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Introduction

Stochastic processes with path-dependent / non-Markovian dynamics used in various fields such as physics and mathematical finance present challenges for computation, simulation and estimation. In some applications where one is interested in the marginal distributions of such processes, such as option pricing or Monte Carlo simulation of densities, the complexity of the model can be greatly reduced by considering a low-dimensional Markovian model with the same marginal distributions. Given a process ξ, a Markov process X is said to mimick ξ on the time interval [0, T ], T > 0, if ξ and X have the same marginal distributions:

∀t ∈ [0, T ],

ξ t d = X t . (1) 
X is called a Markovian projection of ξ. The construction of Markovian projections was first suggested by Brémaud [START_REF] Brémaud | Point processes and queues[END_REF] in the context of queues. Construction of mimicking processes of 'Markovian' type has been explored for Ito processes [START_REF] Gyöngy | Mimicking the one-dimensional marginal distributions of processes having an Itô differential[END_REF] and marked point processes [START_REF] Cont | Recovering portfolio default intensities implied by CDO tranches[END_REF]. A notable application is the derivation of forward equations for option pricing [START_REF] Bentata | Forward equations for option prices in semimartingales[END_REF][START_REF] Dupire | Pricing with a smile[END_REF]. We proposer in this paper a systematic construction of such Markovian projections for (possibly discontinuous) semimartingales. Given a semimartingale ξ, we give conditions under which there exists a Markov process X whose marginal distributions are identical to those of ξ, and give an explicit construction of the Markov process X as the solution of a martingale problem for an integrodifferential operator [START_REF] Bass | Stochastic differential equations with jumps[END_REF][START_REF] Komatsu | Markov processes associated with certain integro-differential operators[END_REF][START_REF] Stroock | Diffusion processes associated with Lévy generators[END_REF][START_REF]Markov Processes from Ito's Perspective[END_REF].

In the martingale case, the Markovian projection problem is related to the problem of constructing martingales with a given flow of marginals, which dates back to Kellerer [START_REF] Kellerer | Markov-Komposition und eine Anwendung auf Martingale[END_REF] and has been recently explored by Yor and coauthors [START_REF] Baker | A brownian sheet martingale with the same marginals as the arithmetic average of geometric brownian motion[END_REF][START_REF] Hirsch | Unifying constructions of martingales associated with processes increasing in the convex order, via Lévy and Sato sheets[END_REF][START_REF] Madan | Making Markov martingales meet marginals[END_REF] using a variety of techniques. The construction proposed in this paper is different from the does not rely on the martingale property of ξ. We shall see nevertheless that our construction preserves the (local) martingale property. Also, whereas the approaches described in [START_REF] Baker | A brownian sheet martingale with the same marginals as the arithmetic average of geometric brownian motion[END_REF][START_REF] Hirsch | Unifying constructions of martingales associated with processes increasing in the convex order, via Lévy and Sato sheets[END_REF][START_REF] Madan | Making Markov martingales meet marginals[END_REF] use as a starting point the marginal distributions of ξ, our construction describes the mimicking Markov process X in terms of the local characteristics [START_REF] Jacod | Limit theorems for stochastic processes[END_REF] of the semimartingale ξ. Our construction thus applies more readily to solutions of stochastic differential equations where the local characteristics are known but not the marginal distributions.

Section 2 presents a Markovian projection result for a R d -valued semimartingale given by its local characteristics. We use these results in section 2.4 to derive a partial integro-differential equation for the one-dimensional distributions of a discontinuous semimartingale, thus extending the Kolmogorov forward equation to a non-Markovian setting. Section 3 shows how this result may be applied to processes whose jumps are represented as the integral of a predictable jump amplitude with respect to a Poisson random measure, a representation often used in stochastic differential equations with jumps. In Section 4 we show that our construction applied to a large class of semimartingales, including smooth functions of a Markov process (Section 4.1), and time-changed Lévy processes (Section 4.2).

A mimicking theorem for discontinuous semimartingales

Consider, on a filtered probability space (Ω, F , (F t ) t≥0 , P), an Ito semimartingale, on the time interval [0, T ], T > 0, given by the decomposition

ξ t = ξ 0 + t 0 β s ds + t 0 δ s dW s + t 0 y ≤1
y M (ds dy)

+ t 0 y >1
y M (ds dy),

(2) where ξ 0 is in R d , W is a standard R n -valued Wiener process, M is an integervalued random measure on [0, T ] × R d with compensator measure µ and M = M -µ is the compensated measure [16, Ch.II,Sec.1], β (resp. δ) is an adapted process with values in R d (resp. M d×n (R)).

Our goal is to construct a Markov process, on some filtered probability space (Ω 0 , B, (B t ) t≥0 , Q) such that X and ξ have the same marginal distributions on [0, T ], i.e. the law of X t under Q coincides with the law of ξ t under P. We will construct X as the solution to a martingale problem [START_REF] Ethier | Markov Processes: Characterization And Convergence[END_REF][START_REF] Stroock | Diffusion processes associated with Lévy generators[END_REF][START_REF] Stroock | Multidimensional diffusion processes[END_REF][START_REF] Mikulevičius | On the martingale problem associated with non-degenerate lévy operators[END_REF] on the canonical space Ω 0 = D([0, T ], R d ).

Martingale problems for integro-differential operators

Let Ω 0 = D([0, T ], R d ) be the Skorokhod space of right-continuous functions with left limits. Denote by X t (ω) = ω(t) the canonical process on Ω 0 , B 0 t its filtration and B t ≡ B 0 t+ . Our goal is to construct a probability measure Q on Ω 0 such that X is a Markov process under Q and ξ and X have the same one-dimensional distributions:

∀t ∈ [0, T ], ξ t d = X t .
In order to do this, we shall characterize Q as the solution of a martingale problem for an appropriately chosen integro-differential operator L.

Let C 0 b (R d ) denote the set of bounded and continuous functions on R d and

C ∞ 0 (R d ) the set of infinitely differentiable functions with compact support on R d . Consider a time-dependent integro-differential operator L = (L t ) t∈[0,T ] defined, for f ∈ C ∞ 0 (R d ), by L t f (x) = b(t, x).∇f (x) + d i,j=1 a ij (t, x) 2 
∂ 2 f ∂x i ∂x j (x) + R d [f (x + y) -f (x) -1 { y ≤1} y.∇f (x)]n(t, dy, x), (3) 
where a :

[0, T ] × R d → M d×d (R), b : [0, T ] × R d → R d are measurable functions and, for each (n(t, . , x), (t, x) ∈ [0, T ] × R d ) is a measurable family of positive measures on R d -{0}. For x 0 in R d , we recall that a probability measure Q x0 on (Ω 0 , B T ) is a solution to the martingale problem for (L, C ∞ 0 (R d )) on [0, T ] if Q (X 0 = x 0 ) = 1 and for any f ∈ C ∞ 0 (R d ), the process f (X t ) -f (x 0 ) - t 0 L s f (X s ) ds is a (Q x0 , (B t ) t≥0 )-martingale on [0, T ].
Existence, uniqueness and regularity of solutions to martingale problems for integro-differential operators have been studied under various conditions on the coefficients [START_REF] Stroock | Multidimensional diffusion processes[END_REF][START_REF] Jacod | Calcul stochastique et problèmes de martingales[END_REF][START_REF] Ethier | Markov Processes: Characterization And Convergence[END_REF][START_REF] Komatsu | Markov processes associated with certain integro-differential operators[END_REF][START_REF] Mikulevičius | On the martingale problem associated with non-degenerate lévy operators[END_REF].

We make the following assumptions on the coefficients:

Assumption 1 (Boundedness of coefficients). There exists

K 1 > 0 ∀(t, z) ∈ [0, T ] × R d b(t, z) + a(t, z) + 1 ∧ y 2 n(t, dy, z) ≤ K 1 and lim R→∞ T 0 sup z∈R d n (t, { y ≥ R}, z) dt = 0.
where . denotes the Euclidean norm.

