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On the confinement of a tokamak plasma

Daniel Han-Kwan∗

July 19, 2010

Abstract

The goal of this paper is to understand from a mathematical point of view the
magnetic confinement of plasmas for fusion. Following Frénod and Sonnendrücker [7],
we first use two-scale convergence tools to derive a gyrokinetic system for a plasma
submitted to a large magnetic field with a slowly spatially varying intensity. We
formally derive from this system a simplified bi-temperature fluid system. We then
investigate the behaviour of the plasma in such a regime and we prove nonlinear
stability or instability depending on which side of the tokamak we are looking at. In
our analysis, we will also point out that there exists a temperature gradient threshold
beyond which one can expect stability, even in the “bad” side : this corresponds to
the so-called H-mode.

1 Introduction

1.1 Magnetic confinement for plasmas

Fusion is undoubtly one of the most promising research fields in order to find new sources
of energy. For the time being, magnetic confinement fusion represents one of the two
main approaches (the other one being inertial confinement fusion). The principle consists
basically in using a magnetic field in order to confine the very high temperature plasma.
Good confinement is absolutely compulsory since the plasma could otherwise damage the
surrounding materials.
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A first step towards confinement is to use a tokamak1, i.e. a torus-shaped box and
consider a large purely toroidal magnetic field B, in other words B = B

ǫ eϕ with ǫ > 0
small. One can formally show that at leading order in ǫ, particles oscillate around the
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1Actually there are other possibilities, like stellarators. These kinds of devices are much more difficult
to study from the mathematical viewpoint, since they have a very complex structure.
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magnetic field lines. The drawback of this technique is that there are in fact many drifts
appearing at higher order, some due to the geometry of B and one we are specifically
concerned with, which is called the electric drift or E ×B drift:

vE =
E ∧B

|B|2

where E denotes the electric field.
Since the electric field is induced by the plasma itself, one can not precisely predict its

qualitative behaviour and thus this drift may prevent us from getting a good confinement
property : if we wait long enough, particles may stop to perfectly turn around the torus
and start drifting toward the edge of the tokamak. In order to overcome the effects of the
electric drift, the idea is basically to take advantage of the other drifts due to the geometry
of B.

In the present paper, we make the assumption that the ions of the plasma are at
thermodynamic equilibrium and we describe the distribution of electrons by a kinetic
equation. For the sake of simplicity, we restrict to the 2D problem in the plane orthogonal
to B, in order to understand the behaviour of the particles in the slice. We take a magnetic
field given by

B =
B
ǫ
eϕ

with ǫ > 0 a small parameter and B to be fixed later. We consider the Finite Larmor
Radius scaling (see [7] for a reference in the mathematical literature) which consists in
considering a characteristic spatial length with the same order as the Larmor radius (which
is of order ǫ). This scaling allows for a better description of the orthogonal motion and is
expected to make the electric drift appear in the limit ǫ → 0. The density fǫ(t, x, v) (with
t > 0, x ∈ T

2, v ∈ R
2) of the electrons is then given by the following dimensionless Vlasov

Poisson system : 





∂tfǫ +
v
ǫ .∇xfǫ + (Eǫ + v⊥B

ǫ ).∇vfǫ = 0
fǫ,|t=0 = f0
Eǫ = −∇xVǫ

−∆xVǫ =

∫

fǫdv − 1

(1.1)

We denote x =

(
x1
x2

)

, v =

(
v1
v2

)

in the local orthogonal basis (see figure 1). For any

vector A =

(
A1

A2

)

, we denote A⊥ =

(
A2

−A1

)

.

Following Grandgirard et al. ([9]), we consider the explicit formula for B :

B =
R0

R0 + ǫr cos θ
=

R0

R0 + ǫx1
(1.2)

denoting by R0 the small radius of the torus. (We recall that the characteristic spatial
length is of order ǫ)

We consider that R0 ∼ 1 ; consequently at first order in ǫ we get:

B = 1− ǫx1 (1.3)
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Figure 1: A slice of tokamak

leading to the following system:







∂tfǫ +
v
ǫ .∇xfǫ + (Eǫ +

v⊥

ǫ − x1v
⊥).∇vfǫ = 0

fǫ,|t=0 = f0
Eǫ = −∇xVǫ

−∆xVǫ =

∫

fǫdv − 1

(1.4)

We will see that taking an inhomogeneous intensity for the magnetic field, even at order
1 in ǫ, leads to a quite different behaviour for the plasma.

Indeed, in the limit ǫ → 0, we can derive rigorously another kinetic system which is
qualitatively close to the following one (see sections 2 and 3):







∂tf − 1
2 |v|2∂x2f +E⊥.∇xf = 0

f|t=0 = f0
E = −∇xV

−∆xV =

∫

fdv − 1

(1.5)

Observe here that E⊥ corresponds to the electric drift E×B that we mentioned earlier; the
additional drift vd = −1

2v
2e2 is due to the inhomogeneity of the magnetic field intensity.

The remarkable point is that this drift has a fixed direction; it makes the particles “fall”
toward the “bottom” of the slice. At this point of the modeling, we now have to distinguish
between the plasma-core and the plasma edge (see figure 1), the only difference between
the two we are concerned with, being that the core is much hotter than the edge. This
means from a kinetic point of view that the velocities are much smaller in the edge.

We now divide the slice into two areas: we denote the part x1 > 0 the “bad cur-

vature” side and the part x1 < 0 the “good curvature” side: indeed, we expect the
plasma in the “good curvature” side to be well confined, while the plasma in the “bad cur-
vature” region is badly confined. This behaviour can be easily predicted with the following
heuristic study in the “bad curvature” side:
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Particles in the hot plasma drift faster (left figure), so if there is any perturbation (right
figure), there appears a separation of charge creating an electric field E, which entails a
drift E⊥ that accentuates the perturbation: in other words, the equilibrium is unstable.
This discussion is part of the folklore in plasma physics for tokamaks and this instability
is recognized to be one of the main sources of disruption for the plasma.

In the other hand one can lead the same qualitative analysis in the “good curvature”
side and show in this case stability.

1.2 Objectives and results of this paper

In this paper, following the previous heuristic argument, we will particularly focus on sys-
tem (1.6), which is a kind of simplified ”bi-fluid” version of (1.5). We consider that the
plasma is made of two mixable phases, one being the hot plasma (with constant tempera-
ture T+ and density ρ+(t, x)) and the other the cold plasma (with constant temperature
T− and density ρ−(t, x)) . Of course, hot and cold means that T+ > T−.







∂tρ
+ − T+∂x2ρ

+ + E⊥.∇xρ
+ = 0

∂tρ
− − T−∂x2ρ

+ + E⊥.∇xρ
− = 0

E = −∇xV
−∆xV = ρ+ + ρ− − 1
V = 0 on x1 = 0, L
(ρ+, ρ−)|t=0 = (ρ+0 , ρ

−
0 ) with

∫
ρ+0 + ρ−0 = 1

(1.6)

for t ≥ 0, x ∈ [0, L]× R/LZ and L is the size of the box.
The temperature T (t, x) of the plasma is given by:

T (t, x) =
ρ+(t, x)T+ + ρ−(t, x)T−

ρ+(t, x) + ρ−(t, x)
(1.7)

(We refer to Section 3 for more details.)
Unfortunately, we were able to derive this system only formally from system (1.4)

and had to make some physical and mathematical approximations. These are precisely
explained in Section 3.

We observe that this system shares structural similarities with 2D Euler equations in
vorticity form, which describe an incompressible inviscid fluid.

Plasma ↔ Fluid

density ρ− 1 ↔ vorticity ω

(rotated) electric field E⊥ = ∇⊥∆−1(ρ− 1) ↔ velocity u = ∇⊥∆−1ω

Hence, our system can be seen somehow as a Euler system with two kinds of vorticities.
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Such an analogy between strongly magnetized plasmas and bi-dimensional ideal fluids
has been observed for a long time by physicists (for instance, see [14]). We mention that
the convergence towards 2D Euler in strong magnetic fields regimes (but different from the
one studied here) was rigorously established by Golse and Saint-Raymond [8] and Brenier
[5].

Let us now define precisely the stability and instability notions that we will work
on until the end of the paper. One should be aware that for such infinite-dimensional
dynamical systems, the choice of the norm is particularly important.

Definition. Let ξ be a solution to (1.6). This solution is said to be stable with respect to
the X norm if for any η > 0, there exists δ > 0 such that: for any solution ρ to (1.6), the
initial control ‖ρ(0) − ξ(0)‖X ≤ δ implies that for any t ≥ 0, ‖ρ(t)− ξ(t)‖X ≤ η.

Otherwise, the solution ξ is said to be unstable with respect to the X norm.

Of course, instability will then be interpreted as bad confinement, and stability as good
confinement.

