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On the confinement of a tokamak plasma.

Daniel Han-Kwan∗

October 22, 2009

Abstract

The goal of this paper is to understand from a mathematical viewpoint the mag-
netic confinement of plasmas for fusion. Following Frénod and Sonnendrücker [5], we
first use 2-scale convergence tools to derive a gyrokinetic system for a plasma sub-
mitted to a large magnetic field with a slowly spatially varying intensity. We finally
investigate the behaviour of the plasma in such a regime and we prove non-linear sta-
bility or instability depending on which side of the tokamak we are looking at. In our
analysis we will also show that there exists a temperature gradient threshold beyond
which one can expect stability, even in the “bad” side : this is the so-called H-mode.

1 Introduction

Fusion is undoubtly one of the most promising research fields in order to find new sources
of energy. For the time being, magnetic confinement fusion represents one of the two
main approaches (the other one being inertial confinement fusion). The principle consists
basically in using a magnetic field in order to confine the very high temperature plasma.
Good confinement is absolutely compulsory since the plasma could otherwise damage the
surrounding materials.
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A first step towards confinement is to use a tokamak1, i.e. a torus-shaped box and
consider a large purely toroidal magnetic field B, in other words B = B

ǫ eϕ with ǫ > 0
small. One can formally show that at leading order in ǫ, particles gently oscillate around
the magnetic field lines. 2 The drawback of this technique is that there is in fact many
drifts appearing at higher order, some due to the geometry of B and one we are specifically

∗Département de Mathématiques et Applications, Ecole Normale Supérieure, 45 rue d’Ulm, 75230 Paris
Cedex 05, France (hankwan@dma.ens.fr)

1Actually there are other possibilities, like stellarators. These kinds of devices are much more difficult
to study from the mathematical viewpoint, since they have a very complex structure.

2However, for the moment, notice that there exists to our knowledge no rigorous mathematical justifi-
cation of this statement. Anyway, this is not the point here.
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concerned with, which is called the electric drift vE = E ∧ B (E denotes the electric
field). Since the electric field is induced by the plasma itself, one can not precisely predict
its qualitative behaviour so that the associated drift prevents us from getting a good
confinement property : if we wait long enough, particles may stop to perfectly turn around
the torus and start drifting toward the edge of the tokamak. In order to overcome the
effects of the electric drift, the idea is basically to take advantage of the other dritfs due
to the geometry of B.

In the present paper, we make the assumption that the ions of the plasma are at ther-
mondynamic equilibrium and describe the distribution of electrons by a kinetic equation.
For the sake of simplicity, we restrict to the 2D problem (that is in the plane orthogo-
nal to B) in order to understand the behaviour of the particles in the slice. We take a
magnetic field given by B = B

ǫ eϕ with ǫ > 0 a small parameter and B to be chosen later.
We consider the Finite Larmor Radius scaling (see [5] for a reference in the mathematical
literature) which consists in considering a characteristic spatial length with the same order
as the Larmor radius (which is of order ǫ). This scaling allows a better description of the
orthogonal motion and is expected to make the electric drift appear in the limit ǫ → 0.
The density fǫ(t, x, v) (with t > 0, x ∈ T

2, v ∈ R
2) of the electrons is then given by the

following dimensionless Vlasov Poisson system :






∂tfǫ + v
ǫ .∇xfǫ + (Eǫ + v⊥B

ǫ ).∇vfǫ = 0
fǫ,|t=0 = f0

Eǫ = −∇xVǫ

−∆xVǫ =

∫

fǫdv − 1

(1.1)

We denote x =

(
x1

x2

)

, v =

(
v1

v2

)

and v⊥ =

(
v2

−v1

)

, in the local orthogonal basis (see

figure 1).
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Figure 1: A slice of tokamak

Following Grandgirard et al. ([6]), we consider the explicit formula for B :

B =
R0

R0 + ǫr cos θ
=

R0

R0 + ǫx1
(1.2)
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denoting by R0 the small radius of the torus. (We recall that the characteristic spatial
length is of order ǫ)

We consider that R0 ∼ 1 ; consequently at first order in ǫ we get:

B = 1 − ǫx1 (1.3)

leading to the following system:






∂tfǫ + v
ǫ .∇xfǫ + (Eǫ + v⊥

ǫ − x1v
⊥).∇vfǫ = 0

fǫ,|t=0 = f0

Eǫ = −∇xVǫ

−∆xVǫ =

∫

fǫdv − 1

(1.4)

We will see that taking an inhomogeneous intensity for the magnetic field, even at order
1 in ǫ, leads to a quite different behaviour for the plasma.

Indeed, in the limit ǫ → 0, we find a system which is more or less equivalent to the
following system (see sections 2 and 3):







∂tf − 1
2v2∂x2f + E⊥.∇xf = 0

f|t=0 = f0

E = −∇xV

−∆xV =

∫

fdv − 1

(1.5)

Observe here that E⊥ corresponds to the electric drift that we mentioned earlier; the
additional drift vd = −1

2v2e2 is due to the inhomogeneity of the magnetic field intensity.
The remarkable point is that this drift has a fixed direction; it makes the particles “fall”
toward the “bottom” of the slice. At this point of the modeling, we now have to distinguish
between the plasma-core and the plasma edge (see figure 1), the only difference between
the two we are concerned with, being that the core is much hotter than the edge. This
means from a kinetic point of view that the velocities are much smaller in the edge.

We now separate the slice in two and denote the part x1 > 0 the “bad curvature”

side and the part x1 < 0 the “good curvature” side : indeed, we expect the plasma in the
“good curvature” side to be well confined, while the plasma in the “bad curvature” region
is badly confined. This behaviour can be easily predicted with the following heuristic
study in the “bad curvature” side:

− − − −

+ + + +

− − − −

Hot plasma Cold plasma

E

E

E⊥

E⊥

vd
vd

Particles in the hot plasma drift faster (left figure), so if there is any perturbation (right
figure), there appears a separation of charge creating an electric field E, which entails a
drift E⊥ that accentuates the perturbation: in other words, the equilibrium is unstable.

One can lead the same qualitative analysis in the “good curvature” side and show in
this case stability.
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Remark 1.1. This instability issue may intuitively look like the classical Kelvin-Helmholtz
instability of fluid dynamics; actually things are completely different. For example Kelvin-
Helmoltz instability does not depend on the relative position of the fast and the slow fluid.

One may also think of the classical Rayleigh-Taylor instability, recently rigorously
studied by Hwang and Guo [9] and Desjardins and Grenier [4].

The next step towards confinement is to consider a magnetic field with a variable
direction, i.e. B = B0eϕ + B1eθ. At leading order, particles still follow the magnetic field
lines: consequently, with such a twisting field, particles from the “bad curvature” region
travel every now and then to the “good curvature” region. We accordingly expect overall
confinement for the plasma. This scenario will nevertheless not be considered here.

Twisting B

The main aim of this work is to study the system (1.5) and provide a mathematical
justification of good or bad confinement. Namely, we want to investigate the stability
properties of the solutions in each region.

The present paper is organized as follows: section 2 is devoted to the study of the
limit ǫ → 0 for the system (1.4). In section 3 we present the simplified model (a nonlinear
transport equation) we use in order to investigate stability and instability for the plasma.
Section 4 is dedicated to the study of the linearized system; in particular we show the
existence of unstable eigenfunctions in the “bad curvature” region, provided that the
gradient of temperatures is small enough with respect to the size of the box. Finally
in section 6, we are concerned with a stability property for the “good curvature” region
and for the “bad curvature” region for large enough temperature gradients (referred to
as the high confinement mode in plasma physics), which will be achieved by exhibiting a
Lyapunov functional.

2 Gyrokinetic derivation of the equations

Following Frénod and Sonnendrücker ([5]), we can use two-scale convergence tools in order
to derive the gyrokinetic equation we are interested in. We shall not dwell on the rigorous
derivation of this system since the justifications in two dimensions are essentially done in
[5].

