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Abstract

We show that the flow of marginal distributions of a discontinuous
semimartingale X can be matched by a Markov process whose infinitesi-
mal generator is expressed in terms of the local characteristics of X. Our
results extend a “mimicking theorem” of Gyöngy (1986) to discontinuous
semimartingales. We use this result to derive a partial integro-differential
equation for the one-dimensional distributions of a semimartingale, ex-
tending the Kolmogorov forward equation to a non-Markovian setting.
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1 Introduction

Stochastic processes with path-dependent / non-Markovian dynamics used in
various fields such as physics and mathematical finance present challenges for
computation, simulation and estimation. In some applications where one is
interested in the marginal distributions of such processes, such as option pricing
or Monte Carlo simulation of densities, the complexity of the model can be
greatly reduced by considering a low-dimensional Markovian model with the
same marginal distributions. Given a process X , a Markov process Y is said to
mimick X if X and Y have the same marginal distributions:

∀t ≥ 0, Xt
d
=Yt (1)

Y is called a Markovian projection of X . The existence and computation of such
Markovian projections has been explored for queues [4], Ito processes [13] and
marked point processes [7] and has various applications such as the derivation
of forward equations for option pricing [10].

We give here such a Markovian projection result for a (possibly discontinu-
ous) semimartingale [3]. Given a semimartingale X , we give conditions under
which there exists a Markov process Y whose flow of marginal distributions is
identical to that of X and give an explicit construction of the Markov process
Y as the solution of a martingale problem for an integro-differential operator
[2, 20, 22, 23]. Our result can be seen as a generalization to the discontinuous
case of the Gyöngy [13] “mimicking theorem” for continuous semimartingales.

In the martingale case, the Markovian projection problem is related to the
problem of constructing martingales with a given flow of marginals, which dates
back to Kellerer [19] and has been recently explored [1, 14, 15, 21] using a variety
of techniques. In this work we shall focus on the Markov property -rather than
the martingale property- of the mimicking process. We shall see nevertheless
that the Markovian projection preserves the martingale property. Also, whereas
the approaches described in [1, 15, 21] use as a starting point the marginal dis-
tributions of X , our construction describes the mimicking Markov process Y in
terms of the characteristic triplet [17] of the semimartingale X . Our construc-
tion thus applies more readily to solutions of stochastic differential equations
where the local characteristics are known but not the marginal distributions.

In general, given a semimartingale X there may be many Markov processes
whose marginals match those of X ; examples of this type may be found in
[21, 14]. Our construction has the property that it preserves the Markov prop-
erty, the martingale property and the continuity of paths: if X has either of
these properties, then its Markovian projection Y will also inherit the same
property, which is not the case of many other constructions in the literature.
Our Markovian prohection method therefore appears as a natural way to mim-
ick the marginals since the mimicking process will belong to the same class (of
Markov, continuous, or martingale) as the original process.

Section 2 presents a Markovian projection result for a Rd-valued semimartin-
gale given by its local characteristics. Section 3 shows how this result can be
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applied to processes whose jumps are represented as the integral of a predictable
jump amplitude with respect to a Poisson random measure, a representation of-
ten used in stochastic differential equations with jumps. We use these results in
section 4 to derive a partial integro-differential equation for the one-dimensional
distributions of a discontinuous semimartingale, thus extending Kolmogorov’s
forward equation to a non-Markovian setting. Section 4 applies these results
to particular classes of processes: multivariate marked point processes (Section
5.1) and time-changed Lévy processes (Section 5.2).

2 A mimicking theorem for discontinuous semi-

martingales

Consider, on a filtered probability space (Ω,F , (Ft)t≥0,P), an Ito semimartin-
gale given by the decomposition

Xt = X0+

∫ t

0

βXs ds+

∫ t

0

δXs dWs+

∫ t

0

∫

‖y‖≤1

y M̃X(dsdy)+

∫ t

0

∫

‖y‖>1

yMX(dsdy),

(2)
where W is a standard Rn-valued Wiener process, MX is an integer-valued
random measure on [0,∞] × Rd with compensator measure µX and M̃X =
MX − µX is the compensated measure [17, Ch.II,Sec.1], βX (resp. δX) is an
adapted process with values in Rd (resp. Md×n(R)). We will assume that

Assumption 1. For any T > 0, (βX , δX) are bounded on [0, T ]:

∀T > 0 ∃KT > 0, ∀t ∈ [0, T ] ‖βXt ‖ ≤ KT , ‖δXt ‖ ≤ KT a.s (H1)

where ‖.‖ denotes the Euclidean norm.