We will investigate stability and instability around the following steady states, model-
ing the good and bad curvature sides:

µbad(x1) =
(

µbad,+ = 1− x1
L
, µbad,− =

x1
L

)

(1.8)

µgood(x1) =
(

µgood,+ =
x1
L
, µgood,− = 1− x1

L

)

(1.9)

which actually model a linear transition between the hot and the cold plasma. Indeed, for
µbad, the temperature of the plasma is given by:

T (t, x) = T−x1
L

+ T+
(

1− x1
L

)

whereas for µgood, it is given by:

T (t, x) = T+x1
L

+ T−
(

1− x1
L

)

Hence the profile of the temperature is a straight line with a slope equal to the so-called
temperature gradient T+−T−

L . We mention that such linear profiles seem physically rele-
vant in the edge of the tokamak (according to the graphs in [10] or [27]).

Despite this rather rough model, our predictions will qualitatively correspond to ob-
servations made by physicists.

Our first objective will be to confirm the linear scenario exposed in the heuristic study
by exhibiting a growing mode with maximal growth for the linearized operator in the
bad-curvature area (but only when the temperature gradient T+−T−

L is not too large) and
by showing that there is no such growing mode in the good-curvature area.

Then our aim is to show that nonlinear instability also holds. As system (1.6) looks
a lot like 2D Euler, it is not so surprising that techniques allowing to pass from spectral
instability to nonlinear instability for 2D Euler may apply here. On the topic of stability
and instability of ideal plane flows, we mention some recent developments; let us neverthe-
less emphasize that this list is by no means exhaustive. In [11], Grenier proved instability
in the L2 velocity norm for some shear flows with zero Lyapunov exponent. In [3], Bar-
dos, Guo and Strauss, following a method introduced in [12], proved instability in the L2

vorticity norm around some steady states. It is assumed that the linearized operator has
a growth exceeding the Lyapunov exponent of the steady flow. We also mention the paper
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of Vishik and Friedlander [25] where instability in the L2 velocity norm is proved under
the same assumptions on the steady states. The best result available by now is due to
Lin [18]. Under rather general assumptions on the steady states (in particular, there is no
assumption on the growth of the linearized operator), he showed nonlinear instability in
the L2 vorticity norm and in the same time, that velocity grows exponentially in the L2

norm. In this work, we will obtain similar results to those of Lin.
On the other hand, let us emphasize that in our linear analysis, when the temperature

gradient T+−T−

L exceeds a threshold, there is no growing mode in the bad curvature side.
We will show that the nonlinear equations inherit this linear property. This rather un-
expected stability phenomenon can be interpreted as the so-called High Confinement

mode (H-mode for short), by opposition to the ”standard” regime, referred to as the
Low Confinement mode (L-mode for short). The H-mode is a high-confinement regime
obtained by heating of the plasma and triggered when the heating power exceeds some
threshold. It has been experimentally observed by physicists for a long time: it was dis-
covered in the ASDEX tokamak [26], we also refer to [10], [15] and ([27], Section 4.13).
We can also remark that the H-mode is accompanied with an increase of the gradient of
temperature ([10], [27]). These experimental observations fit very well with our qualitative
results.

There exists a huge literature in physics on this particular topic. Nevertheless, despite a
huge amount of works, the H-mode is still rather mysterious. Its understanding, especially
the mechanism of transition from L-mode to H-mode is crucial for fusion research. To
the very best of our knowledge, the H-mode has never been rigorously justified at the
nonlinear or even at the linear level, with such a simple model.

It is sometimes believed that the formation of confining transport barriers is due to a
sheared E × B flow. In some sense, our model shares similarities with linear shear flows
(the linearized equations are similar); thus our study is not in contradiction with these
considerations.

We finally mention that in the physics papers, the H-mode is most of the time numeri-
cally investigated with more complicated models (including more physics, such as the effect
of collisions, friction, energy sources), we refer to [6] and references therein. Our model
can be seen as a two-temperature caricature of the model of [6]. The transition to the
H-mode is also numerically investigated in [16], where the existence of thresholds is shown.
Unfortunately, we were not able to find any analytical formulae for those thresholds that
we could have compared with ours.

The main results proved in this paper (Corollary 5.1 and Theorem 6.1) are gathered
in the following theorem:

Theorem 1.1. For system (1.6):

1. (Nonlinear stability)

The equilibrium µgood is nonlinearly stable with respect to the L2 norm.

If the temperature gradient T+−T−

L satisfies:

T+ − T−

L
>

1

π2
(1.10)

then the equilibrium µbad is nonlinearly stable with respect to the L2 norm.

2. (Nonlinear instability)
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If the temperature gradient satisfies

T+ − T−

L
<

4

5π2
(1.11)

There exist constants δ0, η0 > 0 such that for any 0 < δ < δ0 and any s ≥ 0 there
exists a solution ρ to (1.6) with ‖ρ(0)− µbad‖Hs ≤ δ but such that:

‖E(tδ)‖L2 ≥ η0 (1.12)

denoting E(tδ) = ∇∆−1(ρ+(tδ)+ρ−(tδ)−1) the electric field at time tδ = O(| log δ|).
In particular, the equilibrium µbad is nonlinearly unstable with respect to the L2 norm.

1.3 Organization of the paper

The present paper is organized as follows: section 2 is devoted to the study of the limit
ǫ → 0 for the system (1.4). In section 3 we present the simplified bi-fluid model we study
in order to investigate stability and instability for the plasma. Section 4 is dedicated to
the study of the linearized system around the steady states µgood and µbad ; in particular
we show the existence of dominant growing mode in the “bad curvature” region, provided
that the gradient of temperatures is not too large. If the temperature gradient exceeds
some threshold, then there is linear stability. In section 5, we are concerned with the
nonlinear stability property for the “good curvature” region and for the “bad curvature”
region for large enough temperature gradients (referred to as the high confinement mode
in plasma physics), which will be achieved by exhibiting remarkable energies around the
steady states. In section 6, for small enough temperature gradients we pass from linear
spectral instability to nonlinear instability in the L2 vorticity norm, using a high order
approximation method introduced by Grenier. Then we prove that the electric field also
grows exponentially in the L2 norm, by using the energy exhibited in the previous section.

2 Gyrokinetic derivation of the equations

Following Frénod and Sonnendrücker ([7]), we can use two-scale convergence tools in order
to derive the gyrokinetic equation we are interested in. We shall not dwell on the rigorous
derivation of this system since the justifications in two dimensions are essentially done in
[7].

First of all, let us recall precisely the two-scale convergence notions (due to Nguetseng
[21] and Allaire [1]) we will use in this section.

Definition. Let X be a separable Banach space, X ′ be its topological dual space and (., .)
the duality bracket between X ′ and X. For all α > 0, denote by Cα(R,X) (respectively

Lq′
α (R;X ′)) the space of α-periodic continuous (respectively Lq′) functions on R with values

in X. Let q ∈ [1;∞[.
Given a sequence (uǫ) of functions belonging to the space Lq′(0, t;X ′) and a function

U0(t, θ) ∈ Lq′(0, T ;Lq′
α (R;X ′)) we say that

uǫ 2-scale converges to U0

if for any function Ψ ∈ Lq(0, T ; Cα(R,X)) we have:

lim
ǫ→0

∫ T

0

(

uǫ(t),Ψ

(

t,
t

ǫ

)

dt

)

=
1

α

∫ T

0

∫ α

0

(
U0(t, τ),Ψ(t, τ)

)
dτdt (2.1)
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The new variable τ has to be understood as a “fast-time variable” which describes
the fast time oscillations. As for weak-star convergence in Lp spaces, one can show that
boundedness implies 2−scale convergence in Lp spaces.

Theorem 2.1. ([21], [1])
Given a sequence (uǫ) bounded in Lq′(0, t;X ′), there exists for all α > 0 a function

U0
α ∈ Lq′(0, T ;Lq′

α (R;X ′) such that up to a subsequence,

uǫ 2-scale converges to U0
α

The profile U0
α is called the α-periodic two scale limit of uǫ and the link between U0

α and
the weak-* limit u of uǫ is given by:

1

α

∫ α

0
U0
αdτ = u (2.2)

For the reader’s sake we recall the main arguments and refer to [1] for the complete
proof.

Sketch of proof. Let α > 0. We can consider ϕuǫ :

Ψ ∈ Lq(0, T ; Cα(R,X)) 7→
∫ T

0
uǫ(t)Ψ

(

t,
t

ǫ

)

dt

and show that it is a continuous linear form on Lq(0, T ; Cα(R,X)), so that it can be
identified with a unique Uǫ in Lq(0, T ; Cα(R,X))′. Then we can show that Uǫ is uni-
formly bounded in Lq(0, T ; Cα(R,X))′ ; thus, since Lq(0, T ; Cα(R,X)) is a separable Ba-
nach space, Uǫ weakly-* converges up to a subsequence to some U in Lq(0, T ; Cα(R,X))′.
Using Riesz’s representation theorem, one can show that it can be identified with some

U0
α ∈ Lq′(0, T ;Lq′

α (R;X ′)) and that uǫ two-scale converges to U0.