First of all, let us recall precisely the two-scale convergence notions (due to Nguetseng
[10] and Allaire [1]) we will use in the sequel.

Definition. Let X be a separable Banach space, X ′ be its topological dual space and (., .)
the duality bracket between X ′ and X. For all α > 0, denote by Cα(R,X) (respectively

Lq′
α (R;X ′)) the space of α-periodic continuous (respectively Lq′) functions on R with values

in X. Let q ∈ [1;∞[.
Given a sequence (uǫ) of functions belonging to the space Lq′(0, t;X ′) and a function

U0(t, θ) ∈ Lq′(0, T ;Lq′
α (R;X ′)) we say that

uǫ 2-scale converges to U0
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if for any function Ψ ∈ Lq(0, T ; Cα(R,X)) we have:

lim
ǫ→0

∫ T

0

(

uǫ(t),Ψ

(

t,
t

ǫ

)

dt

)

=
1

α

∫ T

0

∫ α

0

(
U0(t, τ),Ψ(t, τ)

)
dτdt (2.1)

The new variable τ has to be understood as a “fast-time variable” which describes the
fast oscillations. As for weak-star convergence in Lp spaces, one can show that boundedness
implies 2−scale convergence in Lp spaces:

Theorem 2.1. Given a sequence (uǫ) bounded in Lq′(0, t;X ′), there exists for all α > 0 a

function U0
α ∈ Lq′(0, T ;Lq′

α (R;X ′) such that up to a subsequence,

uǫ 2-scale converges to U0
α

The profile U0
α is called the α-periodic two scale limit of uǫ and the link between U0

α and
the weak-* limit u of uǫ is given by:

1

α

∫ α

0
U0dτ = u (2.2)

We can now state the main result of this section:

Proposition 2.1. For each ǫ, let fǫ be a global weak solution to (1.4) in the sense of
Arsenev .

Then, up to a subsequence as ǫ → 0, fǫ 2-scale converges to a function F such that
there exists a function G with:

F (t, τ, x, v) = G(t, x + R(τ)v,R(τ)v) (2.3)

and G satisfies:







∂tG +

(

1
2π

∫ 2π
0 R(τ)E(t, τ, x + R(−τ)v)dτ +

(
−v1(v2 − x1)

v2x1 −
1
2(v2

1 + 3v2
2)

))

.∇xG

+

(

1
2π

∫ 2π
0 R(τ)E(t, τ, x + R(−τ)v)dτ +

(
v2(−x1 + v2)
−v1(−x1 + v2)

))

.∇vG = 0

G|t=0 = f0

E = −∇xV

−∆V =

∫

G(t, x + R(τ)v,R(τ)v)dv − 1

(2.4)

denoting by R and R the linear operators defined by :

R(τ) =

[
cos τ − sin τ
sin τ cos τ

]

,R(τ) = (R(−π/2) − R(−π/2 + τ))

Remark 2.1. The difference with an homogeneous intensity B = 1 is represented by the
terms: (

−v1(v2 − x1)
v2x1 −

1
2(v2

1 + 3v2
2)

)

.∇xG +

(
v2(−x1 + v2)
−v1(−x1 + v2)

)

.∇vG,

which will be interpreted after the proof of the proposition.
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Proof. We do not wish to develop the very beginning of the proof since it is strictly identical
to the one given in [5].

The first step consists in deriving the so-called constraint equation. To this end, let
Ψ(t, τ, x, v) be a 2π-periodic oscillating test function in τ and define:

Ψǫ ≡ Ψ(t,
t

ǫ
, x, v)

Then we can write the weak formulation of the Vlasov equation against Ψǫ and pass to
the two-scale limit. We find that the two-scale limit of fǫ(t, x, v), denoted by F (t, τ, x, v),
satisfies the following equation:

∂τF + v⊥.∇xF + v ∧ ez.∇vFα = 0, (2.5)

As a consequence, F is constant along the characteriscs so that there exists a profile G
with:

F (t, τ, x, v) = G(t, x + R(τ)v,R(τ)v) (2.6)

where R and R are defined in the proposition.
The next step is to determine the profile G. We introduce the filtered function gǫ:

gǫ(t, x, v) = fǫ(t, x + R(−t/ǫ)v,R(−t/ǫ)v) (2.7)

which represents the number density from which we have removed the essential oscillations.
Notice that this function is chosen so that gǫ two-scale converges, as well as weakly-*
converges to G.

We easily compute the equation satisfied by gǫ:

∂tgǫ + R(t/ǫ)Eǫ(t, x + R(−t/ǫ)v).∇xgǫ (2.8)

+R(t/ǫ)Eǫ(t, x + R(−t/ǫ)v).∇vgǫ

−R(t/ǫ)
(

(x + R(−t/ǫ)v)1 × (R(−t/ǫ)v)⊥
)

.∇xgǫ

−R(t/ǫ)
(

(x + R(−t/ǫ)v)1 × (R(−t/ǫ)v)⊥
)

.∇vgǫ = 0

We now pass to the limit in the sense of distributions. One can prove (see [5] in the
2D case) that the following convergence holds for the nonlinear terms:

R(t/ǫ)Eǫ(t, x + R(−t/ǫ)v).∇xgǫ ⇀
1

2π

∫ 2π

0
R(τ)E(t, τ, x + R(−τ)v)dτ.∇xG (2.9)

R(t/ǫ)Eǫ(t, x + R(−t/ǫ)v).∇vgǫ ⇀
1

2π

∫ 2π

0
R(τ)E(t, τ, x + R(−τ)v)dτ.∇vG (2.10)

Likewise, we have the following convergences for the last two terms (here there is
basically nothing to justify since these are linear quantities):

−R(t/ǫ)
(

(x + R(−t/ǫ)v)1 × (R(−t/ǫ)v)⊥
)

.∇xgǫ

⇀ −
1

2π

∫ 2π

0
R(τ)

(
(x + R(−τ)v)1 × (R(−τ)v)⊥

)
dτ.∇xG (2.11)

−R(t/ǫ)
(

(x + R(−t/ǫ)v)1 × (R(−t/ǫ)v)⊥
)

.∇vgǫ

⇀ −
1

2π

∫ 2π

0
R(τ)

(
(x + R(−τ)v)1 × (R(−τ)v)⊥

)
dτ.∇vG (2.12)
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We then easily compute the following quantities:

−
1

2π

∫ 2π

0
R(τ)

(
(x + R(−τ)v)1 × (R(−τ)v)⊥

)
dτ =

(
v2(−x1 + v2)
−v1(−x1 + v2)

)

(2.13)

−
1

2π

∫ 2π

0
R(τ)

(
(x + R(−τ)v)1 × (R(−τ)v)⊥

)
dτ =

(
−v1(−x1 + v2)

v2x1 −
1
2 (v2

1 + 3v2
2)

)

(2.14)

We consequently derive the following gyrokinetic system:







∂tG +

(

1
2π

∫ 2π
0 R(τ)E(t, τ, x + R(−τ)v)dτ +

(
−v1(v2 − x1)

v2x1 −
1
2 (v2

1 + 3v2
2)

))

.∇xG

+

(

1
2π

∫ 2π
0 R(τ)E(t, τ, x + R(−τ)v)dτ +

(
v2(−x1 + v2)
−v1(−x1 + v2)

))

.∇vG = 0

G|t=0 = f0

E = −∇xV

−∆V =

∫

G(t, x + R(τ)v,R(τ)v)dv − 1

(2.15)

Qualitative interpretation of the gyrokinetic system

Let us imagine that there is no electric field in the asymptotic equation. Then, the char-
acteristics are given by the following curves (x, v):







dx
dt =

(
−v1(v2 − x1)

v2x1 −
1
2(v2

1 + 3v2
2)

)

dv
dt =

(
v2(−x1 + v2)
−v1(−x1 + v2)

) (2.16)

At first sight, this dynamical system seems a bit complicated with unpleasant quadratic
terms. Actually, it is an easy game to explicitly compute the solutions!