Assumption 2. µX has a density mX(ω, t, dy) with respect to the Lebesgue
measure on [0,∞[ and for any T > 0,

∃K ′
T > 0,

∫

Rd

(1 ∧ ‖y‖2)mX(., t, dy) ≤ K ′
T <∞ a.s. (H2)

Note that (H2) is only slightly stronger than stating that mX is a Lévy
kernel since in that case we already have

∫

(1 ∧ ‖y‖2)mX(., t, dy) <∞.
Let Ω0 = D([0,∞[,Rd) be the Skorokhod space of right-continuous functions

with left limits. Denote by Yt(ω) = ω(t) the canonical process on Ω0 and F0
t

its filtration. Our goal in this section is to construct a law Q on Ω0 such that
Y is a Markov process under Q and X and Y have the same one-dimensional

distributions: ∀t ≥ 0, Xt
d

= Yt. In order to this, we shall characterize Q as the
solution of a martingale problem for an appropriately chosen integro-differential
operator L. Recall that a probability measure Q on Ω0 is a solution to the
martingale problem [24, 16, 12] for (L,D(L)) if for any f ∈ D(L), the process

f(Yt) − f(Y0) −

∫ t

0

Lf(Ys) ds

is a Q-martingale. Y then has the Markov property under Q [16, 12].
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2.1 Markovian projection of a semimartingale

Theorem 1 (Markovian projection). Define, for t ≥ 0, z ∈ Rd, A ∈ B(Rd)−{0}

βY (t, z) = E
[

βXt |Xt− = z
]

;

aY (t, z) = E
[

tδXt δ
X
t |Xt− = z

]

;

mY (t, A, z) = E [mX(., t, A)|Xt− = z] .

(3)

If βY , aY and A → mY (t, A, z) are continuous in (t, z) on [0,∞[×Rd, there
exists a weak solution ( (Yt)t≥0,QX0

) for the stochastic differential equation

Yt = X0 +

∫ t

0

βY (u, Yu) du+

∫ t

0

δY (u, Yu) dBu

+

∫ t

0

∫

‖y‖≤1

y M̃Y (du dy) +

∫ t

0

∫

‖y‖>1

yMY (du dy)

(4)

where (Bt) is an n-dimensional Brownian motion, MY is an integer-valued ran-
dom measure on [0,∞[×Rd with compensator mY (t, dy, Yt−) dt, M̃Y the as-
sociated compensated random measure and δY : [0,∞[×Rd 7→ Md×n(R) is a
continuous function such that

tδY (t, z)δY (t, z) = aY (t, z)

Under QX0
, Y is a Markov process with infinitesimal generator L given, for

f ∈ C∞
0 ([0,∞[×Rd), by

Lf(t, x) = βY .∇f(t, x) +

d
∑

i,j=1

aYi,j(t, x)

2

∂2f

∂xi∂xj
(t, x)

+

∫

Rd

[f(t, x+ y) − f(t, x) − y.∇f(t, x)]mY (t, dy, x)

(5)

and the marginal distributions of Y mimick those of X:

∀t ≥ 0, Yt
d

= Xt.

We will call (Y,QX0
) the Markovian projection of X .

Proof. First, we observe that mY is a Lévy kernel : for any (z, t)

∫

Rd

(1 ∧ ‖y‖2)mY (t, dy, z) = E

[
∫

Rd

1 ∧ ‖y‖2mX(t, dy)|Xt− = z

]

<∞ a.s.

where we applied Fubini’s theorem using (H2). Assumptions (H1), (H2) imply
that βY , aY are bounded with respect to z, uniformly in t ∈ [0, T ]. Together
with the assumption of continuity of the functions βY , aY and mY with respect
to (t, z) on [0, T ] × Rd, these conditions imply the existence of a solution the
martingale problem for the operator L defined by (5) on C∞

0 ([0, T ] × Rd) [22,
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Theorem 2.2]. Let ( (Yt)t≥0,QX0
) be such a solution. (Y,QX0

) is then a weak
solution to (4) on the canonical space. To show that YT and XT have the
same marginal distributions for all T ≥ 0, we will prove that for all bounded
continuous functions f , and for all T ≥ 0 :

EP [f(XT )] = EQX0 [f(YT )]

First, let f be a C2 function with compact support on Rd. Itô’s formula yields

f(XT ) = f(X0) +

d
∑

i=1

∫ T

0

d
∑

i=1

∂f

∂xi
(Xt−) dX i

t +
1

2

∫ T

0

tr[∇2f(Xt−) aXt ] dt

+
∑

t≤T

[

f(Xt− + ∆Xt) − f(Xt−) −

d
∑

i=1

∂f

∂xi
(Xt−)∆X i

t

]

= f(X0) +

∫ T

0

∇f(Xt−).βXt dt+

∫ T

0

∇f(Xt−).δXt dWt

+
1

2

∫ T

0

tr[∇2f(Xt−) aXt ] dt

+

∫ T

0

∫

‖y‖≤1

(∇f(Xt−).y) M̃X(dt dy) +

∫ T

0

∫

‖y‖>1

(∇f(Xt−).y) MX(dt dy)

+

∫ T

0

∫

Rd

(f(Xt− + y) − f(Xt−) − y.∇f(Xt−)) MX(dt dy)

where aXt = tδXt .δ
X
t . We note that

•
∫ T

0

∫

‖y‖≤1(∇f(Xt−).y) M̃X(dt dy) is well defined since |∇f | is bounded

and y → y2 is integrable with respect to µX ; thanks to (H2) this integral
is a a martingale;

•
∫ T

0

∫

‖y‖>1
(∇f(Xt−).y) MX(dt dy) <∞ a.s. since |∇f | is bounded;

•
∫ T

0

∫

Rd (f(Xt− + y) − f(Xt−) − y.∇f(Xt−)) MX(dtdy) is well defined since:

|f(Xt− + y) − f(Xt−) − y.∇f(Xt−)| ≤ ‖∇f‖
‖y‖2

2

and y → y2 is integrable with respect to µX ;

• Since ∇f(Xt−) and δXt are uniformly bounded on [0, T ],
∫ T

0
∇f(Xt−).δXt dWt

is a martingale.
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f(XT ) = f(X0) +