Assumption 2 (Continuity). For all t ∈ [0, T ] and of positive measures such that

B ∈ B(R d -{0}), b(t, .), a(t, .
∀(t, z) ∈ [0, T ] × R d n(t, dy, z) = n β (t, dy, z) + C y d+β dy, 1 ∧ y β n β (t, dy, z) ≤ K 2 , lim ǫ→0 sup z∈R d y ≤ǫ y β n β (t, dy, z) = 0.
Mikulevicius and Pragarauskas [START_REF] Mikulevičius | On the martingale problem associated with non-degenerate lévy operators[END_REF] show that if L satisfies Assumptions 1-3 (in which corresponds to a "non-degenerate Lévy operator" in the terminology of [START_REF] Mikulevičius | On the martingale problem associated with non-degenerate lévy operators[END_REF]) the martingale problem for (L, C ∞ 0 (R d ) ) has a unique solution for every initial condition x 0 ∈ R d : Proposition 1. [21, Theorem 5] Under Assumptions 1, 2 and 3 the martingale problem for

((L t ) t∈[0,T ] , C ∞ 0 (R d )) on [0, T ] is well-posed : for any x 0 ∈ R d ,there exists a unique probability measure Q x0 on (D([0, T ], R d ), F T ) such that Q x0 (X 0 = x 0 ) = 1 and for any f ∈ C ∞ 0 (R d ) f (X t ) -f (x 0 ) - t 0 L s f (X s ) ds is a Q x0 -martingale. Under Q x0 , (X t
) is a Markov process and the evolution operator

(Q t ) t∈[0,T ] defined by ∀f ∈ C 0 b (R d ) Q t f (x 0 ) = E Qx 0 [f (X t )] (4) 
is strongly continuous on [0, T [.

A uniqueness result for the Kolmogorov forward equation

An important property of continuous-time Markov processes is their link with partial (integro-)differential equation (PIDE) which allows to use analytical tools for studying their probabilistic properties. In particular the transition density of a Markov process solves the forward Kolmogorov equation (or Fokker-Planck equation) [START_REF]Markov Processes from Ito's Perspective[END_REF]. The following result shows that under Assumptions 1, 2 and 3 the forward equation corresponding to L has a unique solution:

Theorem 1 (Kolmogorov Forward equation). Under Assumptions 1, 2 and 3, each x 0 in R d , there exists a unique family (p t (x 0 , dy), t ∈ [0, T ]) of bounded measures on R d such that p 0 (x 0 , .) = ǫ x0 is the point mass at x 0 and

∀g ∈ C ∞ 0 (R d , R), g(y) dp dt (x 0 , dy) = p t (x 0 , dy)L t g(y). (5) 
p t (x 0 , .) is the marginal distribution at time t of the unique solution associated to the martingale problem for (L, C ∞ 0 (R d ) ) starting from x 0 on [0, T ].

Proof. Under Assumptions 1, 2 and 3 Proposition 1 implies that the martingale problem for L on the domain C ∞ 0 (R d ) is well-posed. For any x 0 in R d , denote (X, Q x0 ) the unique solution of the martingale problem for L. Define

∀t ∈ [0, T ] ∀f ∈ C 0 b (R d ) Q t f (x 0 ) = E Qx 0 [f (X t )] . ( 6 
)
Q t is the evolution operator on [0, T ] of X on C 0 b (R d ). (Q t ) t∈[0,T ]
is then strongly continuous on [0, T [. If q t (x 0 , dy) denotes the law of (X t ) under Q x0 , the martingale property shows that q t (x 0 , dy) satisfies the equation [START_REF] Brunick | Matching statistics of an Ito process by a process of diffusion type[END_REF]. Integration of (5) with respect to time yields q t (x 0 , dy)g(y) = g(x 0 ) + t 0 q s (x 0 , dy)L s g(y) ds.

(

) 7 
We have thus constructed one solution q t of (5) with initial condition q 0 (dy) = ǫ x0 . This solution of ( 5) is in particular positive with mass 1.

To show uniqueness of solutions of (5), we will rewrite (5) as the forward Kolmogorov equation associated with a homogeneous operator on space-time domain and use uniqueness results for the corresponding homogeneous equation. Let f ∈ C ∞ 0 (R d ) and γ ∈ C 1 ([0, T ]) and consider the (homogeneous) dependent operator A mapping functions of the form (t, x) ∈ [0, T ] × R d → f (x)γ(t), which will be denoted

C 1 ([0, T ]) ⊗ C ∞ 0 (R d ), into : A(f γ)(t, x) = γ(t)L t f (x) + f (x)γ ′ (t). ( 8 
)
For any

x 0 in R d , if (X, Q x0
) is a solution of the martingale problem L, then the law of η t = (t, X t ) is a solution of the martingale problem for A: for any 

f ∈ C ∞ 0 (R d ) and γ ∈ C([0, T ]), q t (x 0 , dy)f (y)γ(t) = f (x 0 )γ(0) + t 0 q s (x 0 , dy)A(f γ)(s,
A on C 1 ([0, T ]) ⊗ C ∞ 0 (R d ). Define for all t in [0, T ], for all g in C 1 ([0, T ]) ⊗ C ∞ 0 (R d ): Q t g(x 0 ) = R d q t (x 0 , dy)g(t, y) (10) 
One observes that Q t .(x 0 ) corresponds to the extension of Q t defined on the domain

C ∞ 0 (R d ) to the domain C 1 ([0, T ]) ⊗ C ∞ 0 (R d ).
Consider now a family p t (dy) of positive measures solution of [START_REF] Cont | Recovering portfolio default intensities implied by CDO tranches[END_REF] with p 0 (dy) = ǫ x0 (dy). After integration by parts

R d p t (dy)f (y)γ(t) = f (x 0 )γ(0) + t 0 R d p s (dy)A(f γ)(s, y) ds (11) 
holds true. Define for all t in [0, T ], for all g in C 1 ([0, T ]) ⊗ C ∞ 0 (R d ):

P t g = R d
p t (dy)g(t, y).

Given [START_REF] Cont | Recovering portfolio default intensities implied by CDO tranches[END_REF] and [START_REF] Ethier | Markov Processes: Characterization And Convergence[END_REF], for all ǫ > 0:

Q t (f γ)(x 0 ) -Q ǫ (f γ)(x 0 ) = t ǫ R d q u (x 0 , dy)A(f γ)(u, y) du = t ǫ Q u (A(f γ))(x 0 ) du, P t (f γ) -P ǫ (f γ) = t ǫ R d p u (dy)A(f γ)(u, y) du = t ǫ P u (A(f γ)) du. (12) 
For any λ > 0, we have

λ ∞ 0 e -λt Q t (f γ)(x 0 ) dt = f (x 0 )γ(0) + λ ∞ 0 e -λt t 0 Q s (A(f γ))(x 0 ) ds dt = f (x 0 )γ(0) + λ ∞ 0 e -λt ∞ s e -λt dt Q s (A(f γ))(x 0 ) ds = f (x 0 )γ(0) + ∞ 0 e -λs Q s (A(f γ))(x 0 ) ds Consequently, ∞ 0 e -λt Q t (λ -A)(f γ)(0, x 0 ) dt = f (x 0 )γ(0) = ∞ 0 e -λt P t (λ -A)(f γ) dt. ( 13 
) Q t defines a strongly continuous semigroup on C 0 b ([0, T ] × R d ).
The Hille-Yosida theorem [11, Proposition 2.1 and Theorem 2.6] then implies that for all λ > 0,

R(λ -A) = C 0 b ([0, T ] × R d ), where R(λ -A) denotes the image of C 1 ([0, T ]) ⊗ C ∞ 0 (R d ) by the mapping g → (λ -A)g. Hence, since (13) holds then for all h in C 0 b ([0, T ] × R d ) ∞ 0 e -λt Q t h (0, x 0 ) dt = ∞ 0 e -λt P t h dt (14) 
so the Laplace transform of t → Q t h (0, x 0 ) is uniquely determined. We will now show that t → Q t h (0, x 0 ) is right-continuous. Furthermore t → b(t, .), t → a(t, .), and t → n(t, . , .) are bounded in t on [0, T ] (Assumption 1). It implies that for any fixed [START_REF] Gyöngy | Mimicking the one-dimensional marginal distributions of processes having an Itô differential[END_REF] shows that Q t .(x 0 ) and P t . are weakly right-continuous in

f ∈ C ∞ 0 (R d ) and any fixed γ ∈ C 1 ([0, T ]), t → Q t A(f γ)(x 0 ) and t → P t A(f γ) are bounded on [0, T ]. [11, Theorem 2.6] implies also that the set {A(f γ), f ∈ C ∞ 0 (R d ), γ ∈ C 1 ([0, T ])} is dense in C 0 b ([0, T ]×R d ) and
t on C 1 ([0, T ]) ⊗ C ∞ 0 (R d ), i.e, for T ≥ t ′ ≥ t: lim t ′ →t P t ′ (f γ) = P t (f γ) lim t ′ →t Q t ′ (f γ)(x 0 ) = Q t (f γ)(x 0 ). Since C 0 b ([0, T ] × R d ) is separating [11, Proposition 4.4, Chapter 3], Q t .( x 
0 ) and P t . are weakly right-continuous and ( 14) holds for any λ > 0, we have h(y)q t (x 0 , dy) = h(y)p t (dy) for all h ∈ C 0 b (R d ). This ends the proof.