We can now state the main result of this section:

Proposition 2.1. For each ǫ, let fǫ be a global weak solution to (1.4) in the sense of
Arsenev .

Then, up to an extraction, fǫ 2-scale converges to a function F :

F (t, τ, x, v) = G(t, x+R(τ)v,R(τ)v) (2.3)

and G satisfies:






∂tG+

(

1
2π

∫ 2π
0 R(τ)E(t, τ, x +R(−τ)v)dτ +

(
−v1(v2 − x1)

v2(x1 − v2)− 1
2(v

2
1 + v22)

))

.∇xG

+

(

1
2π

∫ 2π
0 R(τ)E(t, τ, x +R(−τ)v)dτ +

(
v2(−x1 + v2)
−v1(−x1 + v2)

))

.∇vG = 0

G|t=0 = f0
E = −∇xV

−∆V =

∫

G(t, x +R(τ)v,R(τ)v)dv − 1

(2.4)
denoting by R and R the linear operators defined by :

R(τ) =

[
cos τ − sin τ
sin τ cos τ

]

, R(τ) = (R(−π/2) −R(−π/2 + τ)) .
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Proof. We do not wish to develop the very beginning of the proof since it is strictly identical
to the one given in [7].

The first step consists in deriving the so-called constraint equation. To this end, let
Ψ(t, τ, x, v) be a 2π-periodic oscillating test function in τ and define:

Ψǫ ≡ Ψ

(

t,
t

ǫ
, x, v

)

Then we can write the weak formulation of the Vlasov equation against Ψǫ and pass to
the two-scale limit. We find that the two-scale limit of fǫ(t, x, v), denoted by F (t, τ, x, v),
satisfies the following equation:

∂τF + v⊥.∇xF + v ∧ ez.∇vFα = 0, (2.5)

As a consequence, F is constant along the characteristics meaning that there exists a
profile G with:

F (t, τ, x, v) = G(t, x+R(τ)v,R(τ)v) (2.6)

where R and R are defined in the proposition.
The next step is to determine the profile G. We introduce the filtered function gǫ:

gǫ(t, x, v) = fǫ(t, x+R(−t/ǫ)v,R(−t/ǫ)v) (2.7)

which represents the number density from which we have removed the essential oscillations.
Notice that this function is chosen so that gǫ two-scale converges, as well as weakly-*
converges to G.

We easily obtain the equation satisfied by gǫ:

∂tgǫ+R(t/ǫ)Eǫ(t, x+R(−t/ǫ)v).∇xgǫ

+R(t/ǫ)Eǫ(t, x+R(−t/ǫ)v).∇vgǫ

−R(t/ǫ)
(

(x+R(−t/ǫ)v)1.(R(−t/ǫ)v)⊥
)

.∇xgǫ

−R(t/ǫ)
(

(x+R(−t/ǫ)v)1.(R(−t/ǫ)v)⊥
)

.∇vgǫ = 0

(2.8)

We now pass to the limit in the sense of distributions. We can prove that the following
convergence holds for the nonlinear terms (using elliptic regularity for the electric field to
gain some compactness):

R(t/ǫ)Eǫ(t, x+R(−t/ǫ)v).∇xgǫ ⇀
1

2π

∫ 2π

0
R(τ)E(t, τ, x +R(−τ)v)dτ.∇xG (2.9)

R(t/ǫ)Eǫ(t, x+R(−t/ǫ)v).∇vgǫ ⇀
1

2π

∫ 2π

0
R(τ)E(t, τ, x+R(−τ)v)dτ.∇vG (2.10)

Likewise, we have the following convergences for the last two terms (here there is
basically nothing to justify since these are linear quantities):

−R(t/ǫ)
(

(x+R(−t/ǫ)v)1.(R(−t/ǫ)v)⊥
)

.∇xgǫ

⇀− 1

2π

∫ 2π

0
R(τ)

(
(x+R(−τ)v)1.(R(−τ)v)⊥

)
dτ.∇xG

(2.11)
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−R(t/ǫ)
(

(x+R(−t/ǫ)v)1.(R(−t/ǫ)v)⊥
)

.∇vgǫ

⇀− 1

2π

∫ 2π

0
R(τ)

(
(x+R(−τ)v)1.(R(−τ)v)⊥

)
dτ.∇vG

(2.12)

We then compute the following quantities:

− 1

2π

∫ 2π

0
R(τ)

(
(x+R(−τ)v)1 × (R(−τ)v)⊥

)
dτ =

(
v2(−x1 + v2)
−v1(−x1 + v2)

)

(2.13)

− 1

2π

∫ 2π

0
R(τ)

(
(x+R(−τ)v)1 × (R(−τ)v)⊥

)
dτ =

(
−v1(−x1 + v2)

v2(x1 − v2)− 1
2(v

2
1 + v22)

)

(2.14)

This concludes the proof.

Qualitative interpretation of the gyrokinetic system

The influence of the variations of B is given by the drift/acceleration terms:

(
−v1(v2 − x1)

v2(x1 − v2)− 1
2 (v

2
1 + v22)

)

.∇xG+

(
v2(−x1 + v2)
−v1(−x1 + v2)

)

.∇vG,

Let us imagine that there is no electric field in the asymptotic equation (2.4). Then,
the characteristics are given by the following ODEs:







dx
dt =

(
−v1(v2 − x1)

v2(x1 − v2)− 1
2(v

2
1 + v22)

)

dv
dt =

(
v2(−x1 + v2)
−v1(−x1 + v2)

) (2.15)

At first sight, this dynamical system seems a bit complicated with some unpleasant
quadratic terms. Actually, this system has some nice invariants.

First, notice that
d

dt
(x1 − v2) = 0.

This means that x1 = v2 + C1 (with C1 = x1(0)− v2(0)). The equation for v can now be
written in the simple form:

dv

dt
=

(
−C1v2
C1v1

)

(2.16)

The velocity is thus periodic (and we could compute it easily). Notice also that

d

dt
(v21 + v22) = 0,

so that v21 + v22 = C2 (with C2 = v21(0) + v22(0)).
We get as well a periodic motion for x1 (since x1 = v2 +C1). Finally we notice for x2:

d

dt
(x2 + v1) = −1

2
(v21 + v22) = −1

2
C2 (2.17)

The motion along the e2 direction is hence a sum of a periodic motion plus a fall which
only depends on the initial velocity of the particles (and not on their position). Such a
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Figure 2: ∇B drift (in the x-axis:
time and in the y-axis: x2)
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Figure 3: Motion of a particle starting at
(0,0) in the slice of the tokamak (in the x-
axis: x1 and in the y-axis: x2)

drift of the particles “in the bottom” of the tokamak and depending only on the square
of their velocity is predicted by physicists and is often referred to as the ∇B drift ([27],
Section 2.6). To support our discussion we give some graphs of the characteristic curves
(figures 2 and 3).

Likewise, Frénod and Sonnendrücker introduced in [7] the new variables:

xc = x− v⊥ =

(
x1 − v2
x2 + v1

)

the so-called guiding center variable and

w = −v⊥

the so-called Larmor radius variable. With these, they showed that the terms in (2.4)
involving the electric field were qualitatively close to the drift

1

2π

∫ 2π

0
E⊥(t, τ, xc +R(τ)w)dτ.∇xc

which corresponds to the gyroaveraged electric drift ([27], Section 2.11).

3 The simplified mathematical model

To be completely rigorous, system (2.4) is the system we would have to study in order
to investigate good or bad confinement. Nevertheless, at least at first sight, its algebraic
structure seems to be too complicated. Morevore, it is not so clear how to choose a steady
state describing the physical situation we want to study.

Consequently we will make several approximations (some of them being quite rough)
on (2.4) in order to get a more tractable model.

3.1 A drift-kinetic system

A first step is to obtain a simplified kinetic system, whose dynamics is close to system (2.4).
We therefore consider the following drift-kinetic equation, which is actually a classical
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physical model ([27], Section 2.11). It is commonly used for numerical simulations (see for
instance the GYSELA code [9]):







∂tf − 1
2 |v|2∂x2f +E⊥.∇xf = 0

E = −∇xV

−∆xV =

∫

fdv − 1
(3.1)

This system can be heuristically derived from Newton equations with some elementary
physical considerations (see for instance [27], Section 2.6); unfortunately we were not
able to derive it rigorously from (1.4) or (2.4). Nevertheless, considering the qualitative
study of last paragraph, this seems to be a reasonable model, if we make the following
approximations:

• We neglect the oscillations in time, which amounts to get rid of the explicit depen-
dance on the fast time variable τ for the electric field. This can be justified if we
consider well-prepared initial data: we refer to the work of Bostan [4].

• We neglect the gyroaverage operators:

1

2π

∫ 2π

0
E⊥(t, xc +R(τ)w)dτ → E⊥(t, xc)

which is reasonable if we consider that the variation of the electric field across a
Larmor radius is negligeable.