∫ T

0

∇f(Xt−).βXt dt+

∫ T

0

∇f(Xt−).δXt dWt

+
1

2

∫ T

0

tr[∇2f(Xt−) aXt ] dt

+

∫ T

0

∫

‖y‖≤1

(∇f(Xt−).y) M̃X(dt dy)

+

∫ T

0

∫

Rd

(

f(Xt− + y) − f(Xt−) − 1{‖y‖≤1} y.∇f(Xt−)
)

MX(dt dy)

Taking expectations and given the above remarks, we obtain

E [f(XT )] = f(X0) + E

[

∫ T

0

∇f(Xt−).βXt dt

]

+ E

[

1

2

∫ T

0

tr[∇2f(Xt−) aXt ] dt

]

+ E

[

∫ T

0

∫

Rd

(

f(Xt− + y) − f(Xt−) − 1{‖y‖≤1} y.∇f(Xt−)
)

MX(dt dy)

]

= f(X0) + E

[

∫ T

0

∇f(Xt−).βXt dt

]

+ E

[

1

2

∫ T

0

tr[∇2f(Xt−) aXt ] dt

]

+ E

[

∫ T

0

∫

Rd

(

f(Xt− + y) − f(Xt−) − 1{‖y‖≤1} y.∇f(Xt−)
)

mX(t, dy) dtx

]

Observing that:

E

[

∫ T

0

∇f(Xt−).βXt dt

]

≤ ‖∇f‖∞ E

[

∫ T

0

‖βXt ‖ dt

]

<∞,

E

[

1

2

∫ T

0

tr[∇2f(Xt−) aXt

]

≤ ‖∇2f‖∞ E

[

∫ T

0

‖aXt ‖ dt

]

<∞,

E

[

∫ T

0

∫

Rd

|f(Xt− + y) − f(Xt−) − 1{‖y‖≤1} y.∇f(Xt−) |mX(t, dy) dt

]

≤
‖∇2f‖∞

2
E

[

∫ T

0

∫

‖y‖≤1

‖y‖2mX(t, dy) dt

]

+ 2‖f‖∞E

[

∫ T

0

∫

‖y‖>1

mX(t, dy) dt

]

< +∞,

we may apply Fubini’s theorem.

E [f(XT )] = f(X0) +

∫ T

0

E
[

∇f(Xt−).βXt
]

dt+
1

2

∫ T

0

E
[

tr[∇2f(Xt−) aXt ]
]

dt

+

∫ T

0

E

[
∫

Rd

(

f(Xt− + y) − f(Xt−) − 1{‖y‖≤1} y.∇f(Xt−)
)

mX(t, dy)

]

dt
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Conditioning on Xt− and using the iterated expectation property we obtain

E [f(XT )] = f(X0) +

∫ T

0

E
[

∇f(Xt−).E
[

βXt |Xt−

]]

dt+
1

2

∫ T

0

E
[

tr[∇2f(Xt−) E
[

aXt |Xt−

]

]
]

dt

+

∫ T

0

E

[

E

[
∫

Rd

(

f(Xt− + y) − f(Xt−) − 1{‖y‖≤1} y.∇f(Xt−)
)

mX(t, dy)|Xt−

]]

dt

= f(X0) +

∫ T

0

E
[

∇f(Xt−).βY (t,Xt−)
]

dt+
1

2

∫ T

0

E
[

tr[∇2f(Xt−) aY (t,Xt−)]
]

dt

+

∫ T

0

∫

Rd

E
[(

f(Xt− + y) − f(Xt−) − 1{‖y‖≤1} y.∇f(Xt−)
)

mY (t, dy,Xt−)
]

dt

= E [f(YT )]

if one applies also Itô formula to f(Yt). We leave this part for the reader.
Now consider a continuous bounded function g : Rd → R. There exists a
sequence (fn)n≤1 such that fn : Rd → R is a C2 function with compact sup-
port and ‖fn − f‖∞ → 0. A dominated convergence argument shows that
E[fn(YT )] = E[fn(XT )] → E[f(XT )] and E[fn(YT )] → E[f(YT )], which shows
our result.

Let us now discuss the uniqueness in law of the solution of the martingale
problem. First, note that L maps C∞

0 (Rd) into the set B(Rd) of bounded
functions:
∀f ∈ C∞

0 (Rd), ∀(t, x) ∈ [0, T ] × Rd,

|Lf(t, x)| ≤ ‖βY ‖‖∇f‖∞ +

d
∑

i,j=1

‖aYi,j‖

2
‖

∂2f

∂xi∂xj
‖

+

∫

Rd

‖f(t, x+ y) − f(t, x) − y.∇f(t, x)‖mY (t, dy, x)

≤ KT ‖∇f‖∞ +

d
∑

i,j=1

K2
T

2
‖∇2f‖∞ +

∫

Rd

‖∇f‖∞
‖y‖2

2
mY (t, dy, x)

≤ KT ‖∇f‖∞ +
d
∑

i,j=1

K2
T

2
‖∇2f‖∞ +K ′

T ‖∇f‖∞

We have shown above that any two solutions Y 1 and Y 2 of the martingale
problem have the same marginal distributions. Applying [12, Theorem 4.2],
we conclude that Y 1 and Y 2 have the same finite-dimensional distributions.
Since Y 1 and Y 2 are Markov processes, this shows the uniqueness in law of the
Markovian projection Y [12, Theorem 4.2].