Remark 2.1. Assumptions 1, 2 and 3 are sufficient but not necessary for the well-posedness of the martingale problem. For example, the boundedness Assumption 1 may be relaxed to local boundedness, using localization techniques developed in [START_REF] Stroock | Diffusion processes associated with Lévy generators[END_REF][START_REF] Stroock | Multidimensional diffusion processes[END_REF]. Such extensions are not trivial and, in the unbounded case, additional conditions are needed to ensure that X does not explode (see [START_REF] Stroock | Multidimensional diffusion processes[END_REF]Chapter 10]).

Markovian projection of a semimartingale

We will make the following assumptions, which are almost-sure analogs of Assumptions 1, 2 and 3, on the local characteristics of the semimartingale ξ: Assumption 4. β, δ are bounded on [0, T ]:

∃K 1 > 0, ∀t ∈ [0, T ] β t ≤ K 1 , δ t ≤ K 1 a.s.
Assumption 5. µ has a density m(ω, t, dy) with respect to the Lebesgue measure on [0, T ] which satisfies

∃K 2 > 0, ∀t ∈ [0, T ] R d 1 ∧ y 2 m(., t, dy) ≤ K 2 < ∞ a.s.
and lim

R→∞ T 0 m (., t, { y ≥ R}) dt = 0 a.s. Assumption 6. Either (i) ∃ǫ > 0, ∀t ∈ [0, T [ t δ t δ t ≥ ǫ I d a.s.
or (ii) δ ≡ 0 and there exists β ∈]0, 2[, c, K 3 > 0, and a family m β (t, dy) of positive measures such that

∀t ∈ [0, T [ m(t, dy) = m β (t, dy) + c y d+β dy a.s., 1 ∧ y β m β (t, dy) ≤ K 3 , lim ǫ→0 y ≤ǫ y β m β (t, dy) = 0 a.s.
Note that Assumption 5 is only slightly stronger than stating that m is a Lévy kernel since in that case we already have 1 ∧ y 2 m(., t, dy) < ∞. Assumption 6 extends the "ellipticity" assumption to the case of pure-jump semimartingales and holds for a large class of semimartingales driven by stable or tempered stable processes.

Theorem 2 (Markovian projection). Define, for (t, z) ∈ [0, T ]×R d , B ∈ B(R d - {0}), b(t, z) = E [β t |ξ t -= z] , a(t, z) = E t δ t δ t |ξ t -= z , n(t, B, z) = E [m(., t, B)|ξ t -= z] . (15) 
If (β, δ, n) satisfies Assumptions 4, 5, 6 and (b, a, n) satisfies Assumption 2 then there exists a Markov process ((X t ) t∈[0,T ] , Q ξ0 ), with infinitesimal generator L defined by (3), whose marginal distributions mimick those of ξ:

∀t ∈ [0, T ] X t d = ξ t .
X is the weak solution of the stochastic differential equation

X t = ξ 0 + t 0 b(u, X u ) du + t 0 Σ(u, X u ) dB u + t 0 y ≤1 y Ñ (du dy) + t 0 y >1 y N (du dy), (16) 
where

(B t ) is an n-dimensional Brownian motion, N is an integer-valued ran- dom measure on [0, T ] × R d with compensator n(t, dy, X t-) dt, Ñ = N -n the associated compensated random measure and Σ ∈ C 0 ([0, T ]×R d , M d×n (R)) such that t Σ(t, z)Σ(t, z) = a(t, z).
We will call (X, Q ξ0 ) the Markovian projection of ξ.

Proof. First, we observe that n is a Lévy kernel : for any (t, z)

∈ [0, T ] × R d R d 1 ∧ y 2 n(t, dy, z) = E R d 1 ∧ y 2 m(t, dy)|ξ t -= z < ∞ a.s.,
using Fubini's theorem and Assumption 5. Consider now the case of a pure jump semimartingale verifying (ii) and define, for

B ∈ B(R d -{0}), ∀z ∈ R d n β (t, B, z) = E B m(t, dy, ω) - c dy y d+β |ξ t -= z .
As argued above, n β is a Lévy kernel on R d . Assumptions 4 and 5 imply that (b, a, n) satisfies Assumption 1. Furthermore, under assumptions either (i) or (ii) for (δ, m), Assumption 3 holds for (b, a, n). Together with Assumption 2 yields that L is a non-degenerate operator and Proposition 1 implies that the martingale problem for (L t ) t∈[0,T ] on the domain

C ∞ 0 (R d ) is well-posed. Denote ((X t ) t∈[0,T ] , Q ξ0 ) its unique solution starting from ξ 0 and q t (ξ 0 , dy) the marginal distribution of X t . Let f in C ∞ 0 (R d ). Itô's formula yields f (ξ t ) = f (ξ 0 ) + d i=1 t 0 d i=1 ∂f ∂x i (ξ s -) dξ i s + 1 2 t 0 tr ∇ 2 f (ξ s -) t δ s δ s ds + s≤t f (ξ s -+ ∆ξ s ) -f (ξ s -) - d i=1 ∂f ∂x i (ξ s -)∆ξ i s = f (ξ 0 ) + t 0 ∇f (ξ s -).β s ds + t 0 ∇f (ξ s -).δ s dW s + 1 2 t 0 tr ∇ 2 f (ξ s -) t δ s δ s ds + t 0 y ≤1 ∇f (ξ s -).y M (ds dy) + t 0 R d f (ξ s -+ y) -f (ξ s -) -1 { y ≤1} y.∇f (ξ s -) M (ds dy).
We note that

• since ∇f is bounded t 0 y ≤1 ∇f (ξ s -).y M (ds dy) is a square-integrable martingale. • t 0 y >1 ∇f (ξ s -).y M (ds dy) < ∞ a.s. since ∇f is bounded.
• since ∇f (ξ s -) and δ s are uniformly bounded on [0, T ], t 0 ∇f (ξ s -).δ s dW s is a martingale.

Hence, taking expectations, we obtain:

E P [f (ξ t )] = E P [f (ξ 0 )] + E P t 0 ∇f (ξ s -).β s ds + E P 1 2 t 0 tr ∇ 2 f (ξ s -) t δ s δ s ds + E P t 0 R d f (ξ s -+ y) -f (ξ s -) -1 { y ≤1} y.∇f (ξ s -) M (ds dy) = E P [f (ξ 0 )] + E P t 0 ∇f (ξ s -).β s ds + E P 1 2 t 0 tr ∇ 2 f (ξ s -) t δ s δ s ds + E P t 0 R d f (ξ s -+ y) -f (ξ s -) -1 { y ≤1} y.∇f (ξ s -) m(s, dy) ds .
Observing that:

E P t 0 ∇f (ξ s -).β s ds ≤ ∇f E P t 0 β s ds < ∞, E P 1 2 t 0 tr ∇ 2 f (ξ s -) t δ s δ s ≤ ∇ 2 f E P t 0 δ s 2 ds < ∞, E P t 0 R d f (ξ s -+ y) -f (ξ s -) -1 { y ≤1} y.∇f (ξ s -) m(s, dy) ds ≤ ∇ 2 f 2 E P t 0 y ≤1 y 2 m(s, dy) ds + 2 f E P t 0 y >1
m(s, dy) ds < +∞, we may apply Fubini's theorem to obtain