3.2 The bi-temperature drift-fluid system

In order to get a simplified fluid model, we assume that the plasma is made of two phases,
one being the cold plasma (with low velocities, low temperature T− and density ρ−) and
the other the hot plasma (with large velocities, large temperature T+ and density ρ+). Of
course, we take T− < T+.

Hence, we assume that the solution to (3.1) takes the form:

f(t, x, v) = ρ+(t, x)ν+(v) + ρ−(t, x)ν−(v) (3.2)

where ρ+ (resp. ρ−) is a positive density such that the total mass is equal to 1, that is:

∫

(ρ+ + ρ−)dx = 1.

Furthermore, ν+ and ν− are measures defined by:

ν+ =
1

2π
√
2T+

1|v|=√
2T+

ν− =
1

2π
√
2T−

1|v|=√
2T−

Considering that transverse particle velocities are isotropically distributed is physically
relevant for such magnetized plasmas, as indicated in [23].

We observe that
∫
dν± = 1 and

∫
vdν± = 0. Thus, the charge and current densities

are given by:

ρ(t, x) :=

∫

fdv = ρ+(t, x) + ρ−(t, x)
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and

u(t, x) :=

∫
fvdv

∫
fdv

= 0.

In addition, we have:

T+ =
1

2

∫

|v|2dν+(w)

T− =
1

2

∫

|v|2dν−(w)

The kinetic temperature T (t, x) of the plasma is then given by:

T (t, x) :=
1

2

∫
f(v − u(t, x))2dv

ρ(t, x)

=
ρ+(t, x)T+ + ρ−(t, x)T−

ρ+(t, x) + ρ−(t, x)

(3.3)

We moreover assume we can decouple the transport equations satisfied by ρ+ and ρ−.
We get in the end the macroscopic system:







∂tρ
+ − T+∂x2ρ

+ + E⊥.∇xρ
+ = 0

∂tρ
− − T−∂x2ρ

+ + E⊥.∇xρ
− = 0

E = −∇xV
−∆xV = ρ+ + ρ− − 1
(ρ+, ρ−)|t=0 = (ρ+0 , ρ

−
0 ) with

∫
ρ+0 + ρ−0 = 1

(3.4)

with x ∈ [0, L]× R/LZ.
As noticed in the introduction, this systems looks like 2D incompressible Euler, but

with two kinds of vorticities.
Here, the constant L > 0 stands for the size of the box. The periodicity with respect

to x2 is physically justified if we consider that L is small enough with respect to the size
of the tokamak, so that we can decompose it in many identical cells of size L (see Figure
1).

We now have to impose some relevant boundary conditions on x1 = 0, L:

• For the Poisson equation, we opt for the perfect conductor assumption on x1 = 0, L
(which is the ideal case for plasma physics models).

E⊥.n = ±E2 = ∂xc2
V = 0 (3.5)

To this end, we can impose the following Dirichlet boundary condition on x1 = 0, L:

V = 0 (3.6)

From the fluid mechanics point of view, we observe this corresponds to the classical
no slip condition.

• For the transport equation, we actually do not need any boundary condition. There
is indeed no entering or leaving trajectories, since the linear “drift” operator only
entails a motion along the e2 direction, and E2 = 0 on the boundaries x1 = 0, L.

Following classical works on the Cauchy problem for the 2D incompressible Euler
system (we refer for instance to the book of Majda and Bertozzi [20]), we get the following
global existence and uniqueness result of strong and weak solutions to (3.4):
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Theorem 3.1. Let ρ0 = (ρ+0 , ρ
−
0 ) ∈ (L1((0, L) × R/LZ))2 with ρ+0 , ρ

−
0 non-negative and

∫
(ρ+0 + ρ−0 )dx = 1.

1. (Kato, [17]) If ρ0 is Hs (with s > 1) then there exists a unique classical solution ρ
to (3.4) in C0

t ([0,∞[,Hs) ∩ C1
t ([0,∞[,Hs−1) with initial data ρ0.

2. (Yudovic, [28]) If ρ0 ∈ L∞, then there exists a unique global non-negative weak
solution ρ ∈ L∞

t (L1 ∩ L∞) to (3.4) with initial data ρ0.

Sketch of proof. 1. The existence of a global strong solution follows from a fixed point
argument, as in the classical work on 2D Euler by Kato [17]. Actually, dealing
with two ”vorticities” only slightly modifies the main lines; therefore, for the sake of
brevity, we only recall here the main arguments of the proof.

We may consider the map F : (ξ+, ξ−) 7→ (ρ+, ρ−) where (ρ+, ρ−) is solution to:






∂tρ
+ +

(
E⊥ − T+e2

)
.∇xρ

+ = 0
∂tρ

− +
(
E⊥ − T−e2

)
.∇xρ

− = 0
E = −∇xV
−∆xV = ξ+ + ξ− − 1
V = 0 on x1 = 0, L
(ρ+, ρ−)|t=0 = (ρ+0 , ρ

−
0 ) with

∫
ρ+0 + ρ−0 = 1

(3.7)

which is well-defined if (ξ+, ξ−) is smooth enough thanks to the characteristics’
method. As in Kato’s proof, for any T > 0, one can show that F is continuous on
some convex compact S of (C([0, T ] × [0, L]× R/LZ))2 and that F (S) ⊂ S. The
existence of a fixed point is finally a consequence of Schauder’s theorem. The crucial
points are:

• Establishing some log-lipschitz estimate on the electric field (in this case with
a constant involving the L∞ norms of the two vorticities), which is obtained
exactly in the same way as for Euler’s equation.

If ξ+, ξ− ∈ L∞ and E is solution to the elliptic problem






E = −∇xV
−∆xV = ξ+ + ξ− − 1
V = 0 on x1 = 0, L

(3.8)

then there exists C depending on L but independent of ξ+, ξ− such that for all
(x, y) ∈ ([0, L] × R/LZ), we have:

|E(x)− E(y)| ≤ C
(
‖ξ+‖L∞ + ‖ξ−‖L∞

)
|x− y| log+(|x− y|) (3.9)

where log+(s) =

{
1− log s if s ≤ 1
0 if s > 1

• The L∞ norm of each ”vorticity” ρ+ and ρ− is conserved by the transport
equations, since divx

(
E⊥ − T±e2

)
= 0.

Finally uniqueness is obtained by an energy argument, exactly as in Kato’s proof.

2. For the bi-dimensional Euler equations in a general domain, the result is due to
Yudovic [28]. His main arguments can be easily adapted and reproduced in our
case, with a crucial use of the two above points. The result also follows by a simple
adaptation of the alternative proof given in ([20], Theorem 8.1), which consists in
regularizing the initial data, solve the smoothed Cauchy problem and then pass to
the weak limit thanks to a crucial compactness result ([20], Proposition 8.2).

14



3.3 Modeling of the plasma equilibria

We now consider the following steady states, in order to model what is happening in the
“good curvature” or the “bad curvature” side of the plasma, the only difference being the
relative position between the hot and the cold plasma:

• in the “bad curvature” region:

µbad(x1) =






µbad,+ = 1− x1

L
︸ ︷︷ ︸

hot plasma

, µbad,− =
x1
L

︸ ︷︷ ︸

cold plasma







(3.10)

• in the “good curvature” region:

µgood(x1) =
(

µgood,+ =
x1
L
, µgood,− = 1− x1

L

)

(3.11)

These are steady states of (3.4) and the associated electric field is zero.
We observe here for µgood the temperature T (t, x) is:

T (t, x) = T+x1
L

+ T−
(

1− x1
L

)

(3.12)

Such linear transitions between the cold and hot plasma are the most simple model one
can think of. We observe that the slope of the line is equal to T+−T−

L which is referred to
as the temperature gradient in this paper.

We now investigate stability and instability for µbad and µgood.