Remark 2.1. In the case where there are no jumps (µX ≡ 0) we recover a result
similar to Gyöngy [13, Theorem 4.6] but under slightly different assumptions.
Namely, in [13] δX is assumed to verify the ellipticity condition

tδXt .δ
X
t ≥ αI
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for some α > 0, in which case the continuity conditions on δY , βY are not
necessary. In our case we require continuity of the coefficients but not ellipticity:
the diffusion term may be degenerate.

Remark 2.2 (Preservation of continuity). If Y mimicks X, even if we restrict
Y to be a Markov process, the continuity of paths of X do no entail the continuity
of paths of Y . Indeed, once can construct time-inhomogeneous Markovian jump
processes whose marginals are the same as Brownian motion [14]. However
our construction preserves continuity: if X has continuous paths i.e µX = 0
then Y is a diffusion process i.e. with continuous paths and coincides with the
construction given by Gyöngy [13].

Remark 2.3 (Preservation of the Markov property). If the semimartingale
X is also a strong Markov process which is quasi-left continuous (i.e. a Hunt
process) then the representation (2) implies [6, Theorems 7.9 and 7.14] that
it has infinitesimal generator (5) i.e. it is also a solution to the martingale
problem for (5). The uniqueness in law of the solution of the martingale problem
then implies that Y =d X. This shows that our construction fulfills a natural
requirement for a “projection” on the class of Markov processes: if X belongs
to this class then the it should coincide (in law) with its Markovian projection

Remark 2.4. The boundedness assumptions (H1) and (H2) may be relaxed
to local boundedness, using localization techniques developed in [22, 24]. In
the unbounded case additional conditions are needed to ensure that X does not
explode, see [24, Chapter 10]. We omit these extensions here, which are quite
technical.

2.2 Martingale-preserving property

An important property of the construction of Y in Theorem 1 is that it preserves
the (local) martingale property.

Proposition 1 (Martingale preserving property). Consider a semimartingale
X which verifies the assumptions of Theorem 1 and whose large jumps are in-
tegrable:

E[

∫

|y|>1

|y|µX(dt dy) ] <∞

If X is a martingale then its Markovian projection Y is also a (local) martingale.

Proof. If X is a martingale then the uniqueness of its semimartingale decompo-
sition entails that P(βXt +

∫

‖y‖≥1
ymX(t, dy) dt = 0 a.e.)=1 so for any T > 0,

P

(

∫ T

0

dt [βY (t, z) +

∫

‖y‖≥1

ymY (t, z, dy)] = 0

)

= 1.

The assumptions on mX , δ
X then entail that Y , as a sum of an Ito integral and

a compensated Poisson integral, is a local martingale.
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Baker and Yor [1] call a process X a 1-martingale if its one-dimensional
(i.e. marginal) distributions can be matched by those of a martingale. Our
explicit construction yields a sufficient condition for a semimartingale X to be
a 1-martingale:

Corollary 1. If

∀t ≥ 0, ∀z ∈ Rd, E

[

βXt +

∫

|y|>1

y µX(dt dy) |Xt− = z

]

= 0 (6)

then X is a 1-martingale.

3 Mimicking an Ito semimartingale

The representation (2) is not the most commonly used in applications, where a
process is represented as the solution to a stochastic differential equation driven
by a Brownian motion and a Poisson random measure:

Zt = Z0 +

∫ t

0

βZs ds+

∫ t

0

δZs dWs +

∫ t

0

∫

ψs(y) ÑZ(ds dy) (7)

where βZ and δZ are non-anticipative cadlag processes, NZ is a Poisson random
measure on [0,∞[×Rd with intensity νZ(dy) dt where

∫

Rd

(1 ∧ ‖y‖2)νZ(dy) <∞, ÑZ = NZ − νZ(dy)dt. (8)

and the random jump amplitude ψ : [0, T∗] × Ω × Rd 7→ Rd is P ⊗ B(Rd)-
measurable, where P is the predictable σ-algebra on [0, T∗] × Ω. We assume

ψt(ω, 0) = 0 ∀T > 0, E

[

∫ T

0

∫

Rd

(1 ∧ ‖ψt(., y)‖
2) νZ(dy) dt

]

<∞; (H3)

The difference between this representation and (2) is the presence of a random
jump amplitude ψt(ω, .) in (7). The relation between these two representations
for semimartingales has been discussed in great generality in [11, 18]. Here we
give a less general result which suffices for our purpose. The following result
expresses Z in the form (2) suitable for applying Theorem 1:

Lemma 1 (Absorbing the jump amplitude in the compensator). Under (H1)
and (H3)

Zt = Z0 +

∫ t

0

βZs ds+

∫ t

0

δZs dWs +

∫ t

0

∫

ψs(z) ÑZ(ds dz)

where NZ is a Poisson random measure with intensity νZ(dz)dt, can be also
represented as

Zt = Z0 +

∫ t

0

βZs ds+

∫ t

0

δZs dWs +

∫ t

0

∫

y M̃Z(ds dy) (9)
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where MZ is an integer-valued random measure on R+ × Rd with compensator
µZ(ω, dt, dy) given by

∀A ∈ B(Rd − {0}), µZ(ω, dt, A) = νZ(ψ−1
t (ω,A) )dt

where ψ−1
t (ω,A) = {z ∈ Rd, ψt(ω, z) ∈ A} denotes the inverse image of A under

the partial map.