First, notice that d
dt(x1 − v2) = 0. This means that x1 = v2 + C1 (with C1 = x1(0) −

v2(0)). The equation for v can now be written in the simple form:

dv

dt
=

(
−C1v2

C1v1

)

(2.17)

The velocity is thus periodic (and we could compute it easily). Notice also that d
dt(v

2
1 +

v2
2) = 0, so that v2

1 + v2
2 = C2 (with C2 = v2

1(0) + v2
2(0)).

We get as well a periodic motion for x1 (since x1 = v2 + C1). Finally we compute for
x2:

dx2

dt
= v2x1 −

1

2
(v2

1 + 3v2
2) = C1v2 −

1

2
C2 (2.18)

The motion along the e2 direction is hence a sum of a periodic motion plus a fall which
only depends on the inital velocity of the particles (and not on their position). Such a drift
of the particles “in the bottom” of the tokamak depending on the square of their velocity
is predicted by physicists and is often referred to as the ∇B drift.

To support our discussion we give some graphs of the characteristic curves (figures 2
and 3).
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Figure 2: The graph of x2 (in the
x-axis: time and in the y-axis: x2)
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Figure 3: Motion of a particle starting at
(0,0) in the slice of the tokamak (in the x-
axis: x1 and in the y-axis: x2)

3 The mathematical model

System (2.4) seems to be too complicated in order to investigate for bad or good con-
finement. Consequently we will make several approximations (some of them being quite
rough) on (2.4) in order to get a simplified model.

A1 Reduction to a drift-fluid equation We first want to get rid of the fast-time
variable and in the same time to get a system whose dynamics is very closed to the one of
(2.4).

Following the previous qualitative study of characteristics, we make the same change
of variables as Frénod and Sonnendrücker in [5], that is to say: we introduce w = −v⊥ the
Larmor radius variable, xc = x + w the so-called guiding center variable.

We observe that if a density f satisfies the transport equation:

∂tf +

(
−v1(v2 − x1)

v2x1 −
1
2(v2

1 + 3v2
2)

)

.∇xf +

(
v2(−x1 + v2)
−v1(−x1 + v2)

)

.∇vf = 0

then the modified density f̃(t, xc, w) = f(t, x, v) satisfies:

∂tf̃ − 1/2w2∂xc2
f̃ + ∇w

((
w2xc1

−w1xc1

)

f̃

)

= 0

In order to get a simplified fluid model, we furthermore assume that the density is of
the form:

f̃(t, xc, w) = n(t, xc)ν(w) (3.1)

where ν is a rotation-invariant positive measure with total mass 1, n is a positive density
with total mass 1. For instance, we could assume that this function is a Maxwellian, i.e.

f̃(t, xc, w) =
n(t, xc)

2πσ
e

−w2

2σ2

We simply notice that if we integrate with respect to w, the last term of the previous
transport equation disappears.

8



Likewise, Frénod and Sonnendrücker have shown in [5] that in this new setting, the

terms in (2.4) involving the electric field were equivalent to the drift E⊥.∇xc :=

(
E2

−E1

)

.∇xc ,

if we neglect the gyroaverage operator (that is the average of E around a Larmor circle):

1

2π

∫ 2π

0
E⊥(t, xc + R(τ)w)dτ → E⊥(t, xc)

Then if we integrate with respect to w, we get the macroscopic system (which is nothing
but the incompressible Euler equation in its 2D vorticity formulation with an additional
drift term) :







∂tn − 1
2

∫

w2dν(w)

︸ ︷︷ ︸

:=v2

∂xc2
n + E⊥.∇xcn = 0

E = −∇xcV
−∆xcV = n − 1

(3.2)

with x ∈ [0, L] × R/LZ.
Here, the constant L > 0 stands for the size of the box. The periodicity with respect

to x2 is physically justified if we consider that L is small enough with respect to the size
of the tokamak, so that we can decompose it in many identical cells of size L (see Figure
1).

Remark 3.1. The kinetic version of this fluid model is the following drift-kinetic equation,
which is a physical model used for numerical simulations (see for instance the GYSELA
code [6]):







∂tf − 1
2w2∂xc2

f + E⊥.∇xcf = 0

E = −∇xcV

−∆xcV =

∫

fdv − 1

(3.3)

A2 Boundary conditions We now have to impose relevant boundary conditions on
x1 = 0, L:

• For the Poisson equation, we decide to choose a Dirichlet boundary condition on
x1 = 0, L, which entails, thanks to the simple geometry of the boundaries, E2 =
−∂x2V = 0 on x1 = 0, L. One has to be aware that this choice is made due to
mathematical technical reasons (which will be clear in the following) and is not
really physically relevant.

• For the transport equation, we actually do not need any boundary condition. There
is indeed no entering or leaving trajectories, since the “free transport” operator only
entails a motion along the e2 direction, and E2 = 0 on the boundaries x1 = 0, L.

A3 Modeling of the plasma equilibria and the ”bi-temperature” approximation

We now consider the following equilibria, in order to model what is happening in the “good
curvature” or the “bad curvature” side of the plasma, the only difference being the relative
position between the hot and the cold plasma:

• in the “bad curvature” region:

µbad(x1, v) =
x1

L
1w=0

︸ ︷︷ ︸

cold plasma

+ (1 −
x1

L
)1w2=v2

+
︸ ︷︷ ︸

hot plasma

(3.4)
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• in the “good curvature” region:

µgood(x1, v) = (1 −
x1

L
)1w=0 +

x1

L
1w2=v2

+
(3.5)

with v2
+ > 0 a fixed temperature for the hot plasma.

Observe here that we make several approximations:

1. We have approximated the curved edge of the tokamak by a straight line.

2. We have opted for a barycentric transition between the hot and the cold plasma.
Other transitions may be more physically relevant; this one is actually chosen for
the sake of simplicity.

3. We have chosen a “bi-temperature” modelling, saying that the cold plasma is still
(w = 0) while the hot plasma is fast (w2 = v2

+). For the more general case v− 6= 0,
see Remark 4.2.

In the distributional sense, these are stationnary solutions of (3.3) (and the associated
electric field is zero).

The idea is now to also look for “bi-temperature” solutions of (3.3), i.e. under the
form:

f(t, x) = f+(t, x)1w2=v2
+

+ f−(t, x)1w=0

Gathering the pieces together, we finally consider the following nonlinear drift-fluid
equation instead of (3.3):







∂tf
+ − 1

2v2
+∂x2f

+ + E⊥.∇xf+ = 0
∂tf

− + E⊥.∇xf− = 0
E = −∇xV
−∆xV = f+ + f− − 1
V = 0 on x1 = 0, L
(f+, f−)|t=0 = (f+

0 , f−
0 ) with

∫
f+
0 + f−

0 = 1

(3.6)

for t ≥ 0, x ∈ [0, L] × R/LZ.

Remark 3.2. The kinetic version of this drift-fluid model is the following drift-kinetic
equation: 





∂tf
+ − 1

2v2∂x2f
+ + E⊥.∇xf+ = 0

∂tf
− + E⊥.∇xf− = 0

E = −∇xV

−∆xV =

∫

f+dv +

∫

f−dv − 1

(3.7)

It might be interesting to model the equilibria and look at the stability problem in this
case.

From now on, we denote f =

(
f+

f−

)

, so that the transport part also states:

∂tf +

(
−1

2v2
+

0

)

.∂x2f + E⊥.∇xf = 0 (3.8)

with the notation: for g =

(
g1

g2

)

, E.∇xg =

(
E.∇xg1

E.∇xg2

)

.
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Then µbad =

(
1 − x1

L
x1
L

)

(and µgood) are stationnary solutions of (3.6) .

Following the classical works for the 2D incompressible Euler system (see [3] for a
review on this topic), we get the following existence result:

Theorem 3.1. Let f0 = (f1
0 , f2

0 ) ∈ (L1((0, L) × R/LZ))2 with f1
0 , f2

0 non-negative and
∫
(f1

0 + f2
0 )dx = 1.