4 Linear instability in the “bad curvature” region

We first consider the case of the “bad curvature” region, for which we expect to obtain
instability. The equilibrium writes:

µbad(x1) =

(
1− x1

L
x1
L

)

The first step before trying to prove any instability property for the nonlinear transport
equations consists in investigating the problem of instability for the linearized operator
around µbad. We accordingly consider the following linearized system (for t > 0, x ∈
[0, L]× R/LZ):







∂tρ
+ − T+∂x2ρ

+ − E2
L = 0

∂tρ
− − T−∂x2ρ

− + E2
L = 0

E = −∇xV
−∆xV = ρ+ + ρ− , V = 0 on x1 = 0, L
(ρ+, ρ−)|t=0 = (ρ+0 , ρ

−
0 ) with

∫
ρ+0 + ρ−0 = 0

(4.1)

4.1 Looking for unstable eigenfunctions

We look for special solutions under the form ρk(t, x) =

(
h+k (t)gk(x)
h−k (t)gk(x)

)

. The equations (4.1)

can be restated as:
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∂t(h
+
k (t)gk(x)) − T+∂x2(h

+
k (t)gk(x)) − E2

L = 0

∂t(h
−
k (t)gk(x)) − T−∂x2(h

−
k (t)gk(x)) +

E2
L = 0

E = −∇xV
−∆xV = (h−k (t) + h+k (t))gk(x) , V = 0 on x1 = 0, L

(4.2)

We take gk with the particular form gk(x) = sin (k1L πx1)e
i2π

k2
L
x2 (with k1, k2 ∈ Z

∗), so
that gk is an eigenfunction for the laplacian with the considered boundary conditions. It
satisfies indeed:

∆gk(x) = −π2

(
k21
L2

+ 4
k22
L2

)

gk(x) (4.3)

and also gk = 0 on x1 = 0, L.
The solution to the Poisson equation is then given by:

Vk =
1

π2
(

k21
L2 + 4

k22
L2

)(h−k (t) + h+k (t))gk(x)

and thus we have

E2 =
−i2k2/L

π
(

k21
L2 + 4

k22
L2

)(h−k (t) + h+k (t))gk(x);

which leads us to study the following first order ordinary differential equation:

∂t

(
h+k (t)
h−k (t)

)

+ 1/L







−2iπT+k2 +
i2k2

π

(

k2
1
L
+4

k2
2
L

)

i2k2

π

(

k2
1
L
+4

k2
2
L

)

− i2k2

π

(

k2
1
L
+4

k2
2
L

) −2iπT−k2 − i2k2

π

(

k2
1
L
+4

k2
2
L

)







(
h+k (t)
h−k (t)

)

= 0

(4.4)
We want to compute the eigenvalues of the matrix; its characteristic polynomial states:

X2 + 2iπk2
(
T+ + T−)X − 4π2k22T

+T− − 4k22
k21
L + 4

k22
L

(
T+ − T−)

and its discriminant:

∆ = −4π2k22(T
+ − T−)2 +

16k22L

k21 + 4k22

(
T+ − T−)

= −4π2k22(T
+ − T−)

(

(T+ − T−)− 4L

π2(k21 + 4k22)

)

(4.5)

We recall that by definition,
T+ − T− > 0

We can now distinguish between two cases:

• First case:

4

5π2
>

T+ − T−

L
(4.6)

In the case where the gradient of temperature is not too large, then there exist k1, k2
such that ∆ > 0. We consequently obtain two complex roots, one of which has a

stricly negative real part equal to −
√
∆
2 . In other words, this shows the existence of

an unstable mode.
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• Second case:

4

5π2
≤ T+ − T−

L
(4.7)

In the opposite case, we always have ∆ ≤ 0 and consequently, we are not able to
find a growing mode !

This phenomenon may at first sight look like a mathematical artifact due to the
periodicity constraint in the x2 direction. Nevertheless as explained in the introduc-
tion, the existence of such a threshold is well known in plasma physics, beyond which
one can expect tremendous confinement properties. In very rough terms: heating
brings stability. The stable mode is referred to as the H-mode, by opposition to the
L-mode.

Remark 4.1. In the “good curvature” region, that is around µgood, the linearized system
states:







∂tρ
+ − T+∂x2ρ

+ + E2
L = 0

∂tρ
− − T−∂x2ρ

− − E2
L = 0

E = −∇xV
−∆xV = ρ+ + ρ− , V = 0 on x1 = 0, L

(4.8)

With the same method, we obtain the following ordinary differential equation:

∂t

(
h+k (t)
h−k (t)

)

+ 1/L







−2iπT+k2 − i2k2

π

(

k2
1
L
+4

k2
2
L

) − i2k2

π

(

k2
1
L
+4

k2
2
L

)

i2k2/L

π

(

k2
1
L
+4

k2
2
L

) −2iπT− + k2
i2k2

π

(

k2
1
L
+4

k2
2
L

)







(
h+k (t)
h−k (t)

)

= 0

(4.9)
We consequently have to look for the roots to the polynomial:

X2 + 2iπk2v
2X − 4π2T+T−k22 +

4k22
k21
L + 4

k22
L

(T+ − T−)

In this case, one can check as before that the discriminant is always stricly negative, so
that the roots always have a vanishing real part. As a result, we do not find any unstable
mode by this method. Note that we only consider this fact as a good and encouraging
indication for stability around µgood. Actually, we will never use it when proving nonlinear
stability in section 5.

Remark 4.2. We finally mention that the quest for unstable modes seems more difficult
in the kinetic case, since one has to deal with the continuous velocity space. A very famous
criterion in the Vlasov-Poisson case was given by Penrose [22] and rigorously studied later
on by Guo and Strauss [13].

4.2 On the spectrum of the linearized operator around µbad on Hs([0, L]×
R/Z), s ≥ 0

We assume here the existence of unstable modes for the linearized operator around µbad,
that is in the situation where we have:

4

5π2
>

T+ − T−

L
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The main tool we use now is a variant of a classical theorem by Weyl, stated for
instance in the paper of Guo and Strauss [13] and proved by Vidav in [24]. Basically,
it gives informations on the spectrum of some compact perturbation of a linear operator
which has no spectrum in the half-plane {Re z > 0}. It entails the existence of a dominant
unstable eigenvalue provided the existence of at least one growing mode.

Theorem 4.1 (Weyl). Let Y be a Banach space and A be a linear operator that generates
a strongly continuous semigroup on Y such that ‖e−tA‖ ≤ M for all t ≥ 0. Let K be a
compact operator from Y to Y . Then (A+K) generates a strongly continuous semigroup
e−t(A+K) and σ(−A −K) consists of a finite number of eigenvalues of finite multiplicity
in {Reλ > δ} for every δ > 0. These eigenvalues can be labeled by:

Reλ1 ≥ Reλ2 ≥ ...ReλN ≥ δ

Furthermore, for any γ > Reλ1, there exists some constant Cγ such that

‖e−t(A+K)‖Y→Y ≤ Cγe
tγ (4.10)

Corollary 4.1. Let s ≥ 0 and

Y = {y1, y2 ∈ Hs([0, L] × R/Z)2,

∫

(y1 + y2)dx = 0}.

Let M be the linear operator defined by:

g =

(
g+

g−

)

∈ Y 7→ M

(
g+

g−

)

=

(
−T+∂x2g

+ − E2
L

−T−∂x2g
− + E2

L

)

(4.11)

with E2 = −∂x2V , −∆V = (g+ + g−) and with V = 0 on x1 = 0, L.
Then there exists an eigenvalue λ with a non-vanishing and maximal real part associated

to a C∞ eigenvector. Furthermore for any γ > Reλ, there is a constant C(γ, s) such that
for all t ≥ 0:

‖e−tM‖Hs→Hs ≤ C(γ, s)etγ (4.12)

Proof. The linear operator A, defined by

A : g 7→
(
−T+∂x2g

+

−T−∂x2g
−

)

is clearly an isometry on Y (indeed we know how to explicitly solve the semi-group). The
operator K is defined by

K : g 7→
(
−E2

L
E2
L

)

This operator is compact on Y thanks to standard elliptic estimates.
Moreover, we have shown in the last paragraph the existence of an unstable eigenfunc-

tion for the linearized operator that belongs to any Hs. We can therefore apply Weyl’s
theorem which gives the existence of an eigenfunction associated to an eigenvalue with a
non-vanishing and maximal real part. At last, the estimate in the corollary follows directly
from the estimate given in Weyl’s theorem.
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In the following, we denote for any h ∈ L2 with
∫
hdx = 0, ∆−1h the unique solution

u in H1 to the problem:
{

−∆u = h
u = 0 on x1 = 0, L

We give now a lemma which tells us that any eigenvector associated to a non vanishing
eigenvalue for the linearized operator any L2 actually has C∞ regularity.

Lemma 4.1. Let ρ = (ρ+, ρ−) ∈ (L2)2 with
∫
(ρ+ + ρ−)dx = 0 and λ 6= 0 such that:

−T+∂x2ρ
+ − 1

L
∂x2∆

−1(ρ+ + ρ−) = λρ+

−T−∂x2ρ
− − 1

L
∂x2∆

−1(ρ+ + ρ−) = λρ−

then (ρ+, ρ−) ∈ C∞([0, L] × R/Z)

Proof. The principle of the proof is to show by recursion that ρ ∈ Hk, for any k ∈ N
∗.

For k = 1, we can observe, thanks to elliptic estimates, that ∂x2ρ ∈ L2. Indeed, we
have the identity:

− T+∂x2ρ
+ =

1

L
∂x2∆

−1(ρ+ + ρ−) + λρ+ (4.13)

Hence, ∂x2ρ
+ ∈ L2. Likewise, ∂x2ρ

− ∈ L2.
We can apply the differential operator ∂x1 to the equation satisfied by ρ+, which entails:

−T+∂x1∂x2ρ
+ − 1

L
∂x1∂x2∆

−1(ρ+ + ρ−) = λ∂x1ρ
+

Then we multiply by ∂x1ρ
+ and integrate with respect to x:

λ‖∂x1ρ
+‖2L2 =

∫

−T+∂x1∂x2ρ
+∂x1ρ

+dx− 1

L

∫

∂x1∂x2∆
−1(ρ+ + ρ−)∂x1ρ

+dx

Thanks to the periodicity with respect to x2, we get:

∫

∂x1∂x2ρ
+∂x1ρ

+dx = 1/2

∫

∂x2

(

∂x1ρ
+
)2

dx = 0

Then using Cauchy-Schwarz inequality:

λ‖∂x1ρ
+‖2L2 ≤ 1

L
‖∂x1∂x2∆

−1(ρ+ + ρ−)‖L2‖∂x1ρ
+‖L2

As a result we showed that:

λ2‖∂x1ρ
+‖L2 ≤ 1

L
‖∂x1∂x2∆

−1(ρ+ + ρ−)‖L2 (4.14)

By standard elliptic estimates the right-hand side is finite since ρ+ et ρ− belong to L2. As
a result we have proved ρ ∈ H1.