Proof. The result can be deduced from [11, Théorème 12] but we sketch here
the proof for completeness. A Poisson random measure NZ on [0, T ] × Rd can
be represented as a counting measure for some random sequence (Tn, Un) with
values in [0, T ]× Rd.

NZ =
∑

n≥1

1{Tn,Un}, (10)

Let MZ be the integer-valued random measure defined by:

MZ =
∑

n≥1

1{Tn,ψTn(.,Un)}. (11)

µZ , the predictable compensator ofMZ is characterized by the following property
[17, Thm 1.8.]: for any positive P⊗B(Rd)-measurable map χ : [0, T ]×Ω×Rd →
R+ and any A ∈ B(Rd − {0},

E

[

∫ T

0

∫

A

χ(t, y)MZ(dt dy)

]

= E

[

∫ T

0

∫

A

χ(t, y)µZ(dt dy)

]

(12)

Similarly, for B ∈ B(Rd − {0})

E

[

∫ T

0

∫

B

χ(t, y)NZ(dt dy)

]

= E

[

∫ T

0

∫

B

χ(t, y) νZ(dy) dt

]

Using formulae (10) and (11):

E

[

∫ T

0

∫

A

χ(t, y)MZ(dt dy)

]

= E





∑

n≥1

χ(t, ψTn
(., Un))





= E

[

∫ T

0

∫

ψ
−1

t (.,A)

χ(t, ψt(., z))NZ(dt dz)

]

= E

[

∫ T

0

∫

ψ
−1

t (.,A)

χ(t, ψt(., z)) νZ(dz) dt

]

Formula (12) and the equalities above lead to:

E

[

∫ T

0

∫

A

χ(t, y)µZ(dt dy)

]

= E

[

∫ T

0

∫

ψ
−1

t (.,A)

χ(t, ψt(., z)) νZ(dz) dt

]

10



Given ψ is a predictable random function, the uniqueness of the predictable
compensator µZ (take φ ≡ Id in [17, Thm 1.8.] entails

µZ(ω, dt, A) = νZ(ψ−1
t (ω,A) )dt (13)

Formula (13) defines a new measure µZ which is a Lévy kernel (see (H3))

∫ T

0

∫

1 ∧ ‖y‖2 µZ(dy dt) =

∫ T

0

∫

1 ∧ ‖ψt(., y)‖
2 νZ(dy) dt <∞

To end the proof, we observe that, due to (H3):

∫ t

0

∫

y M̃Z(ds dy) =

∫ t

0

∫

y (MZ − µZ)(ds dy)

=

∫ t

0

∫

ψs(z) (NZ(ds dz) − νZ(dz) ds

=

∫ t

0

∫

ψs(z) ÑZ(ds dz).

In the case where ψt(ω, .) : Rd 7→ Rd is invertible and differentiable, we can
characterize the density of the compensator µ as follows:

Lemma 2 (Differentiable case). If the Lévy measure νZ has a density nZ(z)
and if ψt(ω, .) : Rd 7→ Rd has a differentiable inverse i.e. there exists

φ : [0, T∗] × Ω × Rd 7→ Rd

such that

• φ is predictable i.e. P ⊗ B(Rd)-measurable.

• φt(ω, .) ∈ C1(Rd,Rd)

• ∀t ∈ [0, T ∗], ∀z ∈ Rd, φt(ω, ψt(ω, z)) = z.

then Z, given in (7), has the representation

Zt = Z0 +

∫ t

0

βZs ds+

∫ t

0

δZs dWs +

∫ t

0

∫

y M̃Z(ds dy)

where MZ is an integer-valued random measure with compensator

µZ(ω; dt dy) = |det∇φt(ω, y)| nZ(φt(ω, y))dtdy

where ∇yφt denotes the Jacobian matrix of φt(ω, .).

11



Proof. We recall from the proof of Lemma 1:

E

[

∫ T

0

∫

A

χ(t, y)µZ(dt dy)

]

= E

[

∫ T

0

∫

ψ
−1

t (.,A)

χ(t, ψt(., z))nZ(z) dt dz

]

We then proceed to the change of variable z = φt(., y):

E

[

∫ T

0

∫

ψ
−1

t (.,A)

χ(t, ψt(., z))nZ(z) dt dz

]

= E

[

∫ T

0

∫

A

χ(t, y) |det∇φt(., y)| nZ(φt(., y))dtdy

]

The density appearing in the right hand side is predictable since φ does. By
uniqueness of the predictable compensator µZ , we get:

µZ(ω; dt dy) = |det∇φt(ω, y)| nZ(φt(ω, y))dtdy.

