Local Optima Networks of NK Landscapes with and without Neutrality

Gabriela Ochoa^a, Marco Tomassini^b, Sebastien. Verel^c

 a. Automated Scheduling, Optimisation and Planning, School of Computer Science, University of Nottingham, UK
 b. Institut de systèmes d'information, HEC University of Lausanne, Switzerland
 c. Laboratoire I3S, CNRS-University of Nice, Sophia-Antipolis, France

20 October 2009

Overview Complex networks Fitness landscapes

Overview and Motivation

- Bring the tools of *complex networks* analysis to the study the structure of combinatorial fitness landscapes
- Goals : Understand problem difficulty, design effective heuristic search algorithms
- Methodology : Extract a network that represents the landscape (Inspiration from energy landscapes (Doye, 2002)¹)
 - Vertices : local optima
 - Edges : a notion of adjacency between basins
- Conduct a network analysis
- Relate (exploit ?) network features to search algorithm design

1. J. P. K. Doye, The network topology of a potential energy landscape : a static scale-free network., *Phys. Rev. Lett.*, 88 :238701, 2002.

Introduction

Local Optima Networks Experiments and results Visualisation Conclusions and future work Overview Complex networks Fitness landscapes

Small – world networks (Watts and Strogatz, 1998)

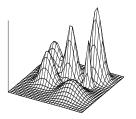
- Neither ordered nor completely random
- Nodes highly clustered yet path length is small
- Network topological measures :
 - C : clustering coefficient, measure of local density
 - *I* : shortest path length global measure of separation

Scale - free networks (Barabasi and Albert, 1999)

- The distribution of the number of neighbours (the degree distribution) is *right skewed* with a heavy tail
- Most of the nodes have less-than-average degree, whilst a small fraction of hubs have a large number of connections
- Described mathematically by a power-law

Introduction

Local Optima Networks Experiments and results Visualisation Conclusions and future work Overview Complex networks Fitness landscapes



- Visual metaphor
- Tool for black-box optimisation analysis

Fitness landscape $(\mathcal{S}, \mathcal{V}, f)$:

- \mathcal{S} : set of admissible solutions,
- $\bullet~ \mathcal{V}: \mathcal{S} \rightarrow 2^{\mathcal{S}}:$ neighborhood function,
- $f: \mathcal{S} \to \mathbb{R}$: fitness function.

Our study :

- $S: \{0,1\}^N$
- $\mathcal{V}(x) = \{y \in \mathcal{S} \mid d_{hamming}(y, x) \leq 1\}$
- f(x) = NK fitness function

Introduction

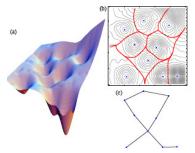
Local Optima Networks Experiments and results Visualisation Conclusions and future work Overview Complex networks Fitness landscapes

NK fitness landscapes (Kauffman, 1993)

- Binary strings of length N
- K from 0 to N 1, NK landscapes can be tuned from smooth to rugged (easy to difficult respectively)
- K = 0 no correlations, f is an additive function, and there is a single maximum
- K = N 1 landscape completely random, the expected number of local optima is $\frac{2^N}{N+1}$
- Intermediate values of K interpolate between these two extreme cases and have a variable degree of epistasis (i.e. gene interaction) → ruggedness

Antecedents Definitions

Energy surface and inherent networks (Doye, 2002)



Inherent network :

- Nodes : energy minima
- Edges : two nodes are connected if the energy barrier separating them is sufficiently low (transition state)

- a Model of 2D energy surface
- Contour plot, partition of the configuration space into basins of attraction surrounding minima
- c landscape as a network

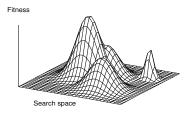
Antecedents Definitions

Local optima

Local optima s^* :

no neighbor solution with higher fitness value

$\forall s \in \mathcal{V}(s^*), f(s) < f(s^*)$



Antecedents Definitions

Basin of attraction

Hill-Climbing (HC) algorithm

Choose initial solution $s \in S$

repeat

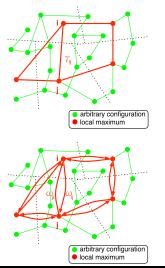
choose
$$s' \in \mathcal{V}(s)$$
 such that $f(s') = max_{x \in \mathcal{V}(s)} f(x)$
if $f(s) < f(s')$ then
 $s \leftarrow s'$
end if
until s is a Local optimum