If f0 ∈ (L∞)2, then there exists a non-negative weak solution f ∈ (L1 ∩ L∞)2 to (3.6)
with initial data f0.

If f0 is smooth then the solution f is smooth and unique.

Let us now define precisely the stability and instability notions that we will work on
until the end of the paper.

Definition. Let g be a solution of (3.6).
This solution is said to be stable with respect to the X norm if for any ǫ > 0, there exists

δ > 0 such that: for any solution f of the system, the inital estimate ‖f(0) − g(0)‖X ≤ δ
implies that for any t ≥ 0, ‖f(t) − g(t)‖X ≤ ǫ.

Otherwise, the solution g is said to be unstable with respect to the X norm.

We now investigate stability and instability for µbad and µgood.

4 Linear instability in the “bad curvature” region

We first consider the case of the “bad curvature” region, for which we expect to obtain
instability. The equilibrium writes:

µbad(x1) =

(
1 − x1

L
x1
L

)

The first step before trying to prove any instability property for the nonlinear transport
equation consists in investigating the problem of instability for the linearized operator
around µbad. We accordingly consider the following linearized system (for t > 0, x ∈
[0, L] × R/LZ):







∂tf
+ − 1

2v2
+∂x2f

+ − E2
L = 0

∂tf
− + E2

L = 0
E = −∇xV
−∆xV = f+ + f− , V = 0 on x1 = 0, L
(f+, f−)|t=0 = (f+

0 , f−
0 ) with

∫
f+
0 + f−

0 = 0

(4.1)

For the sake of readability we will from now on write v2 instead of v2
+ (there is no risk of

misunderstanding since it is the only velocity we deal with).
In the following, we will also give some remarks about what is happening for the

linearized operator in “good curvature” region, in which case the system states:







∂tf
+ − 1

2v2∂x2f
+ + E2

L = 0

∂tf
− − E2

L = 0
E = −∇xV
−∆xV = f+ + f− , V = 0 on x1 = 0, L

(4.2)
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4.1 Looking for unstable eigenfunctions

We look for special solutions under the form fk(t, x) =

(
ρ+

k (t)gk(x)
ρ−k (t)gk(x)

)

. The equations (4.1)

can be restated as:







∂t(ρ
+
k (t)gk(x)) − 1

2v2∂x2(ρ
+
k (t)gk(x)) − E2

L = 0

∂t(ρ
−
k (t)gk(x)) + E2

L = 0
E = −∇xV
−∆xV = (ρ−k (t) + ρ+

k (t))gk(x) , V = 0 on x1 = 0, L

(4.3)

We take gk with the particular form gk(x) = sin (k1
L πx1)e

i2π
k2
L

x2 (with k1, k2 ∈ Z
∗), so

that gk is an eigenfunction for the laplacian with the considered boundary conditions. It
satisfies indeed:

∆gk(x) = −π2

(
k2
1

L2
+ 4

k2
2

L2

)

gk(x) (4.4)

and also gk = 0 on x1 = 0, L.
The solution of the Poisson equation is then given by:

Vk =
1

π2
(

k2
1

L2 + 4
k2
2

L2

) (ρ−k (t) + ρ+
k (t))gk(x)

hence E2 = −i2k2/L

π

„

k2
1

L2 +4
k2
2

L2

«(ρ−k (t) + ρ+
k (t))gk(x), which lead us to study the following first

order ordinary differential equation:

∂t

(
ρ+

k (t)
ρ−k (t)

)

+
1

L







−iπv2k2 + i2k2

π

„

k2
1

L
+4

k2
2

L

«

i2k2

π

„

k2
1

L
+4

k2
2

L

«

− i2k2

π

„

k2
1

L
+4

k2
2

L

« − i2k2

π

„

k2
1

L
+4

k2
2

L

«







(
ρ+

k (t)
ρ−k (t)

)

= 0 (4.5)

We want to compute the eigenvalues of the matrix; its characteristic polynomial states:

X2 + iπk2v
2X −

2k2
2v

2

k2
1

L + 4
k2
2

L

and its discriminant:

∆ = −π2k2
2v

4 +
8k2

2v
2

k2
1

L + 4
k2
2

L

= π2k2
2v

4

(

8

π2(
k2
1

L + 4
k2
2

L )v2
− 1

)

(4.6)

We can now distinguish between two cases:

• First case: 8
π2( 1

L
+4 1

L
)

> v2. In other words the box is big enough with respect to the

drift velocity; then there exist k1, k2 such that ∆ > 0. We consequently obtain two

complex roots, one of which has a stricly negative real part equal to −
√

∆
2 . In other

words, this shows the existence of an unstable mode.

• Second case: 8
π2( 1

L
+4 1

L
)
≤ v2. In the case where the box is sufficiently small, we

always have ∆ ≤ 0 and consequently, there is linear stability! Roughly speaking,
there is a kind of homogenization process that appears: the large velocity drift
together with the periodicity makes that everything is averaged.
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This phenomenon may at first sight look like a mathematical artifact due to the peri-
odicity constraint in the x2 direction. Nevertheless the existence of such a threshold
is well known in plasma physics, beyond which one can expect tremendous confine-
ment properties (see for instance [12], [13] and references therein) and there seems to
be both experimental and numerical evidence of its relevance. In very rough terms:
the hotter, the more stable! The stable mode is referred to as the H-mode (where H
stands for high, by opposition to the L-mode, where L stands for low).

Remark 4.1. In the “good curvature” region, with the same method, we obtain the
following ordinary differential equation:

∂t

(
ρ+

k (t)
ρ−k (t)

)

+ 1/L







−iπv2k2 −
i2k2

π

„

k2
1

L
+4

k2
2

L

« − i2k2

π

„

k2
1

L
+4

k2
2

L

«

i2k2/L

π

„

k2
1

L
+4

k2
2

L

«

i2k2

π

„

k2
1

L
+4

k2
2

L

«







(
ρ+

k (t)
ρ−k (t)

)

= 0 (4.7)

We consequently have to look for the roots of the polynomial:

X2 + iπk2v
2X +

2k2
2v

2

k2
1

L + 4
k2
2

L

In this case, the discriminant is always stricly negative, so that the roots always have
a vanishing real part. As a result, we do not find unstable mode by this method. We
only consider this fact as a good and encouraging indication for stability around µgood.
Actually, we will never use it when we will prove nonlinear stability in section 6.

Remark 4.2. If we consider the case v2
− 6= 0 (with v− < v+), i.e. the system:







∂tf
+ − 1

2v2
+∂x2f

+ − E2
L = 0

∂tf
− − 1

2v2
−∂x2f

− + E2
L = 0

E = −∇xV
−∆xV = f+ + f− , V = 0 on x1 = 0, L

(4.8)

we can make the same calculations so that we get the following discriminant to study:

∆ = π2k2
2(v

2
− − v2

+)2

(

8

π2(
k2
1

L + 4
k2
2

L )(v2
+ − v2

−)
− 1

)

(4.9)

This shows that the size of the box has to be rather compared to the difference of the
two velocities to the power 2 (i.e. more or less the difference of the temperatures). In more
physical terms, if the temperature gradient is large enough then one can expect stability.

Remark 4.3. We finally mention that the quest for unstable modes seems more difficult
in the kinetic case, since one has to deal with the continuous velocity space. A very famous
criterion in the Vlasov-Poisson case was given by Penrose [11] and rigorously studied later
on by Guo and Strauss [8].

4.2 Wellposedness of the linearized operator around µbad on Lp([0, 1] ×
R/Z), 1 < p < ∞ for big enough boxes.

We assume here that the box is big enough to have unstable modes, or equivalently that
v2 is small, so for simplicity we take L = 1.