E P [f (ξ t )] = E P [f (ξ 0 )] + t 0 E P [∇f (ξ s -).β s ] ds + 1 2 t 0 E P tr ∇ 2 f (ξ s -) t δ s δ s ds + t 0 E P R d f (ξ s -+ y) -f (ξ s -) -1 { y ≤1} y.∇f (ξ s -) m(s, dy) ds.
Conditioning on ξ t-and using the iterated expectation property,

E P [f (ξ t )] = E P [f (ξ 0 )] + t 0 E P ∇f (ξ s -).E P [β s |ξ s-] ds + 1 2 t 0 E P tr ∇ 2 f (ξ s -) E P t δ s δ s |ξ s-] ds + t 0 E P E P R d f (ξ s -+ y) -f (ξ s -) -1 { y ≤1} y.∇f (ξ s -) m(s, dy)|ξ s-ds = E P [f (ξ 0 )] + t 0 E P [∇f (ξ s -).b(s, ξ s-)] ds + 1 2 t 0 E P tr ∇ 2 f (ξ s -) a(s, ξ s-) ds + t 0 R d E P f (ξ s -+ y) -f (ξ s -) -1 { y ≤1} y.∇f (ξ s -) n(s, dy, ξ s-) ds.
Hence

E P [f (ξ t )] = E P [f (ξ 0 )] + E P t 0 L s f (ξ s-) ds . (17) 
Let p t (dy) denote the law of (ξ t ) under P, (17) writes:

R d p t (dy)f (y) = R d p 0 (dy)f (y) + t 0 R d p s (dy)L s f (y) ds. (18) 
Hence p t (dy) satisfies the Kolmogorov forward equation ( 5) for the operator L with the initial condition p 0 (dy) = µ 0 (dy) where µ 0 denotes the law of ξ 0 . Applying Theorem 1, the flows q t (ξ 0 , dy) of X t and p t (dy) of ξ t are the same on [0, T ]. This ends the proof.

Remark 2.2 (Mimicking conditional distributions). The construction in Theorem 2 may also be carried out using [START_REF] Jacod | Calcul stochastique et problèmes de martingales[END_REF]. If (b 0 , a 0 , n 0 ) satisfies Assumption (3), then following the same procedure we can construct a Markov process (X, Q 0 ξ0 ) whose infinitesimal generator has coefficients (b 0 , a 0 , n 0 ) such that

b 0 (t, z) = E [β t |ξ t -= z, F 0 ] , a 0 (t, z) = E t δ t δ t |ξ t -= z, F 0 , n 0 (t, B, z) = E [m(., t, B)|ξ t -= z, F 0 ] . instead of (b, a, n) in
∀f ∈ C 0 b (R d ), ∀t ∈ [0, T ] E P [f (ξ t )|F 0 ] = E Q 0 ξ 0 [f (X t )] ,
i.e. the marginal distribution of X t matches the conditional distribution of ξ t given F 0 .

Remark 2.3. For Ito processes (i.e. continuous semimartingales of the form (2) with µ = 0), Gyöngy [12, Theorem 4.6] gives a "mimicking theorem" under the non-degeneracy condition t δ t .δ t ≥ ǫI d which corresponds to our Assumption 6, but without requiring the continuity condition (Assumption 2) on (b, a, n).

Brunick & Shreve [START_REF] Brunick | Matching statistics of an Ito process by a process of diffusion type[END_REF] extend this result by relaxing the ellipticity condition of [START_REF] Gyöngy | Mimicking the one-dimensional marginal distributions of processes having an Itô differential[END_REF]. In both cases, the mimicking process X is constructed as a weak solution to the SDE (16) (without the jump term), but this weak solution does not in general have the Markov property: indeed, it need not even be unique under the assumptions used in [START_REF] Gyöngy | Mimicking the one-dimensional marginal distributions of processes having an Itô differential[END_REF][START_REF] Brunick | Matching statistics of an Ito process by a process of diffusion type[END_REF]. In particular, in the setting used in [START_REF] Gyöngy | Mimicking the one-dimensional marginal distributions of processes having an Itô differential[END_REF][START_REF] Brunick | Matching statistics of an Ito process by a process of diffusion type[END_REF], the law of X is not uniquely determined by its 'infinitesimal generator' L. This makes it difficult to 'compute' quantities involving X, either through simulation or by solving a partial differential equation. By contrast, under the additional continuity condition 2 on the projected coefficients, X is a Markov process whose law is uniquely determined by its infinitesimal generator L and whose marginals are the unique solution of the Kolmogorov forward equation [START_REF] Brunick | Matching statistics of an Ito process by a process of diffusion type[END_REF]. This makes it possible to compute the marginals of X by simulating the SDE [START_REF] Jacod | Limit theorems for stochastic processes[END_REF] or by solving a forward PIDE.

It remains to be seen whether the additional Assumption 2 is verified in most examples of interest. We will show in Section 4 that this is indeed the case.

Remark 2.4 (Markovian projection of a Markov process). The term Markovian projection is justified by the following remark: if the semimartingale ξ is already a Markov process and satisfies the assumption of Theorem 2, then the uniqueness in law of the solution to the martingale problem for L implies that the Markovian projection (X, Q ξ0 ) of ξ has the same law as (ξ, P ξ0 ). So the map which associates (the law Q ξ0 of ) X to ξ may indeed be viewed as a projection; in particular it is involutive.

This property contrasts with other constructions of mimicking processes [START_REF] Baker | A brownian sheet martingale with the same marginals as the arithmetic average of geometric brownian motion[END_REF][START_REF] Cont | Recovering portfolio default intensities implied by CDO tranches[END_REF][START_REF] Gyöngy | Mimicking the one-dimensional marginal distributions of processes having an Itô differential[END_REF][START_REF] Hamza | A family of non-gaussian martingales with gaussian marginals[END_REF][START_REF] Madan | Making Markov martingales meet marginals[END_REF]] which fail to be involutive. A striking example is the construction, by Hamza & Klebaner [START_REF] Hamza | A family of non-gaussian martingales with gaussian marginals[END_REF], of discontinuous martingales whose marginals match those of a Gaussian Markov process.

Forward equations for semimartingales

Theorem 1 and Theorem 2 allow us to obtain a forward PIDE which extends the Kolmogorov forward equation to semimartingales which verify the Assumptions of Theorem 2: Theorem 3. Let ξ be a semimartingale given by (2) satisfying the assumptions of Theorem 2. Denote p t (dx) the law of ξ t on R d . t → p t is the unique solution, in the sense of distributions, of the forward equation

∀t ∈ [0, T ] ∂p t ∂t = L ⋆ t . p t , (19) 
with initial condition p 0 = µ 0 , where µ 0 denotes the law of ξ 0 , where L ⋆ is the adjoint of L, defined by

∀g ∈ C ∞ 0 (R d , R), L ⋆ t g(x) = -∇ [b(t, x)g(x)] + ∇ 2 a(t, x) 2 g(x) (20) 
+

R d g(x -z)n(t, z, x -z) -g(x)n(t, z, x) -1 z ≤1 z.∇ [g(x)n(t, dz, x)] ,
where the coefficients b, a, n are defined as in [START_REF] Jacod | Calcul stochastique et problèmes de martingales[END_REF].

Proof. The existence and uniqueness is a direct consequence of Theorem 1 and Theorem 2. To finish the proof, let compute L ⋆ t . Viewing p t as an element of the dual of

C ∞ 0 (R d ), ( 5 
) rewrites : for f ∈ C ∞ 0 (R d , R) ∀f ∈ C ∞ 0 (R d , R), f (y) dp dt (dy) = p t (dy)L t f (y).
We have

∀f ∈ C ∞ 0 (R d ), ∀t ≤ t ′ < T < p t ′ -p t t ′ -t , f > t ′ →t → < p t , L t f >=< L * t p t , f >,
where < ., . > is the duality product.

