1 1 bp on implied volatilities is equal to 0.01%.
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Table 5.3 Implied Black-Scholes volatilities for the second order formula (3.8), the third order formula

(3.9) and the Monte Carlo simulations (3 millions simulations using Euler scheme with 50 time steps per

year) expressed as a function of strikes at the expiry T = 6M. Parameters: β = 0.2, ν = 0.2, ξ = 0.7%,

κ = 1%, ρ = 15% and x0 = 0.

Strikes 80% 90% 100% 110% 120%

Second Order formula 21.70% 20.94% 20.11% 19.34% 18.57%

Third Order formula 21.95% 20.97% 20.12% 19.36% 18.70%

MC with control variate 21.95% 20.98% 20.12% 19.37% 18.70%

MC- 21.76% 20.91% 20.09% 19.34% 18.68%

MC+ 22.14% 21.04% 20.16% 19.39% 18.72%

Table 5.4 Implied Black-Scholes volatilities for the second order formula (3.8), the third order formula

(3.9) and the Monte Carlo simulations (3 millions simulations using Euler scheme with 50 time steps per

year) expressed as a function of strikes at the expiry T = 1Y . Parameters: β = 0.8, ν = 0.2, ξ = 0.7%,

κ = 1%, ρ = 15% and x0 = 0.

Strikes 60% 80% 100% 120% 140%

Second Order formula 20.96% 20.53% 20.10% 19.73% 19.40%

Third Order formula 21.12% 20.55% 20.10% 19.74% 19.43%

MC with control variate 21.14% 20.56% 20.11% 19.74% 19.44%

MC- 18.51% 20.43% 20.07% 19.72% 19.41%

MC+ 22.56% 20.68% 20.14% 19.77% 19.47%

Table 5.5 Implied Black-Scholes volatilities for the second order formula (3.8), the third order formula

(3.9) and the Monte Carlo simulations (3 millions simulations using Euler scheme with 50 time steps per

year) expressed as a function of strikes at the expiry T = 1Y . Parameters: β = 0.2, ν = 0.2, ξ = 0.7%,

κ = 1%, ρ = 15% and x0 = 0.

Strikes 60% 80% 100% 120% 140%

Second Order formula 22.78% 21.88% 20.22% 18.73% 16.91%

Third Order formula 24.11% 22.08% 20.24% 18.81% 17.71%

MC with control variate 24.13% 22.08% 20.25% 18.82% 17.72%

MC- 23.23% 21.98% 20.21% 18.80% 17.69%

MC+ 24.90% 22.19% 20.28% 18.84% 17.74%

6.1 Technical results related to explicit correction terms

The two first lemmas are proved in Appendix of Benhamou et al. (2009b).

Lemma 6.1 For any continuous (or piecewise continuous) function f , any continu-

ous semimartingale Z vanishing at t=0, one has:

∫ T

0
ftZtdt =

∫ T

0
(
∫ T

t
fsds)dZt .
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Table 5.6 Implied Black-Scholes volatilities for the second order formula (3.8), the third order formula

(3.9) and the Monte Carlo simulations (3 millions simulations using Euler scheme with 50 time steps per

year) expressed as a function of strikes at the expiry T = 5Y . Parameters: β = 0.8, ν = 0.2, ξ = 0.7%,

κ = 1%, ρ = 15% and x0 = 0.

Strikes 40% 70% 100% 140% 180%

Second Order formula 21.99% 21.23% 20.55% 19.90% 19.38%

Third Order formula 22.36% 21.27% 20.56% 19.91% 19.43%

MC with control variate 22.44% 21.31% 20.60% 19.95% 19.47%

MC- 21.61% 21.20% 20.55% 19.91% 19.44%

MC+ 23.17% 21.42% 20.65% 19.98% 19.50%

Table 5.7 Implied Black-Scholes volatilities for the second order formula (3.8), the third order formula

(3.9) and the Monte Carlo simulations (3 millions simulations using Euler scheme with 50 time steps per

year) expressed as a function of strikes at the expiry T = 5Y . Parameters: β = 0.2, ν = 0.2, ξ = 0.7%,

κ = 1%, ρ = 15% and x0 = 0.