13



The main tool we use in this paragraph is a variant of a theorem by Weyl, stated
for instance in the paper of Guo and Strauss [8]. Basically, it gives informations on the
wellposedness of linear compact perturbations of some linear operator for which we already
know wellposedness and it entails the existence of a dominant unstable eigenvalue provided
that we know the existence of one.

Theorem 4.1 (Weyl). Let Y be a Banach space and A be a linear operator that generates
a strongly continuous semigroup on Y such that ‖e−tA‖ ≤ M for all t ≥ 0. Let K be a
compact operator from Y to Y . Then (A + K) generates a strongly continuous semigroup
e−t(A+K) and σ(−A − K) consists of a finite number of eigenvalues of finite multiplicity
in {Re λ > δ} for every δ > 0. These eigenvalues can be labeled by:

Reλ1 ≥ Reλ2 ≥ ...Re λN ≥ δ

Furthermore, for any γ > Reλ1, there exists some constant Cγ such that

‖e−t(A+K)‖Y →Y ≤ Cγetγ (4.10)

Corollary 4.1. Let Y = {y1, y2 ∈ Lp([0, 1] × R/Z)2,
∫

(y1 + y2)dx = 0}. Let L be the
linear operator defined by:

g =

(
g+

g−

)

∈ Y 7→ L

(
g+

g−

)

=

(
−1/2v2∂x2g

+ − E2

E2

)

(4.11)

with E2 = −∂x2V , −∆V = (g+ + g−) and Dirichlet boundary conditions on x1 = 0, 1.
Then there exists an eigenvalue λ with non-vanishing and maximal real part associated to
an eigenvector in Lp.

Furthermore for any γ > Reλ, there is a constant Cγ such that

‖e−tL‖Lp→Lp ≤ Cγetγ (4.12)

Proof. The linear operator A is defined by f 7→ −1
2v2∂x2f (for which we know how to

explicitly solve the semi-group and which is wellposed on Y ). The operator K is defined

by f 7→

(
−E2

E2

)

. This operator is compact thanks to standard elliptic estimates.

Moreover, we have shown in the last paragraph the existence of an unstable eigenfunc-
tion for the linearized operator that belongs to any Lp. We can therefore apply once more
Weyl’s theorem which gives the existence of an eigenfunction associated to an eigenvalue
with a non-vanishing and maximal real part. At last, the estimate in the corollary follows
directly from the estimate given in Weyl’s theorem.

Remark 4.4. With the same proof we can show the wellposedness in stronger regularity
spaces, like Sobolev spaces W k,p. We can also obviously prove that the linearized operator
around the equilibrium µgood is wellposed.

In the following, we denote for any h ∈ L2 with
∫

hdx = 0, ∆−1h the unique solution
in H1 to the problem:

{
−∆u = h
u = 0 on x1 = 0, L

We give now a lemma which tells us that any eigenvector associated to a non vanishing
eigenvalue for the linearized operator on Lp for p ≥ 2 is actually smooth.
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Lemma 4.1. Let f = (f+, f−) ∈ (L2)2 with
∫

(f+ + f−)dx = 0 and λ 6= 0 such that:

−
1

2
v2∂x2f

+ − ∂x2∆
−1(f+ + f−) = λf+

∂x2∆
−1(f+ + f−) = λf−

then (f+, f−) ∈ C∞([0, 1] × R/Z)

Proof. The principle of the proof is to show by recursion that f ∈ Hk, for any k ∈ N
∗.

For k = 1, we already observe, thanks to elliptic estimates, that f− ∈ H1. We also
have the identity:

−
1

2
v2∂x2f

+ = λ(f+ + f−) (4.13)

Hence, ∂x2f
+ ∈ L2.

We can apply the differential operator ∂x1 to the equation satisfied by f+, which entails:

−
1

2
v2∂x1∂x2f

+ − ∂x1∂x2∆
−1(f+ + f−) = λ∂x1f

+

Then multiply by ∂x1f
+ and integrate with respect to x:

λ‖∂x1f
+‖2

L2 =

∫

−
1

2
v2∂x1∂x2f

+∂x1f
+dx −

∫

∂x1∂x2∆
−1(f+ + f−)∂x1f

+dx

Thanks to the periodicity with respect to x2, we get the identity:

∫

∂x1∂x2f
+∂x1f

+dx = 1/2

∫

∂x2

(

∂x1f
+
)2

dx = 0

Then using Cauchy-Schwarz inegality:

λ‖∂x1f
+‖2

L2 ≤ ‖∂x1∂x2∆
−1(f+ + f−)‖L2‖∂x1f

+‖L2

As a result we showed that:

λ2‖∂x1f
+‖L2 ≤ ‖∂x1∂x2∆

−1(f+ + f−)‖L2 (4.14)

By standard elliptic estimates the right-hand side is finite since f+ et f− belong to L2.
We can then go on by recursion.

5 Nonlinear instability in the “bad curvature” region for

big enough boxes

What we intend to show now is a property of nonlinear instability in the “bad curvature”
region for big enough boxes (or equivalently for small v), so for readability we take L = 1.
This can be interpreted as a bad confinement property. We first recall that the equilibrium
in this case is the following:

µbad(x1) =

(
1 − x1

x1

)

Thanks to the existence of an eigenvalue with maximal positive real part for the lin-
earized operator around µbad, we can prove nonlinear instability theorems.
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5.1 A first result

The first result we have in mind is very reminiscent of the paper of Guo and Strauss
[8]: the principle is to show that for a well chosen initial data, the linear part entails an
explosive behaviour that can “control” in some sense the nonlinear dynamics. With this
kind of proof, we can only get instability with strong norms (here the Sobolev norm W 1,q)
since with a weaker estimate, we would not be able to control the nonlinearity.

Theorem 5.1. For any q > 4, µbad is nonlinearly unstable for the norm ‖.‖W 1,q :
There exist (fn) a sequence of solutions to the system with inial data fn

0 and times
tn ≥ 0 such that:

‖fn
0 − µbad‖W 1,q → 0 as n → 0

but ‖fn(tn) − µbad‖W 1,q does not tend to 0.
More precisely there exists ǫ1 > 0 such that for any δ < 1, there exists f0 satisfying

‖f0 − µbad‖W 1,q < δ

and ‖f(Tδ) − µbad‖W 1,q ≥ ǫ1 for Tδ = O(| log δ|).

Proof. First of all, we fix q > 2. Let p > 2 such that q > p2

p−1 (and notice that this implies
q > p). The proof follows by contradiction: suppose that for all ǫ > 0, there exists δ > 0
such that any solution f satisfies:

‖f − µbad‖L∞
t (W 1,q) ≤ ǫ (5.1)

provided that ‖f(0) − µbad‖W 1,q ≤ δ. From now on and until the end of the section, we
write µ instead of µbad for the sake of simplicity. Since we work on a bounded domain,
observe that (5.1) implies for any r < q,

‖f − µ‖L∞
t (W 1,r) ≤ ǫ (5.2)

Without loss of generality we can choose ǫ < 1 and δ < 1.
We have obtained in the previous section the existence of an eigenfunction associated

to an eigenvalue λ whose real part is positive and maximal for the linearized operator

g =

(
g+

g−

)

∈ {f+, f− ∈ (Lp)2;

∫

f+ + f− = 0} 7→ L

(
g+

g−

)

=

(
−1/2v2∂x1g

+ − E2

E2

)

with E2 = ∂x2∆
−1(g+ + g−) and with Dirichlet boundary conditions for the potential on

x1 = 0, 1.
We have further established in lemma 4.1 that such an eigenvector is smooth: it belongs

to C∞((0, 1) ×R/Z). Let R be such an eigenvector, such that its W 1,q norm is equal to 1.
We then set:

f(0) − µ = δR (5.3)

For the sake of simplicity we will assume that the eigenvalue with maximal real part
is real. In the general case, since the linearized operator is real, the conjugate of this
eigenvalue is also an eigenvalue so that one can then consider by linearity the real part of
R instead of R and the following of the proof remains the same.