For z ∈ R d , define the translation operator τ z by τ z f (x) = f (x + z). Then

p t (dx) L t f (x) = p t (dx) b(t, x)∇f (x) + 1 2 tr ∇ 2 f (x) a(t, x) + |z|>1 (τ z f (x) -f (x))n(t, dz, x) + |z|≤1 (τ z f (x) -f (x) -z.∇f (x)) n(t, dz, x) = -f (x) ∂ ∂x [b(t, x)p t (dx)] + f (x) ∂ 2 ∂x 2 [ a(t, x) 2 p t (dx)] + |z|>1 f (x)(τ -z (p t (dx)n(t, dz, x)) -p t (dx)n(t, dz, x)) + |z|≤1 f (x)(τ -z (p t (dx)n(t, dz, x)) -p t (dx)n(t, dz, x)) -z ∂ ∂x (p t (dx)n(t, dz, x)) ,
allowing to identify L ⋆ .

Martingale-preserving property

An important property of the construction of ξ in Theorem 2 is that it preserves the (local) martingale property: if ξ is a local martingale, so is X:

Proposition 2 (Martingale preserving property).

1. If ξ is a local martingale which satisfies the assumptions of Theorem 2, then its Markovian projection (X t ) t∈[0,T ] is a local martingale on (Ω 0 , B t , Q ξ0 ).

If furthermore

∀t ∈ [0, T ] E P y 2 µ(dt dy) < ∞, then (X t ) t∈[0,T ] is a square-integrable martingale.
Proof. 1) If ξ is a local martingale then the uniqueness of its semimartingale decomposition entails that

β t + y ≥1 y m(t, dy) = 0 dt × P -a.e. hence Q ξ0 ∀t ∈ [0, T ], t 0 ds b(s, X s-) + y ≥1 y n(s, dy, X s-) = 0 = 1.
The assumptions on m, δ then entail that X, as a sum of an Ito integral and a compensated Poisson integral, is a local martingale.

2) If E P y 2 µ(dt dy) < ∞ then

E Q ξ 0 y 2 n(t, dy, X t-) < ∞,
and the compensated Poisson integral in X is a square-integrable martingale.

3 Mimicking a semimartingale driven by a Poisson random measure

The representation (2) is not the most commonly used in applications, where a process is constructed as the solution to a stochastic differential equation driven by a Brownian motion and a Poisson random measure

∀t ∈ [0, T ] ζ t = ζ 0 + t 0 β s ds + t 0 δ s dW s + t 0 ψ s (y) Ñ (ds dy), (21) 
where ξ 0 ∈ R d , W is a standard R n -valued Wiener process, β and δ are nonanticipative càdlàg processes, N is a Poisson random measure on [0, T ] × R d with intensity ν(dy) dt where

R d 1 ∧ y 2 ν(dy) < ∞, Ñ = N -ν(dy)dt, (22) 
and the random jump amplitude ψ :

[0, T ] × Ω × R d → R d is P ⊗ B(R d )-
measurable, where P is the predictable σ-algebra on [0, T ] × Ω. In this section, we shall assume that ∀t ∈ [0, T ], ψ t (ω, 0) = 0 and

E t 0 R d 1 ∧ ψ s (., y) 2 ν(dy) ds < ∞.
The difference between this representation and (2) is the presence of a random jump amplitude ψ t (ω, .) in [START_REF] Mikulevičius | On the martingale problem associated with non-degenerate lévy operators[END_REF]. The relation between these two representations for semimartingales has been discussed in great generality in [START_REF] Karoui | Representation de processus ponctuels multivariés à l'aide d'un processus de poisson[END_REF][START_REF] Kabanov | On the representation of integral-valued random measures and local martingales by means of random measures with deterministic compensators[END_REF]. Here we give a less general result which suffices for our purpose. The following result expresses ζ in the form (2) suitable for applying Theorem 2.

Lemma 1 (Absorbing the jump amplitude in the compensator).

ζ t = ζ 0 + t 0 β s ds + t 0 δ s dW s + t 0 ψ s (z) Ñ (ds dz)
can be also represented as

ζ t = ζ 0 + t 0 β s ds + t 0 δ s dW s + t 0 y M (ds dy), ( 23 
)
where M is an integer-valued random measure on [0, T ] × R d with compensator µ(ω, dt, dy) given by

∀A ∈ B(R d -{0}), µ(ω, dt, A) = ν(ψ -1 t (ω, A)) dt,
where ψ -1 t (ω, A) = {z ∈ R d , ψ t (ω, z) ∈ A} denotes the inverse image of A under the partial map ψ t .

Proof. The result can be deduced from [10, Théorème 12] but we sketch here the proof for completeness. A Poisson random measure N on [0, T ] × R d can be represented as a counting measure for some random sequence

(T n , U n ) with values in [0, T ] × R d N = n≥1 1 {Tn,Un} . (24) 
Let M be the integer-valued random measure defined by:

M = n≥1 1 {Tn,ψT n (.,Un)} . (25) 
µ, the predictable compensator of M is characterized by the following property Using formulae [START_REF]Markov Processes from Ito's Perspective[END_REF] and ( 25):

E t 0 A χ(s, y) M (ds dy) = E   n≥1 χ(T n , ψ Tn (., U n ))   = E t 0 ψ -1 s (.,A) χ(s, ψ s (., z)) N (ds dz) = E t 0 ψ -1 s (.,A)
χ(s, ψ s (., z)) ν(dz) ds Formula (26) and the above equalities lead to:

E t 0 A χ(s, y) µ(ds dy) = E t 0 ψ -1 s (.,A)
χ(s, ψ s (., z)) ν(dz) ds .

Since ψ is a predictable random function, the uniqueness of the predictable compensator µ (take φ ≡ Id in [16, Thm 1.8.]) entails

µ(ω, dt, A) = ν(ψ -1 t (ω, A)) dt. ( 27 
)
Formula ( 27) defines a random measure µ which is a Lévy kernel

t 0 1 ∧ y 2 µ(dy ds) = t 0 1 ∧ ψ s (., y) 2 ν(dy) ds < ∞.
In the case where ψ t (ω, .) : R d → R d is invertible and differentiable, we can characterize the density of the compensator µ as follows:

Lemma 2 (Differentiable case). If the Lévy measure ν(dz) has a density ν(z) and if ψ t (ω, .) : [START_REF] Mikulevičius | On the martingale problem associated with non-degenerate lévy operators[END_REF], has the representation

R d → R d is a C 1 (R d , R d )-diffeomorphism, then ζ, given in
ζ t = ζ 0 + t 0 β s ds + t 0 δ s dW s + t 0 y M (ds dy),
where M is an integer-valued random measure with compensator

m(ω; t, y) dt dy = 1 ψt(ω,R d ) (y) |det∇ y ψ t | -1 (ω, ψ -1 t (ω, y)) ν(ψ -1 t (ω, y)) dt dy,
where ∇ y ψ t denotes the Jacobian matrix of ψ t (ω, .).

Proof. We recall from the proof of Lemma 1:

E t 0 A χ(s, y) µ(ds dy) = E t 0 ψ -1 s (.,A)
χ(s, ψ s (., z)) ν(z) ds dz .

Proceeding to the change of variable ψ s (., z) = y:

E t 0 ψ -1 s (.,A) χ(s, ψ s (., z)) ν(z) ds dz = E t 0 A 1 {ψs(R d )} (y) χ(s, y) |det∇ψ s | -1 (., ψ -1 s (., y)) ν(ψ -1 s (., y))ds dy .
The density appearing in the right hand side is predictable since ψ is a predictable random function. The uniqueness of the predictable compensator µ yields the result.

Let us combine Lemma 2 and Theorem 2. To proceed, we make a further assumption.

Assumption 7. The Lévy measure ν admits a density ν(y) with respect to the Lebesgue measure on R d and: 

∀t ∈ [0, T ] ∃K 2 > 0 t 0 y >1
m(t, y) = 1 {y∈ψt(R d )} |det∇ψ t | -1 (ψ -1 t (y)) ν(ψ -1 t (y)), ( 28 
) and b(t, z) = E [β t |ζ t -= z] , a(t, z) = E t δ t δ t |ζ t -= z , j(t, y, z) = E [m(t, y) |ζ t -= z] . (29) 
If δ, m satisfy Assumptions 5-6 and Assumption 2 holds for (b, a, j), then the stochastic differential equation

X t = ζ 0 + t 0 b(u, X u ) du + t 0 Σ(u, X u ) dB u + t 0 y J(du dy), (30) 
where (B t ) is an n-dimensional Brownian motion, J is an integer valued random measure on [0, T ] × R d with compensator j(t, dy, X t-) dt, J = J -j and

Σ : [0, T ] × R d → M d×n (R) is a continuous function such that t Σ(t, z)Σ(t, z) = a(t, z), admits a unique weak solution ((X t ) t∈[0,T ] , Q ζ0 ) whose marginal distri- butions mimick those of ζ: ∀t ∈ [0, T ] X t d = ζ t .
Under Q ζ0 , X is a Markov process with infinitesimal generator L given by (3).