Strikes 40% 70% 100% 140% 180%

Second Order formula 25.17% 23.69% 21.15% 18.50% 15.97%

Third Order formula 28.26% 24.27% 21.27% 18.71% 17.01%

MC with control variate 28.35% 24.29% 21.30% 18.73% 17.02%

MC- 28.00% 24.20% 21.25% 18.70% 17.00%

MC+ 28.69% 24.38% 21.34% 18.75% 17.04%

Table 5.8 Implied Black-Scholes volatilities for the second order formula (3.8), the third order formula

(3.9) and the Monte Carlo simulations (3 millions simulations using Euler scheme with 50 time steps per

year) expressed as a function of strikes at the expiry T = 10Y . Parameters: β = 0.8, ν = 0.2, ξ = 0.7%,

κ = 1%, ρ = 15% and x0 = 0.

Strikes 30% 60% 100% 160% 220%

Second Order formula 22.99% 22.16% 21.25% 20.38% 19.77%

Third Order formula 23.54% 22.25% 21.27% 20.40% 19.84%

MC with control variate 23.66% 22.32% 21.34% 20.47% 19.91%

MC- 22.87% 22.18% 21.28% 20.43% 19.87%

MC+ 24.37% 22.47% 21.40% 20.51% 19.94%

Lemma 6.2 One has:

ET [(
∫ T

0
utdW

1,T
t )l(

∫ T

0
atdW

1,T
t )] = ET [(

∫ T

0
atutdt)l(1)(

∫ T

0
atdW

1,T
t )].

If u is deterministic then

ET [(
∫ T

0
utdW

1,T
t )l(

∫ T

0
atdW

1,T
t )] = (

∫ T

0
atutdt)∂xET [l(

∫ T

0
atdW

1,T
t + x)]

∣

∣

x=0
.
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Table 5.9 Implied Black-Scholes volatilities for the second order formula (3.8), the third order formula

(3.9) and the Monte Carlo simulations (3 millions simulations using Euler scheme with 50 time steps per

year) expressed as a function of strikes at the expiry T = 10Y . Parameters: β = 0.2, ν = 0.2, ξ = 0.7%,

κ = 1%, ρ = 15% and x0 = 0.

Strikes 30% 60% 100% 160% 220%

Second Order formula 27.03% 25.69% 22.40% 18.91% 16.09%

Third Order formula 31.69% 27.04% 22.69% 19.26% 17.35%

MC with control variate 31.88% 27.07% 22.71% 19.27% 17.30%

MC- 31.56% 26.96% 22.66% 19.24% 17.27%

MC+ 32.20% 27.17% 22.76% 19.30% 17.32%

Lemma 6.3

ET [l(
∫ T

0
atdW

1,T
t )(

∫ T

0
vtX1,tdt)]

= (
∫ T

0
atσt(

∫ T

t
vsds)dt)ET [l(1)(

∫ T

0
atdW

1,T
t )]

+(
∫ T

0
(ρS,r

t .Γ (t,T )σt −
σ2

t

2
)(

∫ T

t
vsds)dt)ET [l(

∫ T

0
atdW

1,T
t )].

Proof Applying first Lemma 6.1 to f (t) = vt and Zt = X1,t , we obtain:

ET [(
∫ T

0
vtX1,tdt)l(

∫ T

0
atdW

1,T
t )]

=ET [(
∫ T

0
(
∫ T

t
vsds)dX1,t)l(

∫ T

0
atdW

1,T
t )]

=ET [(
∫ T

0
(
∫ T

t
vsds)(σtdW

1,T
t +(ρtΓ1(t,T )− σ2

t

2
)dt)l(

∫ T

0
atdW

1,T
t )]

=(
∫ T

0
atσt(

∫ T

t
vsds)dt)ET [l(1)(

∫ T

0
atdW

1,T
t )]

+(
∫ T

0
(ρtΓ1(t,T )− σ2

t

2
)(

∫ T

t
vsds)dt)ET [l(

∫ T

0
atdW

1,T
t )],

where we have used Lemma 6.2 for the last equality. �

6.2 Proof of Theorem 3.3

Using Equation (1.6), the r.v.
∫ T

0 rsds + XB
T can be projected on the QT -Brownian

motion W 1,T as follows:

∫ T

0
rsds+XB

T =
∫ T

0
(σt −ρS,r

t .Γ (t,T ))dW
1,T

t +DT ,
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where DT is a Gaussian random variable independent on (W 1,T
t )t . Then using notation

at = σt −ρS,r
t .Γ (t,T ), one gets

ET [h(
∫ T

0
rsds+XB

T )
X2,T

2
]

= ET [h(
∫ T

0
atdW

1,T
t +DT )

X2,T

2
]

= ET [h(
∫ T

0
atdW

1,T
t +DT )

∫ T

0
X1,t(σ

(1)
t dW

1,T
t +(ρS,r

t .Γ (t,T )σ
(1)
t −σtσ

(1)
t )dt)]

= ET [h(1)(
∫ T

0
atdW

1,T
t +DT )

∫ T

0
atσ

(1)
t X1,tdt)]

+ET [h(
∫ T

0
atdW

1,T
t +DT )

∫ T

0
(ρS,r

t .Γ (t,T )σ
(1)
t −σtσ

(1)
t )X1,tdt],

where we have used Equation (3.5) for second Equality and Lemma 6.2 for last one.