We can then conclude by recursion. Let us assume that ρ ∈ Hk, for some k ∈ N
∗; we

prove that ρ ∈ Hk+1.
Let α, β ∈ N such that α + β = k. We set ∂k = ∂α

x1
∂β
x2 . Then ∂kρ belongs to L2 and

satisfies the equation:

−T+∂x2∂kρ
+ − 1

L
∂k∂x2∆

−1(ρ+ + ρ−) = λ∂kρ
+

−T−∂x2∂kρ
− − 1

L
∂k∂x2∆

−1(ρ+ + ρ−) = λ∂kρ
−
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By elliptic regularity, ∂k∂x2∆
−1(ρ+ + ρ−) ∈ H1. Thus, we are in the same case as for

L2 → H1, which entails that ρ ∈ Hk+1.

5 On nonlinear stability

Let ρ =

(
ρ+

ρ−

)

a solution to the nonlinear transport equation (3.4), that we recall here:







∂tρ
+ − T+∂x2ρ

+ + E⊥.∇xρ
+ = 0

∂tρ
− − T−∂x2ρ

+ + E⊥.∇xρ
− = 0

E = −∇xV
−∆xV = ρ+ + ρ− − 1
V = 0 on x1 = 0, L
(ρ+, ρ−)|t=0 = (ρ+0 , ρ

−
0 ) with

∫
ρ+0 + ρ−0 = 1

We begin with a very simple observation in the limit case T = T+ = T−. In this
situation, setting ρ̃ = ρ+ + ρ−, ρ satisfies the usual 2D Euler equation in vorticity form,
with some linear drift term:

∂tρ̃+ E⊥.∇xρ̃− T∂x2 ρ̃ = 0

E⊥ = ∇⊥∆−1(ρ̃− 1)

We investigate stability around the steady state µ̃ = µ+ + µ− = 1. It is well-known that
any Lp norm of the ”vorticity” ρ̃− 1 is non-increasing, that is:

‖ρ̃(t)− 1‖Lp ≤ ‖ρ̃(0)− 1‖Lp (5.1)

which clearly entails nonlinear Lp stability.
The idea in the general case T+ > T− in order to show nonlinear stability is to obtain

some similar nice energy estimate.

Theorem 5.1. For any inital data ρ0 ∈ L∞ with
∫
(ρ+0 + ρ−0 )dx = 1, the solution ρ to

(3.4) satisfies the following statements.

• Around the ”good-curvature” steady state, the following functional is non-increasing:

E(t) = ‖ρ− µgood‖2L2 +
1

L(T+ − T−)

∫

|∇V |2dx ≤ E(0) (5.2)

with ‖ρ− µ‖2L2 = ‖ρ+ − µ+‖2L2 + ‖ρ− − µ−‖2L2 and ∇V = ∇∆−1(ρ+ + ρ− − 1).

• Around the ”bad-curvature” steady state, the following functional is non-increasing:

F(t) = ‖ρ− µbad‖2L2 −
1

L(T+ − T−)

∫

|∇V |2dx ≤ F(0) (5.3)

Remark 5.1. We observe that in the functionals, the first term corresponds to the enstro-
phy in fluid mechanics (in a modulated form adapted to our needs). The second term can
be interpreted as the kinetic energy of the fluid (whereas from the plasma physics point
of view, this is the electric energy).
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As an immediate consequence of this theorem, we obtain L2 stability, in the ”good-
curvature” side, but also in the ”bad-curvature” side, for large enough temperature gra-
dients, like for the linearized equations.

Corollary 5.1. The equilibrium µgood is nonlinearly stable with respect to the L2 norm.
If the temperature gradient T+−T−

L satisfies

T+ − T−

L
>

1

π2
(5.4)

then the equilibrium µbad is nonlinearly stable with respect to the L2 norm.

Proof of the corollary. Thanks to the energy identity (5.2) and to the Poisson equation:

‖ρ− µgood‖2L2 ≤ ‖ρ− µgood‖2L2 +
1

L(T+ − T−)

∫

|∇V |2dx

≤ ‖ρ(0) − µgood‖2L2 +
1

L(T+ − T−)

∫

|∇V (0)|2dx

≤ ‖ρ(0) − µgood‖2L2 + C
1

L(T+ − T−)
‖ρ(0) − µgood‖2L2 (5.5)

This means that for any η > 0 there exists δ > 0 such that if ‖ρ(0)−µgood‖L2 ≤ δ then for
any t ≥ 0, ‖ρ− µgood‖L2 ≤ η. In other words, µgood is nonlinearly stable for the L2 norm.

Around the bad-curvature steady state, we have shown that the following quantity is
non-increasing:

F(t) = ‖ρ− µbad‖2L2 −
1

L(T+ − T−)

∫

|∇V |2dx (5.6)

We can easily prove with the help of Fourier variables the Poincaré-like inequality:
∫

|∇V |2dx ≤ L2

π2
‖ρ− µbad‖2L2 (5.7)

So we get:

‖ρ− µbad‖2L2 ≤ F(0) +
1

L(T+ − T−)

∫

|∇V |2dx

≤ F(0) +
1

L(T+ − T−)
L2

π2
‖ρ− µbad‖2L2

Hence, (

1− L

π2(T+ − T−)

)

‖ρ− µbad‖2L2 ≤ ‖ρ(0) − µbad‖2L2 (5.8)

As a consequence, there is L2 nonlinear stability in the bad curvature side, provided
that

T+ − T−

L
>

1

π2
.

Otherwise, we can not deduce anything.

Remark 5.2. Note also that in the linear discussion, there was stability provided that

T+ − T−

L
≥ 4

5π2
. (5.9)

We do not know what happens for T+−T−

L ∈ [ 4
5π2 ,

1
π2 ] in the nonlinear case. Maybe

one could expect to observe some bifurcation phenomenon.
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Remark 5.3. Actually the decrease of E(t) tells us a little more than just L2 stability.
Indeed, there exists C > 0 such that for any δ > 0, if ‖ρ(0) − µgood‖2L2 ≤ δ, then for any
t > 0,

‖ρ(t)− µgood‖2L2 ≤
(

1 + C
1

L(T+ − T−)

)

δ.

This means in particular that for large values of T+−T−, better confinement is obtained,
which is qualitatively in agreement with experimental observations ([10]).

We now prove Theorem 5.1. We first give a technical lemma in which will help for the
proof.

Lemma 5.1. For µ = µgood or µbad, we have for any t > 0,
∫

E2

(
ρ+ − µ+

)
dx = −

∫

E2

(
ρ− − µ−) dx. (5.10)

Proof. In order to prove this identity, one can simply compute:
∫

E2

(
(ρ− − µ−)− (ρ+ − µ+)

)
dx =

∫

E2

(
ρ+ + ρ− − µ+ − µ− − 2(ρ+ − µ+)

)
dx

=

∫

E2

(
∆V − 2(ρ+ − µ+)

)
dx

= −2

∫

E2

(
ρ+ − µ+

)
dx

Indeed, thanks to periodicity with respect to x2 and since ∂x2V = 0 on x1 = 0, L, we get:
∫

∂x2V∆V dx = −
∫

∂x2∇V.∇V dx+

∫

div(∂x2V∇V )dx

︸ ︷︷ ︸

=0

=

∫

∂x2

( |∇V |2
2

)

dx = 0

If we make the same computation, by symmetry, we can also observe that:
∫

E2

(
(ρ− − µ−)− (ρ+ − µ+)

)
dx = 2

∫

E2

(
ρ− − µ−) dx

Proof of Theorem 5.1. We will only focus on the proof of the conservation of E(t), the
proof being very similar for F(t). For the sake of readibility, we write µ instead of µgood

until the end of the proof.
We observe that the equation satisfied by (ρ− µ) reads in this case:

∂t(ρ− µ)−
(
T+∂x2(ρ

+ − µ+)
T−∂x2(ρ

− − µ−)

)

+ E⊥.∇x(ρ− µ) =

(
−E2

L
E2
L

)

(5.11)

and E = −∇xV with −∆V = ρ+ + ρ− − µ+ − µ− and with Dirichlet conditions on the
boundaries x1 = 0 and x1 = 1.