Basin of attraction of s^* :

$$\{s \in \mathcal{S} \mid HillClimbing(s) = s^*\}.$$

Antecedents Definitions

Local optima network



Nodes : set of local optima \mathcal{S}^\ast Edges :notion of connectivity between basins

- e_{ij} between i and j if there is at least a pair of neighbours s_i and $s_j \in \mathcal{V}(s_i)$ such that $s_i \in b_i$ and $s_j \in b_j$ (GECCO 2008)
- weights w_{ij} attached to edges \rightarrow transition probabilities between basins (ALIFE 2008, Phys. Rev. E 2008)

Antecedents Definitions

Weight of edges

- For each pair of solutions s and s', p(s → s') = P(s' = op(s)) probability to pass from s to s'
 if s' ∈ V(s), p(s → s') = 1/N
 - if $s^{'}
 ot\in \mathcal{V}(s)$, $p(s
 ightarrow s^{'}) = 0$

Antecedents Definitions

Weight of edges

- For each pair of solutions s and s', p(s → s') = P(s' = op(s)) probability to pass from s to s'
 if s' ∈ V(s), p(s → s') = 1/N
 if s' ∉ V(s), p(s → s') = 0
- Probability that a configuration $s \in S$ has a neighbor in a basin b_j

$$p(s
ightarrow b_{j}) = \sum_{s^{'} \in b_{j}} p(s
ightarrow s^{'})$$

Antecedents Definitions

Weight of edges

- For each pair of solutions s and s', p(s → s') = P(s' = op(s)) probability to pass from s to s'
 if s' ∈ V(s), p(s → s') = 1/N
 if s' ∉ V(s), p(s → s') = 0
- Probability that a configuration $s \in S$ has a neighbor in a basin b_j

$$p(s
ightarrow b_{j}) = \sum_{s^{'} \in b_{j}} p(s
ightarrow s^{'})$$

• w_{ij} : Total probability of going from basin b_i to basin b_j is the average over all $s \in b_i$ of the transition prob. to $s' \in b_j$:

$$p(b_i o b_j) = rac{1}{\sharp b_i} \sum_{s \in b_i} p(s o b_j)$$

General network statistics Basins of attraction

Experimental setup

- Extracted and analysed networks for N = 14, 16 and 18, K = 2, 4, ..., N 2, N 1 (30 random instances for each case)
- Network topological measurements
 - Number of nodes and edges
 - Clustering coefficient
 - Shortest path length and shortest path to the global optimum
 - Weight distribution
- Basin measurements
 - Basins sizes and fitness of optima
 - Visualisation

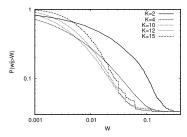
General network statistics Basins of attraction

K	# nodes	‡ edges	Clustering	Path length
2	33	516	0.96	56
6	460	41,791	0.79	170
8	890	93, 384	0.65	194
10	1,470	162, 139	0.53	206
14	3,264	290, 732	0.38	203
15	3,868	321,203	0.35	200

- \ddagger nodes and \ddagger edges : increase exponentially with K
- Clustering : decreases with *K*, transition between a given pair of neighboring basins is less likely to occur with high *K*
- Path length : increases steadily with *K*, distance between a given pair of nodes is longer with high *K*

General network statistics Basins of attraction

Outgoing weight distribution

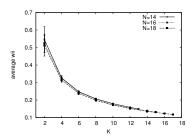


Cumulative distribution of the network weights w_{ij} for outgoing edges with $j \neq i$ in log-log scale, N = 16

- Weights (transition prob. to neighbouring basins) are small
- The distributions are not uniform or Poissonian, nor power laws
- For high K the decay is faster
- Low K has longer tails (on average the transition probabilities are higher for low K)

General network statistics Basins of attraction

Average weights to remain in the same basin

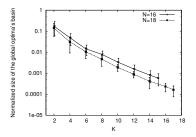


Average weight w_{ii} according to the parameter N and K

- Weights to remains in the same basin w_{ii}, are large compare to w_{ij} with i ≠ j
- *w_{ii}* are higher for low *K* (50% for *K* = 2, above 12% for high *K*),
- It seems easier to leave the basin for high K (high exploration), however, number the of local optima increases fast with K

General network statistics Basins of attraction

Global optimum basin size

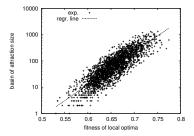


Size of the basin corresponding to the global maximum for each K

- Trend : the basin shrinks very quickly with increasing K.
- For higher *K*, it is more difficult for a search algorithm to locate the basin of attraction of the global optimum