To combine Lemma 2 and Theorem 1 we make a further assumption:

Assumption 3. The Lévy measure νZ admits a density nZ(y) with respect to
the Lebesgue measure on Rd and:

∀T > 0, ∃K ′
T > 0

∫ T

0

∫

‖y‖>1

1 ∧ ‖ψt(., y)‖
2 nZ(y) dy dt < K ′

T a.s (H3b)

Theorem 2. Let (Zt)

Zt = Z0 +

∫ t

0

βZs ds+

∫ t

0

δZs dWs +

∫ t

0

∫

ψs(y) ÑZ(ds dy),

where ψt(ω, .) : Rd 7→ Rd is invertible and differentiable with inverse φt(ω, .),
βZ and δZ and satisfies Assumption (H1) and νZ Assumption (H3b).
Define

βY (t, z) = E
[

βZt |Zt− = z
]

;

aY (t, z) = E
[

tδZt δ
Z
t |Zt− = z

]

;

mY (t, y, z) = E [nZ(φt(y))|det∇φt(y)||Zt− = z]

(14)

Consider the stochastic differential equation

Yt = Z0 +

∫ t

0

βY (u, Yu) du +

∫ t

0

δY (u, Yu) dBu +

∫ t

0

∫

y M̃Y (du dy) (15)

where (Bt) is a Brownian motion, MY is an integer-valued random measure
on [0, T ] × R with compensator µY (ω; dt dy) = nY (t, y, Yt−) dt dy and M̃Y the
associated compensated random measure and δY : [0,∞[×Rd 7→ Md×n(R) is a
measurable function such that

tδY (t, z)δY (t, z) = aY (t, z).

12



If the functions βY , aY and mY are continuous in (t, z) on [0, T ]×Rd, then (15)
defines uniquely the law ,QZ0

of a Markov process ((Yt)t∈[0,T ], ,QZ0
), defined as

the solution to the martingale problem on C∞
0 (Rd) for the operator

Lf(t, x) = βY .∇f(t, x) +

d
∑

i,j=1

aYi,j(t, x)
2

2

∂2f

∂xi∂xj
(t, x)

+

∫

Rd

[f(t, x+ y) − f(t, x) − y.∇f(t, x)]nY (t, y, x) dy

(16)

and (Yt)t≥0 has the same marginal distributions as (Zt)t≥0:

∀t ≥ 0 Yt
d

= Zt.

Proof. We first use Lemma 2 to obtain the new representation of Z:

Zt = Z0 +

∫ t

0

βZs ds+

∫ t

0

δZs dWs +

∫ t

0

∫

y M̃Z(ds dy)

Then, we observe that :

∫ t

0

∫

y M̃Z(ds dy) =

∫ t

0

∫

‖y‖≤1

y M̃Z(ds dy) +

∫ t

0

∫

‖y‖>1

y [MZ(ds dy) − µZ(ds dy)]

=

∫ t

0

∫

‖y‖≤1

y M̃Z(ds dy) +

∫ t

0

∫

‖y‖>1

yMZ(ds dy) −

∫ t

0

∫

‖y‖>1

y µZ(ds dy)

where the terms above are well-defined thanks to (H3b). Lemma 2 leads to:

∫ t

0

∫

‖y‖>1

y µZ(ds dy) =

∫ t

0

∫

‖y‖>1

‖ψs(., y)‖
2 nZ(y) dy ds

Hence:

Zt = Z0 +

[

∫ t

0

βZs ds−

∫ t

0

∫

‖y‖>1

‖ψs(., y)‖
2 nZ(y) dy ds

]

+

∫ t

0

δZs dWs

+

∫ t

0

∫

‖y‖≤1

y M̃Z(ds dy) +

∫ t

0

∫

‖y‖>1

yMZ(ds dy)

This representation has the form (2) and (H1) and (H3b) guarantee that the
characteristics of Z also verify the boundedness assumptions (H1) and (H2). The
result is then obtained by applying Theorem 1 to the semimartingale Z.

4 Forward equations for semimartingales

An important property of continuous-time Markov processes is their link with
partial (integro-)differential equation (PIDE) which allows to use analytical
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tools for studying their probabilistic properties. In particular the transition
density of a Markov process solves the forward Kolmogorov equation (or Fokker-
Planck equation) [23]. The above results allow us to derive a forward PIDE for
semimartingales: we show that under the assumptions of Theorem 1, the flow
t 7→ pXt (.) of marginal distributions of a semi-martingale X can be represented
as the solution to a partial (integro-differential) equation:

Theorem 3 (Kolmogorov Forward equation). Let X be a semimartingale given
by (2) and denote pXt (dx) the law of Xt. Under the assumptions of Theorem 1,
t 7→ pXt is a weak solution, in the sense of distributions, of the forward equation:

∂pXt
∂t

= L⋆t . p
X
t (17)

where L⋆ is the Fokker-Planck operator, defined as the adjoint of (5):

∀g ∈ C∞
0 (Rd,R),

L⋆t g(x) = −∇
[

βY (t, x)g(x)
]

+ ∇2[
aY (t, x)

2
g(x)] (18)

+

∫

Rd

[

g(x− z)mY (t, z, x− z) − g(x)mY (t, z, x) − 1‖z‖≤1z.∇x[g(x)mY (t, dz, x)]
]

.

where the coefficients βY , aY ,mY are defined as in (3).

Proof. Under the assumptions of Theorem 1, X has the same marginals as Y
where ((Yt)t≥0,Q

(t0,x0)) is a solution of the martingale problem on C∞
0 (Rd) with

initial condition Yt0 = y0 for the operator

Ltf(x) = βY (t, x)∇f(x) + tr[
aY (t, x)

2
∇2f(x)]

+

∫

R

[f(t, x+ y) − f(t, x) − 1{|y|≤1} y
∂f

∂x
(t, x)]mY (t, dy, x),

(19)

Let pt0,T (x0, dy) be the law of YT under Qt0,y0 . The mimicking property of Y
implies that

pt0,T (x0, dy) = pXT (dy)

so it suffices to show that pt0,T (x0, .) verifies (16). Recall the Chapman-Kolmogorov
equation for p:

pt0,T (x0, dy) =

∫

Rd

pt,T (z, dy)pt0,t(x0, dz).