Let us first recall that µ does not generate any electric field. The difference (f − µ)
then satisfies the equation:

∂t(f − µ) +

(
−1/2v2∂x2(f

+ − µ+)
0

)

+ E⊥.∇xµ = −E⊥.∇x(f − µ) (5.4)
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with

−∆V = f+ + f− − µ+ − µ− = f+ + f− − 1

V = 0 on x1 = 0, 1

E = −∇V

We consequently have the following Duhamel’s formula:

f(t) − µ = e−tL(δR) −

∫ t

0
e−L(t−s)(∇⊥

x V.∇x(f(s) − µ))ds (5.5)

= δReλt −

∫ t

0
e−L(t−s)(∇⊥

x V.∇x(f(s) − µ))ds (5.6)

Let:

T = sup

{

t′, ‖f(t) − µ − δe−tLR‖Lp ≤
1

2
δeRe(λ)t‖R‖Lp for 0 ≤ t ≤ t′

}

(5.7)

We get T > 0 by continuity (the left-hand side is equal to 0 for t = 0). For any t ≤ T we
thus have:

‖f(t) − µ‖Lp ≤
3δ

2
et Re(λ)‖R‖Lp (5.8)

We now prove a lemma which will help us to control the nonlinear part.

Lemma 5.1. With the same notations as before, we have the estimate for t ≤ T :

‖∇x(f − µ)‖Lp ≤ Cδ1/pe
tRe λ

p ‖R‖
1/p
Lp (5.9)

Remark 5.1. The natural (and painless!) estimate ‖f − µ‖L∞
t (W 1,q) ≤ ǫ is not enough

since one is not able to estimate δ with respect to ǫ: if δ << ǫ, the estimate we prove is
more precise for small times.

Proof. The quantity (f − µ) satisfies the equation:

∂t(f − µ) +

(
−1/2v2∂x2(f

+ − µ+)
0

)

+ E⊥.∇x(f − µ) = −E⊥.∇xµ (5.10)

If we derive once with respect to x1, we obtain for the first coordinate g+ = f+ − µ+:

∂t∂x1g
+ − 1/2v2∂x2∂x1g

+ + E⊥.∇x∂x1g
+ = −∂x1E

⊥.∇xg+ + ∂x1E2 (5.11)

We then multiply by p|∂x1g
+|p−1 sign(∂x1g

+) and integrate with respect to the space
variable. We consequently get, using periodicity with respect to x2:

d

dt
‖∂x1g

+‖p
Lp = −p

∫

∂x1E
⊥.∇xg+|∂x1g

+|p−1 sign(∂x1g
+)dx

+ p

∫

∂x1E2|∂x1g
+|p−1 sign(∂x1g

+)dx

≤ Cp
(

‖∂x1E
⊥‖Lp ‖∇xg+‖p

L
p2

p−1
︸ ︷︷ ︸

≤‖∇xg+‖p

Lq

+‖∂x1E2‖Lp ‖∇xg+‖p−1
Lp

︸ ︷︷ ︸

≤‖∇xg+‖p−1
Lq

)

≤ Cp
(

‖f − µ‖Lp‖∇xg+‖p
Lq + ‖f − µ‖Lp‖∇xg+‖p−1

Lp

)

≤ C
3δ

2
et Re λ‖R‖Lp(ǫp + ǫp−1)
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thanks to Hölder’s inequality and to standard elliptic estimates.
Hence:

‖∂x1g
+‖p

Lp ≤ C
3δ

2
et Re λ‖R‖Lp(ǫp + ǫp−1) + ‖∂x1g

+(0)‖p
Lp

≤ C
3δ

2
et Re λ‖R‖Lp(ǫp + ǫp−1) + δp

that is to say, since ǫ, δ < 1:

‖∂x1g
+‖Lp ≤ C

(

δet Re λ‖R‖Lp

)1/p
(5.12)

where C depends neither on δ, nor on ǫ. The same arguments give the expected estimates
for the other derivative and for the other coordinate.

Let γ such that Re λ < γ < Re λ(1 + 1
p). By Weyl’s theorem, we get

‖e−tL‖Lp→Lp ≤ Ceγt.

As a consequence, for any t ≤ T , using Sobolev’s embedding from W 1,p into L∞:

‖f(t) − µ − δe−tLR‖Lp ≤ C

∫ t

0
eγ(t−s)‖∇⊥

x V (s)‖L∞‖∇x(f(s) − µ)‖Lpds

≤ C

∫ t

0
eγ(t−s)‖f(s) − µ‖Lp‖∇x(f(s) − µ)‖Lpds

≤ C

∫ t

0
eγ(t−s) 3δ

2
es Re λδ1/pesRe λ

p ‖R‖
1/p
Lp ds

≤ C
(

‖R‖LpδeRe λt
)1+1/p

where C depends neither on δ, nor on ǫ.
Hence, for t ≤ T :

‖f(t) − µ‖Lp ≥ ‖R‖Lpδet Re λ − C
(

‖R‖LpδeRe λt
)1+1/p

(5.13)

We intend to make the right-hand side as large as possible, so that we choose t0 defined
by:

‖R‖Lpδet0 Re λ =

(
1

2C

)p

(5.14)

If δ is chosen small enough, we do have t0 > 0.
There remains to check that we have t0 ≤ T . If T = ∞, there is nothing to do; if T is

finite, we have by definition:

‖f(T ) − µ − δReRe λT ‖Lp =
1

2
δeRe λT ‖R‖Lp ≤ C

(

‖R‖LpδeRe λT
)1+1/p

this latest inequality can be re-written as et0 Re λ ≤ eT Re λ, whence we can conclude that
t0 ≤ T .

Eventually, we obtain ‖f(t0) − µ‖Lp ≥ 1/2( 1
2C )p, which is contradictory with

‖f − µ‖L∞
t (W 1,q) ≤ ǫ (5.15)

since we can choose ǫ as small as we want to.
For the estimate on Tδ, one can remark that for arguing by contradiction, one has just

to assume that
‖f − µbad‖L∞

t (W 1,q) ≤ ǫ (5.16)

for t ≤ t0 and do the same proof.
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5.2 A refined result

Using the method introduced by Grenier [7], we can also pass from the linear spectral
instability to the nonlinear instability. This can be seen as a generalization of the argument
used previously. The theorem we can prove is much stronger and much more satisfactory
since it is complementary to the stability result we prove afterwards.

Theorem 5.2. There exists a constant ǫ1 > 0 such that for any δ > 0 and any s ≥ 0
there exists a solution f with ‖f(0) − µ‖Hs ≤ δ but such that:

‖f(Tδ) − µ‖L2 ≥ ǫ1 (5.17)

with Tδ = O(| log δ|). In particular, µ is unstable with respect to the L2 norm.

Remark 5.2. Of course, Tδ depends also on s.

Proof. Basically the idea of Grenier is to construct a better approximation of the nonlinear
equation than the “usual” solution of the linearized equation. Indeed instead of showing
that f−µ is closed to of a well chosen eigenfunction , we show that it is closed to something
like

fN
app = δu1 +

N∑

i=2

δiui (5.18)

where u1 = ReRe λt (R being an eigenvector associated to an eigenvalue λ with maximal
real part Reλ). Note than for any s > 0, ‖u1‖Hs ≤ CeRe λt.

fapp is constructed in order to have the following approximation:

∂tfapp + Lfapp + E⊥
app.∇xfapp = Rapp (5.19)

with ‖Rapp‖HL−2N−1 ≤ CδN+1 exp ((N + 1)Re λt) and Eapp = ∇∆−1(f1
app + f2

app).
We first have to revisit the previous corollary of Weyl’s theorem.