Taking the scalar product with (ρ− µ) in the transport equation and integrating with
respect to x entails:

d

dt
‖ρ− µ‖2L2 =

∫

−E2

L
(ρ+ − µ+)dx+

∫
E2

L
(ρ− − µ−) (5.12)
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Indeed, thanks to the periodicity with respect to x2, we first have:

∫

∂x2(ρ
+ − µ+)(ρ+ − µ+)dx =

∫
1

2
∂x2(ρ

+ − µ+)2dx = 0

Similarly we have: ∫

∂x2(ρ
− − µ−)(ρ− − µ−)dx = 0

In the same fashion, with Green’s Formula, and using divE⊥ = 0, we have:

∫

E⊥.∇x(ρ− µ)(ρ− µ)dx =
1

2

∫

E⊥.∇x(ρ− µ)2dx

=
1

2

∫

div(E⊥(ρ− µ)2)dx

=
1

2

(∫

x1=0
E⊥(ρ− µ)2.(−e1)dx2 +

∫

x1=1
E⊥(ρ− µ)2.e1dx2

)

= 0

since E2 = −∂x2V = 0 on x1 = 0, L.
Now, by Lemma 5.1 we get:

d

dt
‖ρ− µ‖2L2 =

∫

−E2

L
(ρ+ − µ+)dx+

∫
E2

L
(ρ− − µ−)dx

= −2

∫
E2

L

(
ρ+ − µ+

)
dx

(

= 2

∫
E2

L
(ρ− − µ−)

)

We have:

−
∫

E2

(
ρ+ − µ+

)
dx = −

∫

V ∂x2

(
ρ+ − µ+

)
dx+

∫

div(V
(
ρ+ − µ+

)
e2)dx

︸ ︷︷ ︸

=0

=
1

T+

∫

−V

(

∂t(ρ
+ − µ+) +E⊥.∇x(ρ

+ − µ+) +
E2

L

)

dx

=
1

T+

∫

V
(

−∂t(ρ
+ + ρ− − µ+ − µ−) + E⊥.∇x(ρ

+ + ρ− − µ+ − µ−)
)

dx

+
1

T+

∫

−T−V ∂x2(ρ
− − µ−)dx

=
1

T+

∫

V
(

∂t∆V −E⊥.∇x∆V
)

dx+
T−

T+

∫

E2(ρ
− − µ−)dx

where we have plugged in the equation satisfied by (ρ+ − µ+), by (ρ− − µ−), and also
plugged in the Poisson equation.

Finally we have:

(

1− T−

T+

)
d

dt
‖ρ− µ‖2L2 =

2

LT+

∫

V
(

∂t∆V − E⊥.∇x∆V
)

dx

So that:

d

dt
‖ρ− µ‖2L2 =

2

L(T+ − T−)

∫

V
(

∂t∆V − E⊥.∇x∆V
)

dx
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To conclude the proof, we observe, using the Dirichlet boundary conditions and the
periodicity:

∫

V ∂t∆V dx = − d

dt

1

2

(∫

|∇V |2dx
)

(5.13)

and
∫

V E⊥.∇∆V dx =

∫

V div(E⊥∆V )dx

= −
∫

∇V.E⊥∆V dx

︸ ︷︷ ︸

=0

+

∫

div(V E⊥∆V )dx

︸ ︷︷ ︸

=0

The first term is equal to zero since E.E⊥ = 0, the second one thanks to the boundary
condition on x1 = 0, L and to the periodicity with respect to x2.

As a result we have proved that

d

dt
E(t) = 0

Actually the computations we have made are rigorously valid only for smooth solutions
to (3.4). Nevertheless, these can be justified by smoothing the initial data, and then passing
to the weak limit, which entails (5.2).

Remark 5.4. We observe that we have also proved that:

d

dt
‖ρ+(t)− µ+‖2L2 =

d

dt
‖ρ−(t)− µ−‖2L2 (5.14)

which yields:

‖ρ+(t)− µ+‖2L2 − ‖ρ−(t)− µ−‖2L2 = ‖ρ+(0)− µ+‖2L2 − ‖ρ−(0)− µ−‖2L2 . (5.15)

Remark 5.5. Let us add that the explicit form of the equilibria is crucial in the proof of
the theorem. It would not work similarly if we had taken an equilibrium of the form:

µ(x1) =

(
Φ(x1)

1− Φ(x1)

)

with Φ a smooth function. In this case it should be maybe more relevant to use the general
Lyapunov functionals method of Arnold [2].

Likewise one can notice that the proof would have not worked if we had chosen any
other boundary condition than Dirichlet.

6 On nonlinear instability

What we intend to show now is a property of nonlinear instability in the “bad curvature”
region when the physical parameters satisfy:

T+ − T−

L
<

4

5π2
.

This can be interpreted as a bad confinement property. We first recall that the equi-
librium in this case is the following:

24



µbad(x1) =

(
1− x1

L
x1
L

)

Thanks to the existence of an eigenvalue with maximal positive real part for the lin-
earized operator around µbad, we can prove a nonlinear instability result. Indeed, using the
method introduced by Grenier [11], we are able to pass from the linear spectral instability
to the nonlinear instability in the L2 norm. Grenier’s method was originally used to prove
instability in the L2 velocity norm for Euler ; we show here that this technique can also
be adapted to show instability in the L2 vorticity norm.

The drawback of this method is that it requires high regularity on an eigenfunction as-
sociated to the dominant eigenvalue, which could be difficult to check in more complicated
cases. In our case, we were able to prove such a smoothness in Lemma 4.1.

For the sake of readability we will write µ instead of µbad since there is no risk of
confusion.

Theorem 6.1. There exist constants δ0, η1, η2 > 0 such that for any 0 < δ < δ0 and any
s ≥ 0 there exists a solution (ρ,E) to (3.4) with ‖ρ(0) − µ‖Hs ≤ δ but such that:

‖ρ(tδ)− µ‖L2 ≥ η1 (6.1)

and:
‖E(tδ)‖L2 ≥ η2 (6.2)

with tδ = O(| log δ|).
In particular, µ is unstable with respect to the L2 norm.

Remark 6.1. This instability result is complementary to the stability result proved in
Corollary 5.1, since they involve the same L2 norms.

Remark 6.2. This instability result can also be obtained by techniques similar to those
used by Bardos, Guo and Strauss in [3] for the 2D incompressible Euler system, which
consist in proving that the solution ρ remains ”close” in some norm to a growing mode
associated to the maximal growth rate of the linearized operator M .

Using some bootstrap argument introduced by Bardos, Guo and Strauss [3], and a idea
of Lin [18] consisting in:

• estimating ‖E(tδ)‖L2 with Duhamel’s formula

• then studying the semi-group e−tM (where M is the linearized operator) on H−1,

we can also prove the exponential growth of the L2 norm of the electric field.
We refer to the paper of Lin [19] which could be adapted to our case with some minor

modifications.
Here we will provide an alternative proof by using Grenier’s method (which consists in

proving that the solution ρ remains ”close” in some norm to the growing mode plus some
high order correction) to prove (6.1) and finally by using the energy of Theorem 5.1 to
prove (6.2).

Proof. We begin with some preliminaries on the linearized operator. Using the same
notations as in paragraph 4.2, we consider M the linearized operator around µ on

Y = {y1, y2 ∈ Hs([0, L] ×R/Z)2,

∫

(y1 + y2)dx = 0}, for s ≥ 0.
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For s = 0, by Corollary 4.1, we know the existence of an eigenfunction R associated
to an eigenvalue λ with maximal real part Reλ. In addition, by Lemma 4.1, R belongs to
any Hs, s ≥ 0. For the sake of simplicity we will assume that R is real and associated to
the eigenvalue Reλ. In the general case, since the linearized operator is real, the conjugate
of λ is also an eigenvalue so that one can consider by linearity real-valued growing modes
and the following of the proof remains the same.

We recall also that by Corollary 4.1, for any γ > Reλ, there is a constant C(γ, s) such
that for all s ≥ 0:

‖e−tM‖Hs→Hs ≤ C(γ, s)etγ (6.3)

Basically the idea of Grenier is to construct a high order approximation of the nonlin-
ear equation, that is a more precise approximation than the “usual” linearized equation.
Indeed instead of showing that f −µ is close to a well chosen eigenfunction, we show that
it is close to the high order asymptotic expansion:

ρ(N)
app = δu1 +

N∑

i=2

δiui (6.4)

where u1 = ReReλt . Note than for any s > 0, we have:

‖u1‖Hs ≤ CeReλt.

The approximated density ρapp is constructed in order to have the following high order
approximation:

∂tρapp +Mρapp + E⊥
app.∇xρapp = Rapp (6.5)

where Eapp = ∇∆−1(ρ1app + ρ2app) and Rapp is a remainder satisfying the estimate:

‖Rapp‖HL−2N−1 ≤ CδN+1 exp ((N + 1)Reλt).