Proof. We first use Lemma 2 to obtain the representation (23) of ζ:

ζ t = ζ 0 + t 0 β s ds + t 0 δ s dW s + t 0 y M (ds dy)
Then, we observe that ψ s (., y) 2 ν(y) dy ds.

Hence: 

ζ t = ζ 0 + t 0 β s ds - t 0 ψs(y) >1 ψ s (.,

Examples

We now give some examples of stochastic models used in applications, where Markovian projections can be characterized in a more explicit manner than in the general results above. These examples also serve to illustrate that the continuity assumption (Assumption 2) on the projected coefficients (b, a, n) in ( 15) can be verified in many useful settings.

Semimartingales driven by a Markov process

In many examples in stochastic modeling, a quantity Z is expressed as a smooth function f : R d → R of a d-dimensional Markov process Z: ξ t = f (Z t ). We will show that in this situation our assumptions will hold as soon as Z has an infinitesimal generator whose coefficients satisfy Assumptions 1, 2 and 3. Consider a time-dependent integro-differential operator

L = (L t ) t∈[0,T ] defined, for f ∈ C ∞ 0 (R d ), by L t f (z) = b Z (t, z).∇f (z) + d i,j=1 Σ ij (t, x) 2 
∂ 2 f ∂x i ∂x j (x) + R d [f (z + ψ(t, z, y) -f (z) -ψ(t, y, z).∇f (z)]ν(y)dy, (31) where 
Σ : [0, T ] × R d → M d×d (R), b Z : [0, T ] × R d → R d and ψ : [0, T ] × R d × R d
are measurable functions and ν is a Lévy density. We assume that ψ(., ., 0

) = 0 ψ(t, z, .) is a C 1 (R d , R d ) -diffeomorphism ∃K 2 > 0 ∀t ∈ [0, T ] ∀z ∈ R d t 0 { y ≥1}
1 ∧ ψ(s, z, y) 2 ν(y) dy ds < K 2 .
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(28) can then be expressed as

m Z (t, y, z) = 1 {y∈ψt(R d )} |det∇ψ| -1 (t, z, ψ -1 (t, z, y)) ν(ψ -1 (t, z, y)).
Consider the stochastic differential equation

∀t ∈ [0, T ] Z t = Z 0 + t 0 b Z (u, Z u-) du + t 0 Σ(u, Z u-) dW u + t 0 ψ(u, Z u-, y) Ñ (du dy), (32) 
where (W t ) is an n-dimensional Brownian motion, N is a Poisson random measure on [0, T ] × R d with compensator ν(y) dy dt, Ñ the associated compensated random measure. Throughout this section we shall assume that (b Z , Σ, m Z ) satisfy Assumptions 1, 2 and 3. Proposition 1 then implies that for any Z 0 ∈ R d , the above SDE admits a weak solution ((Z t ) t∈[0,T ] , Q Z0 ), unique in law. Under Q Z0 , Z is a Markov process with infinitesimal generator L. Assume furthermore that Z t has a density q t with respect to the Lebesgue measure on R d . Consider now the process

∀t ∈ [0, T ] ξ t = f (Z t ) f : R d → R (33) 
The aim of this section is to build in an explicit manner the Markovian Projection of ξ t for a sufficiently large class of functions f . Before stating the main result, we start with an useful Lemma, which will be of importance when one wants to characterize the yielding Markovian projection of ξ t .

Lemma 3. Let Z be a R d -valued random variable with density q(z) and

f ∈ C 1 (R d , R) such that ∀z ∈ R d , ∂f ∂z d (z) = 0. ( 34 
)
Define the function

F : R d → R such that f (z 1 , • • • , z d-1 , F (z)) = z d . Then for any measurable function g : R d → R such that E [|g(Z)|] < ∞ and any w ∈ f (R d ), E [g(Z)|f (Z) = w] = R d-1 dz 1 ...dz d-1 g(z 1 , • • • , z d-1 , w) q(z1,••• ,z d-1 ,F (z1,••• ,z d-1 ,w)) ∂f ∂z d (z1,••• ,z d-1 ,F (z1,••• ,z d-1 ,w))
.

Proof. Consider the d-dimensional random variable κ(Z), where κ is defined by

κ(z) = (z 1 , • • • , z d-1 , f (z)) ,
and let us compute the law of κ(Z).

(∇ z κ) =      1 0 0 0 . . . . . . . . . . . . 0 • • • 1 0 ∂f ∂z1 • • • ∂f ∂z d-1 ∂f ∂z d      . One observes that |det(∇ z κ)|(z) = ∂f ∂z d (z) > 0. Hence κ is a C 1 (R d , R d )- diffeomorphism with inverse κ -1 . κ(κ -1 (z)) = (κ -1 1 (z), • • • , κ -1 d-1 (z), f (κ -1 1 (z), • • • , κ -1 d (z)) = z. For 1 ≤ i ≤ d-1, κ -1 i (z) = z i and f (z 1 , • • • , z d-1 , κ -1 d (z)) = z d that is κ -1 d (z) = F (z). Hence κ -1 (z 1 , • • • , z d ) = (z 1 , • • • , z d-1 , F (z)).
Define q κ (z) dz the inverse image of the measure q(z) dz under the partial map κ by

q κ (z) = 1 {κ(R d )} (z) |det(∇ z κ -1 )|(z) q(κ -1 (z)) = 1 {κ(R d )} (z) ∂f ∂z d -1 (z 1 , • • • , z d-1 , F (z)) q(z 1 , • • • , z d-1 , F (z)).
q κ (z) is the density of κ(Z). So, for any w ∈ f (R d ),

E [g(Z)|f (Z) = w] = E [g(Z)|κ(Z) = (z 1 , • • • , z d-1 , w)] = R d-1 dz 1 ...dz d-1 g(z 1 , • • • , z d-1 , w) q(z 1 , • • • , z d-1 , F (z 1 , • • • , z d-1 , w)) ∂f ∂z d (z 1 , • • • , z d-1 , F (z 1 , • • • , z d-1 , w))
.,

We can now formulate the main result of this section:

Theorem 5. Let f ∈ C 2 (R d , R) with bounded derivatives such that ∀z ∈ R d ∂f ∂z d (z) = 0. (35) Define, for w ∈ f (R d ), t ∈ [0, T ], b(t, w) = R d-1 ∇f (.).b Z (t, .) + 1 2 tr ∇ 2 f (.) t Σ(t, .)Σ(t, .) + R d (f (. + ψ(t, ., y)) -f (.) -ψ(t, ., y).∇f (.)) ν(y) dy, (z 1 , • • • , z d-1 , w) × q t (z 1 , • • • , z d-1 , F (z 1 , • • • , z d-1 , w)) ∂f ∂z d (z 1 , • • • , z d-1 , F (z 1 , • • • , z d-1 , w)) ., σ(t, w) = R d-1 ∇f (.)Σ(t, .) 2 (z 1 , • • • , z d-1 , w) × q t (z 1 , • • • , z d-1 , F (z 1 , • • • , z d-1 , w)) ∂f ∂z d (z 1 , • • • , z d-1 , F (z 1 , • • • , z d-1 , w)) . 1/2 . ( 36 
)
and the measure j(t, du, w) defined on R -{0} by

j(t, [u, ∞[, w) = R d-1 R d 1 {f (.+ψ(t,.,y))-f (.)≥u} (z 1 , • • • , z d-1 , w) ν(y) dy × q t (z 1 , • • • , z d-1 , F (z 1 , • • • , z d-1 , w)) ∂f ∂z d (z 1 , • • • , z d-1 , F (z 1 , • • • , z d-1 , w)) . ( 37 
)
for u > 0 and analogously for u < 0. Then the stochastic differential equation