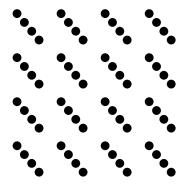
General network statistics Basins of attraction

Fitness vs. basin size

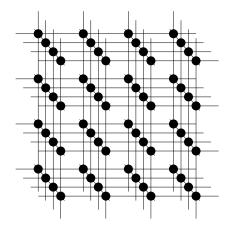


Fitness of local optima vs. their corresponding basins sizes

- Trend : clear positive correlation between the fitness values of maxima and their basins' sizes
- On average, the global optimum seems easier to find than another local optimum, however, the number of local optima increases exponentially with increasing K

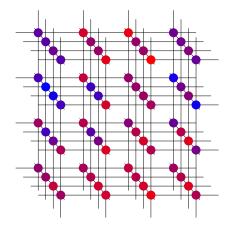


- Bit strings of length N = 6
- $2^6 = 64$ solutions
- one point = one solution

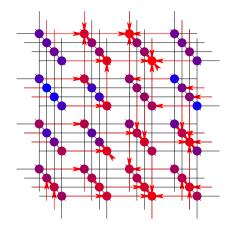


- Bit strings of length N = 6
- Neighborhood size = 6
- Line between points = solutions are neighbors

NK landscape with N = 6 and K = 2



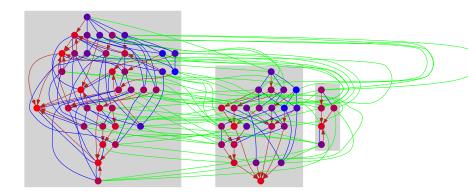
Color represent fitness value
high fitness
low fitness



- Color represent fitness value
 high fitness
 - Iow fitness
- point towards the solution with highest fitness in the neighborhood



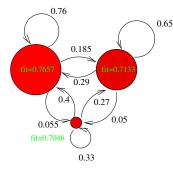
- Each color correspond to one basin of attraction
- Basins of attraction are interlinked and overlapped
- Basins have no "interior"



- Basins of attraction are interlinked and overlapped !
- Most neighbours of a given solution are outside its basin

NK landscape with N = 6 and K = 2

Local optima networks



Nodes : local optima

Edges : transition probabilities

- G. Ochoa, M. Tomassini, S. Verel, C. Darabos (2008) A Study of NK Landscapes' Basins and Local Optima GECCO 2008, pages 555-562 (best paper nomination) S. Verel, G. Ochoa, M. Tomassini (2008) The Connectivity of NK Landscapes' Basins : A Network Analysis, Artificial Life XI, MIT Press, Cambridge, MA. M. Tomassini, S. Verel, G. Ochoa (2008) Complex Network analysis of Combinatorial Spaces : the NK Landscape Case, Physical Review E, Vol.78, No.6. S. Verel, G. Ochoa, M. Tomassini (under review) Local
 - Optima Networks of NK landscapes with Neutrality

Summary and conclusions

- Local optima networks : a new model for landscape analysis
- New findings about basin's structure of NK landscapes
- Network features are related to previously observed search difficulty (with increasing *K*)

Future work

- Adapt the notion of optima network to landscapes with neutrality (done, under review)
- Design sampling methodologies to extract representative networks (test on realistic combinatorial problems)
- Ultimate research question : Given an optima network with certain properties, what is the best algorithm to search for nodes with high-fitness in this network ?

- J. P. K. Doye, The network topology of a potential energy landscape : a static scale-free network., *Phys. Rev. Lett.*, 88 :238701, 2002.
- J. P. K. Doye and C. P. Massen. Characterizing the network topology of the energy landscapes of atomic clusters. *J. Chem. Phys.*, 122 :084105, 2005.
- S. A. Kauffman. *The Origins of Order*. Oxford University Press, New York, 1993.
- Gabriela Ochoa, Marco Tomassini, Sébastien Verel, and Christian Darabos. A Study of NK Landscapes' Basins and Local Optima Networks. *Proceedings of the 10th annual conference on Genetic and evolutionary computation Genetic And Evolutionary Computation Conference*, pages 555–562, ACM New York, NY, USA.

best paper nomination.

- Marco Tomassini, Sébastien Verel, and Gabriela Ochoa. Complex-network analysis of combinatorial spaces : The NK landscape case. *Physical Review E*, 78(6) : 066114.
- Sébastien Verel, Gabriela Ochoa, and Marco Tomassini. The Connectivity of NK Landscapes' Basins : A Network Analysis. In Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems Artificial Life XI, pages 648–655, 2008. MIT Press,