An application of Lemma 6.3 gives immediately the Equality (3.8).

Error analysis. For the smooth case, we only need estimates on ε � Xε
t and its deriva-

tives, in terms of M0 and M1. This is very similar to our previous work (see Benhamou

et al. (2009c)) and we skip the details (use our discussion in the beginning of Sec-

tion 3). For the call/put case or digital case, once again we follow the lines of the

proof of Benhamou et al. (2009b) and Benhamou et al. (2009c). The computations

and estimates remain the same, except for Lemma 5.5 in Benhamou et al. (2009c) and

Lemma 5.3 in Benhamou et al. (2009b) which now writes as follows. Here, appears

the correlation assumption (Rho).

Lemma 6.4 Assume (E), (Rho) and (Rk+1) for a given k ≥ 1 . Let Z belong to

∩p≥1D
k,p. For any v ∈ [0,1], there exists a random variable Zv

k in any Lp (p ≥ 1)

such that for any function l ∈ C ∞
0 (R), we have

ET [l(k)(
∫ T

0
rsds+ vXT +(1− v)XB

T )Z] = ET [l(v
∫ T

0
rsds+XT +(1− v)XB

T )Zv
k ].

Moreover, we have ‖Zv
k‖p ≤ C

‖Z‖k,2p

(
√

1−|ρS,r |2∞σin f

√
T )k

, uniformly in v, where C depends

(in an increasing way) on the bounds of the model coefficients and the maturity.

Proof We follow the same approach from the quoted references. First, we prove that

a suitable Malliavin covariance matrix is invertible and we estimate the Lp-norm of

its inverse. Second, we apply the integration by parts from Malliavin calculus to get

the existence of Zν
k , and finally, we provide estimates for its Lp-norm. Only the first

step is a bit different and is worth being detailed. For the other steps, we refer to the

proof of Lemma 5.3 in Benhamou et al. (2009b). Let us denote Fν =
∫ T

0 rsds+νXT +

(1−ν)XB
T . All the calculus of stochastic variations will be performed relatively to the
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(n+1)-dimensional Brownian motion (W̃ 1,T ,B1,T , · · · ,Bn,T ). We define W̃ 1,T by the

relation

dW
1,T

t =

√

1−|ρS,r
t |2dW̃

1,T
t +ρS,r

t .dBT
t ,

from which we deduce that (W̃ 1,T ,B1,T , · · · ,Bn,T ) is indeed a standard QT -Brownian

motion. The key feature in this choice is that the first component of the Malliavin

derivative of
∫ T

0 rsds is zero: DW̃ 1,T
(
∫ T

0 rsds) ≡ 0. Hence, we have:

DW̃ 1,T

t Fν = νσ(t,Xt)

√

1−|ρS,r
t |2e

∫ T
t σ

(1)
u (Xu)dWu+(ρ

S,r
u Γ (u,T )σ

(1)
u −σ

(1)
u σu− 1

2 (σ
(1)
u )2)(Xu)du

+(1−ν)σt

√

1−|ρS,r
t |2,

and thus

DW̃ 1,T

t Fν ≥ σin f

√

1−|ρS,r|2∞ inf
0≤t≤T

e
∫ T
t σ

(1)
u (Xu)dWu+(ρ

S,r
u Γ (u,T )σ

(1)
u −σ

(1)
u σu− 1

2 (σ
(1)
u )2)(Xu)du.

It is easy to deduce that the Malliavin covariance matrix is bounded from below by:

γFν ≥
∫ T

0
|DW̃ 1,T

t Fν |2dt

≥T σ2
in f (1−|ρS,r|2∞) inf

0≤t≤T
e2

∫ T
t σ

(1)
u (Xu)dWu+(ρ

S,r
u Γ (u,T )σ

(1)
u −σ

(1)
u σu− 1

2 (σ
(1)
u )2)(Xu)du,

from which it readily follows (for p ≥ 1)

‖γ−1
Fν

‖p ≤C(σin f

√

1−|ρS,r|2∞
√

T )−2.

�
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