Lemma 5.2. Let s ≥ 0 and Y = {y1, y2 ∈ Hs([0, 1] × R/Z)2,
∫

(y1 + y2)dx = 0}. Let L be
the linear operator defined by:

g =

(
g+

g−

)

∈ Y 7→ L

(
g+

g−

)

=

(
−1/2v2∂x2g

+ − E2

E2

)

(5.20)

with E2 = −∂x2V , −∆V = (g+ +g−) and with Dirichlet boundary conditions on x1 = 0, 1.
Then there exists an eigenvalue λ with a non-vanishing and maximal real part associated
to a C∞ eigenvector. Furthermore for any γ > Re λ, there is a constant C(γ, s) such that
for all s ≥ 0:

‖e−tL‖Hs→Hs ≤ C(γ, s)etγ (5.21)

Let N ∈ N
∗ to be chosen later and choose any M > 0 such that M > 2N + 1 . Choose

also θ < 1 such that 1
2θ ≥ θ2

1−θ and define Tδ such that θ = δ exp (Re λTδ).

Now we can construct the uj by recursion. We will show that for all j ≥ 1,
∫

(u1
j +

u2
j)dx = 0 and ‖uj‖HM−j ≤ C exp (j Re λt).

Suppose we have uj for j ≤ k. Then define uk+1 as the solution of the linear equation:

∂tuk+1 + Luk+1 +

k∑

j=1

E⊥
j .∇xuk+1−j + E⊥

k+1−j.∇xuj = 0 (5.22)
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with Ej = ∇∆−1(u1
j + u2

j) and uk+1(0, x) = 0 as initial condition. Intuitively, uk+1 is
chosen in order to ”kill” the non-linear interaction between the previous terms of the
expansion.

Thanks to lemma 5.2 with γ ∈] Re λ, 2Re λ[, we get the following estimate:

‖uk+1‖HM−(k+1) ≤

∫ t

0
‖eL(t−s)(

k∑

j=1

E⊥
j .∇xuk+1−j + E⊥

k+1−j.∇xuj)‖HL−(k+1)ds

≤ C

∫ t

0
eγ(t−s)(

k∑

j=1

‖E⊥
j ‖HM−(k+1)‖uk+1−j‖HM−k + ‖E⊥

k+1−j‖HM−(k+1)‖uj‖HM−k)ds

≤ C

∫ t

0
eγ(t−s) exp ((k + 1)Re λs)ds

≤ C exp ((k + 1)Re λt)

Note also that we clearly have
∫

(u1
k+1+u2

k+1)dx = 0 (indeed, d
dt

∫
(u1

k+1+u2
k+1)dx = 0).

Now we can see that:

∂tfapp + Lfapp + E⊥
app.∇xfapp = Rapp (5.23)

with Rapp =
∑

2N≥j+j′>N δj+j′E⊥
j .∇xuj′. Hence the following estimate follows:

‖Rapp‖HM−2N−1 ≤ CNδN+1 exp ((N + 1)Re λt) (5.24)

(notice indeed that for all t ≤ Tδ, δ exp (Re λt) ≤ θ < 1.) CN means that this constant
depends on N .

Now we consider a solution f such that f(0) − µ = fapp(0); the equation satisfied by
w = f − µ − fapp is the following:

∂tw +

(
−1/2v2∂x2w

0

)

+ E⊥
w .∇xw + E⊥

app.∇xw + E⊥
w .∇xfapp = −E⊥

w .∇xµ − Rapp (5.25)

with Ew = ∇∆−1(f − µ − fapp)
Now, we want to estimate ‖w‖L2 . We multiply by w and integrate with respect to x:

d

dt
‖w‖2

L2 ≤

∫

|E⊥
w .∇xfappw|dx +

∫

|E⊥
w .∇xµw|dx + ‖Rapp‖L2‖w‖L2

≤ (‖∇xfapp‖L∞ + ‖∇xµ‖L∞)‖E⊥
w ‖L2‖w‖L2 +

1

2
‖w‖2

L2 +
1

2
‖Rapp‖

2
L2

≤ C
(
(1 + ‖∇xfapp‖L∞)‖w‖2

L2 + ‖Rapp‖
2
L2

)

≤ C
(

(1 + ‖∇xfapp‖L∞)‖w‖2
L2 + CNδ2(N+1) exp (2(N + 1)Re λt)

)

But for α > 0 such that 2 + α < M − N and for t ≤ Tδ:

‖∇xfapp‖L∞ ≤ ‖fapp‖H2+α

≤
N∑

i=1

δi‖ui‖H2+α ≤
N∑

i=1

δi‖ui‖HL−i

≤

N∑

i=1

δi exp (iRe λt)

≤
N∑

i=1

θi ≤
θ

1 − θ
≤

1

2
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Now choose N such that:

N + 1 >
3C

4Re λ
(5.26)

By Gronwall’s lemma we then get:

‖f − µ − fapp‖L2 = ‖w‖L2 ≤ CNδN+1 exp ((N + 1)Re λt) ≤ CNθN+1 (5.27)

On the other hand we have for t = Tδ:

‖fapp‖L2 ≥ δ‖u1‖L2 −

N∑

i=2

δi‖ui‖L2

≥ δ exp (ReλTδ) −
N∑

i=2

δi exp (iRe λTδ)

= θ −

N∑

i=2

θi

≥
1

2
θ

Finally we have, for t = Tδ:

‖f − µ‖L2 ≥ ‖fapp‖L2 − ‖f − µ − fapp‖L2

≥
1

2
θ − CNδN+1 exp ((N + 1)Re λt) ≥

1

2
θ − CNθN+1

≥
1

4
θ = ǫ1 > 0

if θ is chosen small enough with respect to N .

6 Nonlinear stability in the “good curvature” region

Let us now consider the case of the “good curvature” region, where the equilibrium is
given by:

µgood(x1) =

(
x1

1 − x1

)

Indeed we can take L = 1 since we have seen in the linear study that the size of the box
does not matter.

For the sake of readability, we write µ instead of µgood in the following, except in the
ambiguous cases.

Let f =

(
f+

f−

)

a solution of the nonlinear transport equation (3.6). We remind that

the equation satisfied by (f − µ) states in this case:

∂t(f − µ) +

(
−1/2v2∂x2(f

+ − µ+)
0

)

+ E⊥.∇x(f − µ) =

(
−E2

E2

)

(6.1)

and E = −∇xV with −∆V = f+ + f− − µ+ − µ− and with the Dirichlet conditions on
the boundaries x1 = 0 and x1 = 1.

The idea to show stability is to obtain a good energy estimate (Lyapunov functional).
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Theorem 6.1. For any inital data f0 ∈ L2, the solution f of (3.6) satisfies:

E(t) = ‖f − µ‖2
L2 +

2

v2

∫

|∇V |2dx ≤ E(0) (6.2)

with ‖f − µ‖2
L2 = ‖f+ − µ+‖2

L2 + ‖f− − µ−‖2
L2 .

As an immediate consequence of this theorem, we obtain L2 stability:

Corollary 6.1. The equilibrium µgood is nonlinearly stable in the L2 norm.

Proof of the corollary. Thanks to Theorem (6.1) and to the Poisson equation:

‖f − µ‖2
L2 ≤ ‖f − µ‖2

L2 +
2

v2

∫

|∇V |2dx

≤ ‖f(0) − µ‖2
L2 +

2

v2

∫

|∇V (0)|2dx

≤ ‖f(0) − µ‖2
L2 + C

2

v2
‖f(0) − µ‖2

L2 (6.3)

This means that for any ǫ > 0 there exists δ > 0 such that if ‖f(0) − µ‖L2 ≤ δ then for
any t ≥ 0, ‖f − µ‖L2 ≤ ǫ. In other words, µgood is nonlinearly stable in the L2 norm.