X t = ξ 0 + t 0 b(s, X s ) ds + t 0 σ(s, X s ) dB s + t 0 y ≤1 y J(ds dy) + t 0 y >1 y J(ds dy), (38) 
where (B t ) is a Brownian motion, J is an integer-valued random measure on [0, T ] × R with compensator j(t, du, X t-) dt, J = J -j, admits a weak solution ((X t ) t∈[0,T ] , Q ξ0 ), unique in law, whose marginal distributions mimick those of ξ:

∀t ∈ [0, T ] X t d = ξ t .
Under Q ξ0 , X is a Markov process with infinitesimal generator L given by

∀f ∈ C ∞ 0 (R),L t f (w) = b(t, w)f ′ (w) + σ 2 (t, w) 2 f ′′ (w) + R d [f (w + u) -f (w) -uf ′ (w)]j(t, du, w).
Proof. Applying Itô's formula to f (Z t ) yields 

ξ t = ξ 0 + t 0 ∇f (Z s -).b Z (s, Z s-) ds + t 0 ∇f (Z s -).Σ(s, Z s-)dW s + 1 2 t 0 tr ∇ 2 f (Z s-) t Σ(s, Z s-)Σ(s, Z s-) ds + t 0 ∇f (Z s -).ψ(s, Z s-, y) Ñ (ds dy) + t 0 R d (f (Z s -+ ψ(s, Z s-, y)) -f (Z s -) -ψ(s, Z s-, y).∇f (Z s -)) N (ds dy) = ξ 0 + t 0 ∇f (Z s -).b Z (s, Z s-) + 1 2 tr ∇ 2 f (Z s-) t Σ(s, Z s-)Σ(s, Z s-) + R d (f (Z s -+ ψ(s, Z s-, y)) -f (Z s -) -ψ(s, Z s-, y).∇f (Z s -)) ν(y) dy ds + t 0 ∇f (Z s -).Σ(s, Z s-)dW s + t 0 R d (f (Z s -+ ψ(s, Z s-, y)) -f (Z s -)) Ñ (
κ z (y) : R d → R d y → (y 1 , • • • , y d-1 , f (z + y) -f (z)). Since for any z ∈ R d , |det∇ y κ z | (y) = ∂ ∂y d f (z + y) > 0, one can define κ -1 z (y) = (y 1 , • • • , y d-1 , F z (y)) F z (y) : R d → R f (z+(y 1 , • • • , y d-1 , F z (y)))-f (z) = y d .
Considering φ the inverse of ψ that is φ(t, ψ(t, z, y), z) = y, define Φ(t, z, y) = φ(t, z, κ -1 z (y)).

Φ corresponds to the inverse of Ψ and Φ is differentiable on R d with image R d . Define the random measure m(t, z, y) dt dy m(t, z, y) = |det∇ y Φ(t, z, y)| ν(Φ(t, z, y))

= det∇ y φ(t, z, κ -1 z (y))

∂f ∂y d (z + κ -1 z (y)) -1
ν(φ(t, z, κ -1 z (y))).

Using Assumption 7,

t 0 y >1
1 ∧ Ψ(s, z, y) 2 ν(y) dy ds 

= t 0 y >1 1 ∧ ψ 1 (s, z, y) 2 + • • • + ψ d-1 (s, z, y) 2 + (f (z + ψ(s, z, y)) -f (z)) 2 ν(y) dy ds ≤ t 0 y >1 1 ∧ ψ 1 (s, z, y) 2 + • • • + ψ d-1 (s, z, y) 2 + ∇f 2 ψ(s, z, y) 2 ν(y) dy ds ≤ t 0 y >1 1 ∧ (2 ∨ ∇f 2 ) ψ(s, z, y) 2 ν(y)
ξ t = ξ 0 + t 0 β s ds + t 0 δ s dB s + t 0 u K(ds du), where          β t = ∇f (Z t -).b Z (t, Z t-) + 1 2 tr ∇ 2 f (Z t-) t Σ(t, Z t-)Σ(t, Z t-) + R d (f (Z t -+ ψ(t, Z t-, y)) -f (Z t -) -ψ(t, Z t-, y).∇f (Z t -)) ν(y) dy, δ t = ∇f (Z t-)Σ(t, Z t-) , and K is an integer-valued random measure on [0, T ] × R with compensator k(t, Z t-, u) du dt defined for all z ∈ R d via k(t, z, u) = R d-1 m(t, (y 1 , • • • , y d-1 , u), z) dy 1 • • • dy d-1 = R d-1 |det∇ y Φ(t, z, (y 1 , • • • , y d-1 , u))| ν(Φ(t, z, (y 1 , • • • , y d-1 , u))) dy 1 • • • dy d-1 , (39) 
and K its compensated random measure. In particular for any u > 0,

k(t, z, [u, ∞[) = R d 1 {f (z+ψ(t,z,y))-f (z)≥u} ν(y) dy. (40) 
Let us show that if (b Z , Σ, ν) satisfy Assumptions 1, 2 and 3 then the triplet (δ t , β t , k(t, Z t-, u)) satisfies the assumptions of Theorem 2. First, note that β t and δ t satisfy Assumption 4 since b Z (t, z) and Σ(t, z) satisfy Assumption 1 and ∇f and ∇ 2 f are bounded. As argued before, one sees that if Σ is non-degenerate then δ t is. In the case δ t ≡ 0, for t ∈ [0, T [, R > 0, z ∈ B(0, R) and g ∈ C 0 0 (R) ≥ 0, consider C and 

K T > 0 chosen via Assumption 3 k(t, z, u) = R d-1 |det∇ y Φ(t, z, (y 1 , • • • , y d-1 , u))| ν(Φ(t, z, (y 1 , • • • , y d-1 , u))) dy 1 • • • dy d-1 = R d-1 det∇ y φ(t, z, κ -1 z (y 1 , • • • , y d-1 , u)) ∂f ∂y d (z + κ -1 z (y 1 , • • • , y d-1 , u)) -1 ν(φ(t, z, κ -1 z (y 1 , • • • , y d , u))) dy 1 • • • dy d-1 ≥ R d-1 ∂f ∂y d (z + κ -1 z (y 1 , • • • , y d-1 , u)) -1 C κ -1 z (y 1 , • • • , y d-1 , u) d+β dy 1 • • • dy d-1 = R d-1 C (y 1 , • • • , y d-1 , u) d+β dy 1 • • • dy d-1 = 1 |u| d+β R d-1 C (y 1 /u, • • • , y d-1 /u, 1) d+β dy 1 • • • dy d-1 = C ′ 1 |u| 1+β , with C ′ = R d-1 C (w 1 , • • • , w d-1 , 1) -1 dw 1 • • • dw d-1 . Similarly 1 ∧ |u| β k(t, z, u) - C ′ |u| 1+β du = 1 ∧ |u| β R d-1 ∂f ∂y d (z + κ -1 z (y 1 , • • • , y d-1 , u)) -1 det∇ y φ(t, z, κ -1 z (y 1 , • • • , y d-1 , u)) ν(φ(t, z, κ -1 z (y 1 , • • • , y d-1 , u))) - C κ -1 z (y 1 , • • • , y d-1 , u) d+β dy 1 • • • dy d-1 du = R d 1 ∧ |f (z + (y 1 , • • • , y d-1 , u)) -f (z)| β |det∇ y φ(t, z, (y 1 , • • • , y d-1 , u))| ν(φ(t, z, (y 1 , • • • , y d-1 , u))) - C (y 1 , • • • , y d-1 , u) d+β dy 1 • • • dy d-1 du ≤ R d 1 ∧ ∇f (y 1 , • • • , y d-1 , u) β |det∇ y φ(t, z, (y 1 , • • • , y d-1 , u))| ν(φ(t, z, (y 1 , • • • , y d-1 , u))) - C (y 1 , • • • , y d-1 , u) d+β dy 1 • • • dy d-
(t, w) = E [β t |f (Z t-) = w] , σ(t, w) = E δ 2 t |f (Z t-) = w 1/2 , j(t, u, w) = E [k(t, Z t-, u)|f (Z t-) = w] .
Applying Lemma 3, one can compute explicitly the conditional expectations above. For example, Proceeding similarly, one can show that that Assumption 2 holds for σ and j so Theorem 2 may be applied to yield the result.