Let N ∈ N
∗ to be chosen later and take any S > 0 such that S > 2N + 1 . We choose

also θ < 1 (to be fixed later) such that 1
2 ≥ θ

1−θ and define tδ such that θ = δ exp (Reλtδ).

Now we can construct the uj =

(
u+j
u−j

)

by recursion; we will ensure that for all 1 ≤ j ≤

N ,
∫
(u+j + u−j )dx = 0 and

‖uj‖HS−j ≤ C exp (j Reλt).

Suppose we have uj for j ≤ k. Then we define uk+1 as the solution of the linear
equation:

∂tuk+1 +Muk+1 +

k∑

j=1

E⊥
j .∇xuk+1−j +E⊥

k+1−j .∇xuj = 0 (6.6)

with Ej = ∇∆−1(u+j + u−j ) and uk+1(0, x) = 0 as initial condition. Intuitively, uk+1 is
chosen in order to counterbalance the non-linear interaction between the previous terms
of the expansion.
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Thanks to Corollary 4.1 with γ ∈] Reλ, 2Reλ[, we get the following estimate:

‖uk+1‖HS−(k+1) ≤
∫ t

0
‖eM(t−s)(

k∑

j=1

E⊥
j .∇xuk+1−j + E⊥

k+1−j.∇xuj)‖HL−(k+1)ds

≤ C

∫ t

0
eγ(t−s)(

k∑

j=1

‖E⊥
j ‖HS−(k+1)‖uk+1−j‖HS−k + ‖E⊥

k+1−j‖HS−(k+1)‖uj‖HS−k)ds

≤ C

∫ t

0
eγ(t−s) exp ((k + 1)Re λs)ds

≤ C exp ((k + 1)Reλt)

Note also that since d
dt

∫
(u+k+1 + u−k+1)dx = 0, we clearly have

∫

(u+k+1 + u−k+1)dx = 0.

Now we can see that:

∂tρapp +Mρapp + E⊥
app.∇xρapp = Rapp (6.7)

with Rapp =
∑

2N≥j+j′>N δj+j′E⊥
j .∇xuj′. Then, noticing that for all t ≤ tδ:

δ exp (Reλt) ≤ θ < 1,

the following estimate follows:

‖Rapp‖HS−2N−1 ≤ CNδN+1 exp ((N + 1)Reλt) (6.8)

where CN is a constant depending only on N .
Now we consider the solution ρ to (3.4) such that ρ(0) − µ = ρapp(0); the equation

satisfied by w = ρ− µ− ρapp is the following:

∂tw −
(
T+∂x2w

+

T−∂x2w
−

)

+E⊥
w .∇xw + E⊥

app.∇xw + E⊥
w .∇xρapp = −E⊥

w .∇xµ−Rapp (6.9)

with Ew = ∇∆−1(w+ − w−).
Then we want to estimate ‖w‖L2 by using some modulated energy inequality. To this

end, we multiply by w and integrate with respect to x:

d

dt
‖w‖2L2 ≤

∫

|E⊥
w .∇xρappw|dx+

∫

|E⊥
w .∇xµw|dx+ ‖Rapp‖L2‖w‖L2

≤ (‖∇xρapp‖L∞ + ‖∇xµ‖L∞)‖E⊥
w ‖L2‖w‖L2 +

1

2
‖w‖2L2 +

1

2
‖Rapp‖2L2

≤ C
(
(1 + ‖∇xρapp‖L∞)‖w‖2L2 + ‖Rapp‖2L2

)

≤ C
(

(1 + ‖∇xρapp‖L∞)‖w‖2L2 + CNδ2(N+1) exp (2(N + 1)Re λt)
)

But for α > 0 such that 2 + α < S − N and for t ≤ tδ, we can control the Lipschitz

27



norm of ρapp:

‖∇xρapp‖L∞ ≤ ‖ρapp‖H2+α

≤
N∑

i=1

δi‖ui‖H2+α ≤
N∑

i=1

δi‖ui‖HS−i

≤
N∑

i=1

δi exp (iRe λt)

≤
N∑

i=1

θi ≤ θ

1− θ
≤ 1

2

Now choose N such that:

N + 1 >
3C

4Reλ
(6.10)

By Gronwall’s lemma we consequently get:

‖ρ− µ− ρapp‖L2 = ‖w‖L2 ≤ CNδN+1 exp ((N + 1)Re λt) ≤ CNθN+1 (6.11)

On the other hand we have a bound from below for the L2 norm of ρapp, for t = tδ:

‖ρapp‖L2 ≥ δ‖u1‖L2 −
N∑

i=2

δi‖ui‖L2

≥ δ exp (Reλtδ)−
N∑

i=2

δi exp (iReλtδ)

= θ −
N∑

i=2

θi

≥ 1

2
θ

Finally we have, for t = tδ:

‖ρ− µ‖L2 ≥ ‖ρapp‖L2 − ‖ρ− µ− ρapp‖L2

≥ 1

2
θ − CNδN+1 exp ((N + 1)Reλt) ≥ 1

2
θ − CNθN+1

≥ 1

4
θ := η1 > 0

if θ is chosen small enough with respect to N . This proves the expected instability result
(6.1).

Now, in order to prove the exponential growth of the electric field, we use the conser-
vation of the energy proved in Theorem 5.1. We have for any t ≥ 0:

‖ρ(t)− µ‖2L2 −
1

L(T+ − T−)

∫

|∇V (t)|2dx ≤ ‖ρ(0) − µ‖2L2 −
1

L(T+ − T−)

∫

|∇V (0)|2dx
(6.12)

which implies that:

η21 ≤ ‖ρ(tδ)− µ‖2L2 ≤ 1

L(T+ − T−)

∫

|∇V (tδ)|2dx+ ‖ρ(0) − µ‖2L2

≤ 1

L(T+ − T−)

∫

|∇V (tδ)|2dx+ δ2
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We can consider that δ < δ0 < η1/2, so that:
∫

|∇V (tδ)|2dx ≥ L(T+ − T−)(η21 − δ20) := η22 (6.13)

This proves (6.2).

By Remark 5.4 we can be a little more precise on the growth of the densities.

Remark 6.3. With the same notations as in the previous theorem, there exists η3 > 0
such that:

‖ρ+(tδ)− µ+‖L2 ≥ η3 (6.14)

and
‖ρ−(tδ)− µ−‖L2 ≥ η3 (6.15)

which means that both the hot and the cold plasma are unstable.

Proof. According to Remark 5.4, we have

‖ρ−(tδ)− µ−‖L2 − ‖ρ+(tδ)− µ+‖L2 = ‖ρ−(0) − µ−‖L2 − ‖ρ+(0) − µ+‖L2 (6.16)

which implies that
∣
∣‖ρ−(tδ)− µ−‖L2 − ‖ρ+(tδ)− µ+‖L2

∣
∣ ≤ δ0

By Theorem 6.1, we have

‖ρ−(tδ)− µ−‖L2 + ‖ρ+(tδ)− µ+‖L2 ≥ η1

Assuming as in the previous proof that δ0 ≤ ǫ1/2, this clearly implies that

‖ρ−(tδ)− µ−‖L2 , ‖ρ+(tδ)− µ+‖L2 ≥ η1/4 := η3,

which proves our claim.

7 Conclusion

We have finally managed to provide a mathematical explanation of stability in the “good
curvature” region and instability in the “bad curvature” region with our simplified nonlin-
ear model. In our analysis we have pointed out that large temperature gradients brought
nonlinear stability even in the bad curvature region. In other terms, if there is enough
heating, there is good confinement: this is the H-mode.

A first natural extension to this work would be to generalize the stability/instability
result to the kinetic model (3.1):







∂tf − 1
2 |v|2∂x2f + E⊥.∇xf = 0

E = −∇xV

−∆xV =

∫

fdv − 1

This shall be the object of a future work. Another important issue is to understand the
influence of the gyroaverage operator, that we have neglected in this work.

In ”real” tokamaks, the next step towards confinement consists in considering a mag-
netic field with a variable direction, i.e. B = B0eϕ +B1eθ. At leading order, particles still
follow the magnetic field lines: consequently, with such a twisting field, particles from the
“bad curvature” region travel every now and then to the “good curvature” region. We
accordingly expect overall confinement for the plasma.
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Twisting B

A very challenging and interesting problem would be to prove overall confinement with
such a twisting magnetic field. In this case, the accurate parameter to consider is the so-
called safety factor, which stands for the number of times the magnetic field lines twist
around the torus the long way for each time they twist around the short way. In “real”
tokamaks, it has to be chosen with precaution in order to get good confinement properties
(see [27]). But it seems to be much more complicated, since one has to deal with many
drifts due to the geometry of the magnetic field.

Finally let us conclude by mentioning that the analysis of confinement provided in this
paper is very naive since it is now well known that there is a loss of confinement in
tokamak plasmas, referred to as anomalous transport. Many models have been proposed
and intensively studied to justify these phenomena: it would be very interesting to study
some of them from the mathematical point of view.
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