Remark 6.1. In the “bad-curvature” region, in a box of size L we can show that the
following quantity is conserved:

‖f − µ‖2
L2 −

2

Lv2

∫

|∇V |2dx (6.4)

We can easily see in Fourier variables that:

∫

|∇V |2dx ≤
2L2

π2
‖f − µ‖2

L2 (6.5)

So we get:

‖f − µ‖2
L2 ≤ E(0) +

2

Lv2

∫

|∇V |2dx

≤ E(0) +
2

Lv2

2L2

π2
‖f − µ‖2

L2

Hence, (

1 −
4L

π2v2

)

‖f − µ‖2
L2 ≤ ‖f(0) − µ‖2

L2 (6.6)

So there is L2 nonlinear stability, provided that

v2 >
4L

π2
(6.7)

Otherwise, we can not deduce anything.
Note also that in the linear discussion, there was stability provided that

v2 > 5
L

8π2
(6.8)

We do not know what happens for v2 ∈]5 L
8π2 , 4L

π2 ] in the nonlinear case.
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Remark 6.2. Let us add that the explicit form of the equilibria is crucial in the proof of
the theorem. It would not work similarly if we had taken an equilibrium of the form:

µ(x1) =

(
Φ(x1)

1 − Φ(x1)

)

with Φ a smooth function. In this case it should be maybe more relevant to use the general
Lyapunov functionals method of Arnold [2].

Likewise one can notice that the proof would have not worked if we had chosen any
other boundary condition than Dirichlet.

Remark 6.3. We observe that in the Lyapunov functional, the first term is nothing but
the enstrophy in bidimensional fluid dynamics, while the second term can be interpreted
as the (rescaled) kinetic energy of the fluid.

Proof of Theorem 6.1. We start by taking the scalar product with (f −µ) in the transport
equation and integrate with respect to x which entails:

d

dt
‖f − µ‖2

L2 =

∫

−E2(f
+ − µ+)dx +

∫

E2(f
− − µ−) (6.9)

Indeed, thanks to the periodicity with respect to x2, we first have:
∫

∂x2(f
+ − µ+)(f+ − µ+)dx =

∫
1

2
∂x2(f

+ − µ+)2dx

= 0

In the same fashion, with Green’s formula, we can show that
∫

E⊥.∇x(f−µ)(f−µ)dx =
0 (we take advantage here of the fact: div E⊥ = 0):

∫

E⊥.∇x(f − µ)(f − µ)dx =
1

2

∫

E⊥.∇x(f − µ)2dx

=
1

2

∫

div(E⊥(f − µ)2)dx

=
1

2

(∫

x1=0
E⊥(f − µ)2.(−e1)dx2 +

∫

x1=1
E⊥(f − µ)2.e1dx2

)

=
1

2

∫

x1=0
−E2(f − µ)2dx2 +

1

2

∫

x1=1
E2(f − µ)2dx2

= 0

because E2 = −∂x2V = 0 on x1 = 0, 1.
We now give a technical lemma which will help for the following of the proof.

Lemma 6.1.
d

dt
‖f+ − µ+‖2

L2 =
d

dt
‖f− − µ−‖2

L2

Proof. In order to see this, one can simply compute:
∫

E2

(
(f− − µ−) − (f+ − µ+)

)
dx =

∫

E2

(
f+ + f− − µ+ − µ− − 2(f+ − µ+)

)
dx

=

∫

E2

(
∆V − 2(f+ − µ+)

)
dx

= −2

∫

E2

(
f+ − µ+

)
dx
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Indeed, thanks to periodicity with respect to x2 and to the Dirichlet boundary conditions
on x1 = 0, 1, we get:

∫

∂x2V ∆V dx = −

∫

V ∂x2∆V dx +

∫

div(V ∆V e2)dx

︸ ︷︷ ︸

=0

=

∫

∇V ∂x2∇V dx −

∫

div(V ∇∂x2V )dx

︸ ︷︷ ︸

=0

=

∫

∂x2

(
|∇V |2

2

)

dx

= 0

If we make the same calculation, we can also see that:
∫

E2

(
(f− − µ−) − (f+ − µ+)

)
dx = 2

∫

E2

(
f− − µ−) dx

Let us go back to the main calculation. Thanks to this lemma we get:

d

dt
‖f − µ‖2

L2 =

∫

−E2(f
+ − µ+)dx +

∫

E2(f
− − µ−)

= −2

∫

E2

(
f+ − µ+

)
dx

= −2

∫

V ∂x2

(
f+ − µ+

)
dx +

∫

div(V
(
f+ − µ+

)
e2)dx

︸ ︷︷ ︸

=0

=
4

v2

∫

−V
(

∂t(f
+ − µ+) + E⊥.∇x(f+ − µ+) + E2

)

dx

=
4

v2

∫

V
(

−∂t(f
+ + f− − µ+ − µ−) − E⊥.∇x(f+ + f− − µ+ − µ−)

)

dx

=
4

v2

∫

V
(

∂t∆V − E⊥.∇x∆V
)

dx

where we have plugged in the equation satisfied by ∂x2(f
+ − µ+) and by (f− − µ−).

To conclude the proof, we compute:
∫

V ∂t∆V dx = −
d

dt

1

2

(∫

|∇V |2dx

)

(6.10)

and
∫

V E⊥.∇∆V dx =

∫

V div(E⊥∆V )dx

= −

∫

∇V.E⊥∆V dx

︸ ︷︷ ︸

=0

+

∫

div(V E⊥∆V )dx

︸ ︷︷ ︸

=0

The first term is equal to zero since E.E⊥ = 0, the second one thanks to the Dirichlet
boundary condition on x1 = 0, 1 and to the periodicity with respect to x2.
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7 Conclusion

We have finally managed to provide a mathematical explanation of stability in the “good
curvature” region and instability in the “bad curvature” region with our nonlinear model.
In our analysis we have pointed out a strange phenomenon that tells us that there is non-
linear stability even in the bad curvature region, provided that the temperatature gradient
is large enough (in other terms, if there is enough heating, there is good confinement : this
is the H-mode).

We would like to point out that there remain many interesting open questions, mainly
related to the modeling we have made.

Problem 1 Does the gyroaverage (which was neglicted in Approximation A1) play a
role in the stability/instability issue ? The expected answer should be negative: one may
think of the gyrofluid version of system (3.6) and lead the same analysis than in this paper.

Problem 2 Another problem that naturally comes into mind is to generalize this work
to a kinetic model. In this case, the main difficulty would be to define the plasma equilibria
and then study their linear stability. Grenier’s method can be generalized quite straight-
forwardly to the kinetic case. For linear instability, a generalized Lyapunov functional
method may still work.

Problem 3 Another issue is the choice of realistic boundary conditions for the Pois-
son equation. Maybe a Neumann condition would be more relevant (perfect conductor
assumption); but in this case the explicit construction for the nonlinear stability proof
would not work.

Problem 4 It would be also interesting to lead the analysis with other modelings of the
equilibria than the one used in this paper. For instance the ”bi-temperature” assumption
seems very rough. We may choose a smooth transition between the cold and the hot part,
for instance by considering the following system:







∂tf − 1
2v2(x1)∂x2f + E⊥.∇xf = 0

E = −∇xV
−∆xV = f − 1
V = 0 on x1 = 0, L
f|t=0 = f0 with

∫
f0dx = 1

(7.1)

where v(x1) a smooth monotonic function satisfying v(0) = v− (resp. v+) and v(L) = v+

(resp. v−), with v− < v+.

Problem 5 The more challenging and maybe interesting problem would be to prove
overall confinement with a twisting magnetic field (as it has been mentioned in the intro-
duction). In this case, the accurate parameter to consider is the so-called safety factor,
which stands for the number of times the magnetic field lines twist around the torus the
long way for each time they twist around the short way. In “real” tokamaks, it has to
be chosen with precaution in order to get good confinement properties (see [13]). But it
seems to be much more complicated, since one has to deal with many drifts due to the
geometry of the magnetic field.

Some of these questions shoud be adressed in a forthcoming work.
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Finally let us conclude by mentioning that the analysis of confinement provided in this
paper is very naive since it is now well known that there is a loss of confinement in
tokamak plasmas, referred to as anomalous transport. Many models have been proposed
and intensively studied to justify these phenomena: we intend to study some of them from
a mathematical viewpoint in forthcoming works.
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