b(t, w) = R d-1 ∇f (.).b Z (t, .) + 1 2 tr ∇ 2 f (.) t Σ(t, .)Σ(t, .) + R d (f (. + ψ(t, ., y)) -f ( 

Time changed Lévy processes

Models based on time-changed Lévy processes have been the focus of much recent work especially in mathematical finance [START_REF] Carr | Stochastic volatility for Lévy processes[END_REF]. Let L t be a Lévy process, (b, σ 2 , ν) be its characteristic triplet, N its jump measure. Define The impact of the random time change on the marginals can be captured by making the characteristics state dependent ( bα(t, X t-), σ 2 α(t, X t-), α(t, X t-)ν ) by introducing the same adjustment factor α(t, X t-) to the drift, diffusion coefficient and Lévy measure. In particular if α(t, x) is affine in x we get an affine process [START_REF] Duffie | Transform Analysis and Asset Pricing for Affine Jump-diffusions[END_REF] where the affine dependence of the characteristics with respect to the state are restricted to be colinear, which is rather restrictive. This remark shows that time-changed Lévy processes, which in principle allow for a wide variety of choices for θ and L, may not be as flexible as apparently simpler affine models when it comes to reproducing marginal distributions.

X t =

  ) and , n(t, B, .) are continuous on R d , uniformly in t ∈ [0, T ]. Assumption 3 (Non-degeneracy). Either ∀R > 0 ∀t ∈ [0, T ] inf z ≤R inf x∈R d t x.a(t, z).x > 0 or a ≡ 0 and there existsβ ∈]0, 2[, C > 0, and a family n β (t, dy, z)

[ 16 ,

 16 Thm 1.8.]: for any positive P ⊗ B(R d )-measurable map χ : [0, T ]× Ω× R d → R + and any A ∈ B(R d -{0}), y) N (ds dy) = E t 0 B χ(s, y) ν(dy) ds .

  ds dy), where the terms above are well-defined thanks to Assumption 7. Lemma 2 leads to:

t 0 1 ∧ 0 1 0 1

 100 u 2 k(s, Z s-, u) du ds = t ∧ |f (Z s -+ ψ(s, Z s-, y)) -f (Z s -)| 2 ν(y) dy ds ≤ t ∧ ∇f 2 ψ(s, Z s-, u) 2 ν(y)dy ds, is bounded by Assumption 7. Hence k satisfies Assumption 5.

1 0 k

 10 du is also bounded. Similar arguments would show that lim ǫ→0 |u|≤ǫ |u| β k(t, Z t-, u) -C |u| 1+β du = 0 a.s. and lim R→∞ T (t, Z t-, {|u| ≥ R}) dt = 0 a.s., since this essentially hinges on the fact that f has bounded derivatives. Define as in Theorem 2 b

  .) -ψ(t, ., y).∇f (.)) ν(y) dy, (z1 , • • • , z d-1 , w) × q t (z 1 , • • • , z d-1 , F (z 1 , • • • , z d-1 , w)) | ∂f ∂z d (z 1 , • • • , z d-1 , F (z 1 , • • • , z d-1 , w))| . with F : R d → R defined by f (z 1 , • • • , z d-1 , F (z)) = z d .Since f is C 2 with bounded derivatives, (b Z , Σ, ν) satisfy Assumption 2 and (t, z) → q t (z) is continuous in (t, z) on [0, T ] × R d (see Theorem 1) then b(t, .) is continuous on R uniformly in t ∈ [0, T ]. Hence Assumption 2 holds for b.

  y) 2 ν(y) dy ds + This representation has the form (2) and Assumptions 4 and 7 guarantee that the local characteristics of ζ satisfy the assumptions of Theorem 2. Applying Theorem 2 yields the result.
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	is a continuous local martingale with [B] t = t. Lévy's theorem implies that B
	is a Brownian motion.		
	If Σ ≡ 0 and (ii) holds, then ξ t is a pure-jump semimartingale. Define K t
	K t =	t	Ψ(s, Z s-, y) Ñ (ds dy),
	0		
	with Ψ(t, z, y) = ψ(t, z, κ z (y)) where
	If Σ satisfies assumption (i) then (B t ) t∈[0,T ] defined by
	dB t =	∇f (Z t -).Σ(t, Z t-)W t ∇f (Z t-)Σ(t, Z t-)	,

  dy ds is bounded. One may apply Lemma 2 and express K t as K t = Extracting the d-th component of K t , one obtains the semimartingale decomposition of ξ t on [0, T ]

	t 0 where M is a compensated integer-valued random measure on [0, T ] × R d with y M (ds dy)
	compensator m(t, Z t-, y) dy dt.

  L Θt Θ t =where (θ t ) is a locally bounded F t -adapted positive cadlag process, interpreted as the rate of time change.Theorem 6 (Markovian projection of time-changed Lévy processes). Let L be a scalar Lévy process with triplet (b, σ 2 , ν) and letξ t = L Θt with Θ t = t 0 θ s ds where θ t > 0 is a positive semimartingale. Define ∀t ∈ [0, T ] ∀z ∈ R α(t, z) = E[θ t |ξ t-= z],and suppose that α(t, .) is continuous onR d , uniformly in t ∈ [0, T ]. Assume that lim R→∞ ν ({ y ≥ R}) = 0and either (i) or (ii) holds for (σ, θ t ν), then• (ξ t ) has the same marginals as (X t ) on [0, T ], defined as the weak solution ofX t = ξ 0 +with the given initial condition p 0 (dy) = µ 0 (dy) where µ 0 denotes the law of ξ 0 .Proof. Consider the Lévy-Ito decomposition of L:L t = bt + σW t + (Θ t) is a continuous martingale starting from 0, with quadratic variation Θ t = t 0 θ s ds. The Dubins-Schwarz theorem (see[START_REF] Revuz | Continuous martingales and Brownian motion[END_REF] Theorem 1.7]) implies that one can pick Z a Brownian motion independent of W , such that W (Θ t ) Hence X t is the weak solution of :X t = X 0 +Using the notations of Theorem 2, β t = b θ t , δ t = σ θ t , m(t, dy) = θ t ν(dy).

						d =	t	θ s dZ s .
						0
				t		t
				σ θ s dZ s +	bθ s ds
				0		0
	+	t		t zθ s Ñ (ds dz) +	t	t zθ s N (ds dz).
	0		|z|≤1		σ α(s, X s-)dB s + 0 |z|>1	bα(s, X s-)ds
					0	0
			+	t	z J(ds dz) +	t	zJ(ds dz),
				0		|z|≤1	0	|z|>1
						forward
	equation:					∂p t ∂t	= L ⋆ t . p t ,
	where, L * t is given by	
	L ⋆ t g(x) = -b	∂ ∂x	[α(t, x)g(x)] +	σ 2 2	∂ 2 ∂x 2 [α 2 (t, x)g(x)]
	+				
	R d		
					t	z Ñ (dsdz) +	t	zN (dsdz).
					0	|z|≤1	0	|z|>1
	Then ξ rewrites					t	θ s ds,
	ξ t = ξ 0 + σW (Θ t ) + bΘ t	0
	+	Θt			z Ñ (ds dz) +	θt	zN (ds dz).
	0		|z|≤1	0	|z|>1

where B t is a real-valued brownian motion, J is an integer-valued random measure on [0, T ] × R with compensator α(t, X t-) ν(dy) dt.

• The marginal distribution p t of ξ t is the unique solution of the

ν(dz) g(x -z)α(t, x -z) -g(x)α(t, x) -1 z ≤1 z. ∂ ∂x [g(x)α(t, x)] ,

W Since Assumptions 4 and 5 are satisfied and :

b(t, .) = E [β t |ξ t -= .] = b α(t, .), σ(t, .) = E δ 2 t |ξ t -= . 1/2 = σ α(t, .), n(t, B, .) = E [m(t, B)|ξ t -= .] = α(t, .)ν(B),

are all continuous on R uniformly in t on [0, T ]. One may apply Theorem 2.