So for f ∈ C∞
0 ([0,∞[×Rd)

1

T − t
EQt0 ,y0

[f(YT ) − f(Yt)|Yt0 = y0] =

∫

Rd

pt0,t(x0, dz)

∫

Rd

f(y)
pt,T (z, dy) − ǫz(dy)

T − t

where ǫz(dy) denotes a point mass at y. Since f ∈ C∞
0 ([0,∞[×Rd) ⊂ dom(Lt),

∫

Rd

f(y)
pt,T (z, dy) − ǫz(dy)

T − t

T↓t
→ Ltf(z)

14



so

1

T − t
EQt0,y0

[f(YT ) − f(Yt)|Yt0 = y0]
T↓t
→

∫

Rd

pt0,t(x0, dz)Ltf(z) =

∫

Rd

pXt (dz)Ltf(z)

Viewing pXt as an element of the dual of C∞
0 (Rd) i.e. a Schwartz distribution,

we have

∀f ∈ C∞
0 (Rd), <

pXT − pXt
T − t

, f >
T→t
→ < pXt , Ltf >=< L∗

t p
X
t , f >

where L∗
t is the adjoint of Lt and < ., . > is the duality product. pX is thus a

weak solution, in the sense of distributions, of

∂pXT
∂T

= L∗
t p
X
T

We now compute L∗
t f for f ∈ C∞

0 (Rd).

∀f ∈ C∞
0 (Rd) ∀t ≥ t0 f(Yt) −

∫ t

t0

Lsf(Ys−) ds

is a Qt0,y0-martingale, hence :

EQt0 ,y0

[f(YT ) − f(Yt)|Yt0 = y0] = EQt0,y0

[

∫ T

t

Lf(Ys−) ds

]

Using Fubini

EQt0 ,y0

[f(YT ) − f(Yt)|Yt0 = y0] =

∫ T

t

ds

∫

pt0,s(y0, dx)Lf(x)

For z ∈ Rd, define the translation operator τz by τzf(x) = f(x+ z). Then
∫

pt0,s(y0, dx)Lsf(x)

=

∫

pt0,s(y0, dx)
[

βY (s, x)∇f(x) +
1

2
tr[aY∇2f(x)

+

∫

|z|>1

(τzf(x) − f(x))mY (s, dz, x)

+

∫

|z|≤1

(τzf(x) − f(x) − z
∂f

∂x
(t, x))mY (s, dz, x)

]

=

∫

[

− f(x)
∂

∂x
[βY (s, x)pt0,s(y0, dx)] + f(x)

∂2f

∂x2
[
aY (s, x)

2
pt0,s(y0, dx)]

+

∫

|z|>1

f(x)(τ−z(pt0,s(y0, dx)mY (s, dz, x)) − pt0,s(y0, dx)mY (s, dz, x))

+

∫

|z|≤1

f(x)(τ−z(pt0,s(y0, dx)mY (s, dz, x)) − pt0,s(y0, dx)mY (s, dz, x))

− z
∂

∂x
(pt0,s(y0, dx)mY (s, dz, x))

]
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Dividing by T − t and taking T − t→ 0, we obtain

1

T − t
EQt0,y0

[f(T, YT ) − f(t, Yt)|Yt0 = y0] →

∫

f(T, x)L⋆.pt0,T (y0, dx)

where L∗ is given by (18).

5 Examples

We now give two examples of stochastic models used in finance, where Marko-
vian projections can be characterized in a more explicit manner than in the
general results above.

5.1 Marked point processes

We first consider the case of a multivariate marked point process [8] with mark
space Rd. Using the notations of Section 2, let MX(dt dx) be an integer-valued
random measure whose compensator µX(dt dx;ω) = mX(t, dx;ω) dt is assumed
to be a finite measure whose mass

λt(ω) =

∫

Rd−{0}

mX(t, dx;ω)

represents the (random) jump intensity of the point process Nt = MX([0, t] ×
Rd). Denote by T1 ≤ T2 ≤ .. the jump times of N . The process

Xt =

∫ t

0

∫

Rd−{0}

xMX(dt dx)

is then a marked point process and may be represented as

Xt =

Nt
∑

k=1

Zk

where the “mark” Zk is distributed according to

Ft(dx;ω) =
mX(t, dx;ω)

λt(ω)

Marked point processes form an important subclass of the processes con-
sidered in section 2 and the corresponding Markovian projection results are of
interest in queuing theory and credit risk modeling. Markovian projection of
point processes was first discussed in the case of queues by Brémaud [4, p. 30]
under the name of “first order equivalence” of queues. A mimicking theorem
for marked point processes with IID marks (i.e. Ft(dx;ω) = F (dx)) is given in
[7]. We recover here these results as a special case of Theorem 1, which covers
the case of arbitrary (i.e. not necessarily independent) marks:
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Proposition 2 (Markovian projection of a marked point process). There exists
a weak solution to the stochastic differential equation

Yt =

∫ t

0

∫

Rd

xMY (dt dx)

where MY (dt dx) is an integer-valued random measure with compensatormY (t, dx;Yt−) dt
where

∀A ∈ B(Rd) mY (t, A; z) = E[mX(t, A, .)|Xt− = z]

The solution is a Markovian marked point process with intensity

λY (t, z) = E[λt|Xt− = z] (20)

and mark distribution FY (t, Yt−, .) where

FY (t, z; dx) =
mY (t, dx, z)

λY (t, z)
(21)

which mimicks the marginal distributions of X: ∀t ≥ 0, Xt
d

= Yt.

Proof. (Yt) is built as the Markovian projection of (Xt) defined in Theorem 1.
Since mX is a finite measure, this entails that mY is also a finite measure. The
intensity λY = mY (Rd − {0}) then satisfies :

λY (t, z) =

∫

Rd−{0}

mY (t, dx; z)

= E

[

∫

Rd−{0}

mX(t, dx, .)|Xt− = z

]

= E[λt|Xt− = z]

where the Fubini theorem is used using the fact that mX is a finite measure.
This ends the proof.

5.2 Time changed Lévy processes

Models based on time–changed Lévy processes have been the focus of much
recent work especially in mathematical finance [5]. Let Lt be a Lévy process,
(b, σ2, νL) be its characteristic triplet, NL its jump measure. Define

Xt = LTt
Tt =

∫ t

0

θsds

where (θt) is a locally bounded Ft-adapted positive cadlag process, interpreted
as the rate of time change.
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Theorem 4 (Markovian projection of time-changed Lévy processes). Let L be a

scalar Lévy process with triplet (b, σ2, νL) and let Xt = L(
∫ t

0
θsds) where θt > 0

is a positive semimartingale. Define

α(t, x) = E[θt|Xt− = x]

and suppose that α(t, z) is continuous in (t, z) on [0,∞× R. Then

• (Xt) has the same marginals as (Yt), defined as the weak solution of

Yt = X0 +

∫ t

0

σ
√

α(s, Ys−)dBs +

∫ t

0

bα(s, Ys−)ds

+

∫ t

0

∫

|z|≤1

zÑ(ds dz) +

∫ t

0

∫

|z|>1

zN(ds dz)

where N is an integer-valued random measure with compensator ν(dt dz;ω) =
α(t, Yt−(ω) ) νL(dz) dt.

• The marginal distribution pXt of Xt is a weak solution of the forward equa-
tion:

∂pXt
∂t

= L⋆t . p
X
t

where, L∗
t is given by

L⋆t g(x) = −b
∂

∂x
[α(t, x)g(x)] +

σ2

2

∂2

∂x2
[α2(t, x)g(x)]

+

∫

Rd

νL(dz)

[

g(x− z)α(t, x− z) − g(x)α(t, x) − 1‖z‖≤1z.
∂

∂x
[g(x)α(t, x)]

]

.

Proof. Consider the Lévy-Ito decomposition of L:

Lt = bt+ σWt +

∫ t

0

∫

|z|≤1

zÑL(dsdz) +

∫ t

0

∫

|z|>1

zNL(dsdz)

X is then expressed as

Xt = X0 + σW (Tt) + bTt

+

∫ Tt

0

∫

|z|≤1

zÑL(ds dz) +

∫ Tt

0

∫

|z|>1

zNL(ds dz)

W (Tt) is a continuous martingale with quadratic variation Tt =
∫ t

0 θsds so, if B
is a Brownian motion independent of Z, we have

W (Tt)
d
=

∫ t

0

√

θsdBs
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Hence Xt can be written as :

Xt = X0 +

∫ t

0

σ
√

θs dBs +

∫ t

0

bθs ds

+

∫ t

0

∫

|z|≤1

zθs ÑL(ds dz) +

∫ t

0

∫

|z|>1

zθsNL(ds dz)

Using the notations of Theorem 1,

βXt = b θt δXt = σ
√

θt mX(t, y) = θt νL(dy).

Assumption (H1) and (H2) are satisfied, and :

βY (t, z) = E
[

βXt |Xt− = z
]

= b α(t, z);

δY (t, z) = E
[

δXt |Xt− = z
]

= σ
√

α(t, z);

mY (t, y, z) = E [mX(t, y)|Xt− = z] = α(t, z)νL(dy).

are all continuous in (t,z) on [0,∞[×R, an application of Theorem 1 and Theo-
rem 3 yields the result.

The impact of the random time change on the marginals can be captured
by making the characteristics state dependent

( bα(t,Xt−), σ2α(t,Xt−), α(t,Xt−)νZ )

by introducing the same adjustment factor α(t,Xt−) to the drift, diffusion co-
efficient and Lévy measure. In particular if α(t, x) is affine in x we get an affine
process [9] where the affine dependence of the characteristics with respect to the
state are restricted to be colinear, which is rather restrictive. This remark shows
that time-changed Lévy processes, which in principle allow for a wide variety of
choices for θ and L, may not be as flexible as apparently simpler affine models
when it comes to reproducing marginal distributions.
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cesses having an Itô differential, Probab. Theory Relat. Fields, 71 (1986),
pp. 501–516.

[14] K. Hamza and F. Klebaner, A family of non-gaussian martingales with
gaussian marginals, working paper, Monash University, 2006.

[15] F. Hirsch and M. Yor, Unifying constructions of martingales associated
with processes increasing in the convex order, via lévy and sato sheets,
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