
HAL Id: hal-00425210
https://hal.science/hal-00425210

Submitted on 20 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting the changeability of SIPN-based logic
control algorithms by verification and validation

Stéphane Klein, Georg Frey, Jean-Jacques Lesage, Lothar Litz

To cite this version:
Stéphane Klein, Georg Frey, Jean-Jacques Lesage, Lothar Litz. Supporting the changeability of SIPN-
based logic control algorithms by verification and validation. IMACS-IEEE int. conf. on Computa-
tional Engineering in Systems Applications (CESA’03), Jul 2003, Lille, France. paper S2-I-04-0176.
�hal-00425210�

https://hal.science/hal-00425210
https://hal.archives-ouvertes.fr

SUPPORTING THE CHANGEABILITY OF SIPN-BASED LOGIC CONTROL
ALGORITHMS BY VERIFICATION AND VALIDATION

Stéphane Klein1,3, Georg Frey2, Jean-Jacques Lesage3 and Lothar Litz1
1 Kaiserslautern University of Technology, Institute of Automatic Control, PO Box 3049,

D-67653 Kaiserslautern, Germany
e-mail: {sklein, litz}@eit.uni-kl.de

2 Kaiserslautern University of Technology, Juniorprofessorship for Agentbased Automation, PO Box 3049,
D-67653 Kaiserslautern, Germany

e-mail: frey@eit.uni-kl.de
3Universitary Laboratory in Automated Production Research (LURPA), Ecole Normale Supérieure de Cachan

61, avenue du Président Wilson, F-94235 Cachan Cedex, France
e-mail: {klein, lesage}@lurpa.ens-cachan.fr

ABSTRACT

In this paper the advantages of verification and validation
to support changes of an existing PLC program are shown.
The controller is defined using Signal Interpreted Petri Nets
(SIPN) and verification and validation are performed using
symbolic model-checking. The main focus of this paper is
to show the process and the benefits of verification and
validation for the reliability of the control algorithm when
specified changes are to make. This is clarified by the ex-
ample of a heating tank controller throughout the text.

1 INTRODUCTION
In industrial applications, PLC programs are often modified
to take into account changes of the plant or of the require-
ments. Using formal methods to develop control algorithms
enhances their changeability. Formal methods like verifica-
tion and validation (V&V), together with appropriate for-
mal algorithm descriptions like SIPN prove the require-
ments to be fulfilled.
This paper points out how V&V can be used to modify suc-
cessfully an existing control algorithm. Indeed it will be
shown that modifying a correct algorithm often leads to
formal and functional requirements no longer to be ful-
filled. Using V&V, the errors can be found and solved be-
fore the control algorithm is implemented on the PLC.
This paper is organized as follows. In section 2, the SIPN
concept is briefly presented and used to design a first con-
trol algorithm for a heating tank. Section 3 discusses verifi-
cation, validation and the model-checking technique. They
are applied on the former designed SIPN in section 4. In
section 5 the informal specification is extended and the al-
gorithm is redesigned. It is shown how to develop the new
algorithm step by step and how to ensure the quality of the
resulting algorithm by verification and validation. Finally,
section 6 concludes the paper.

2 SIGNAL INTERPRETED PETRI NETS

2.1 Definition
Signal Interpreted Petri Nets (SIPN) are an extension of
Condition/Event Petri nets and allow the handling of binary
I/O-signals in a well-defined way. They are well suited to
design control algorithms for discrete event systems result-
ing in languages standardized in IEC 61131-3. SIPNs are
defined as a 9-tupel

SIPN=(P,T,F,M0,I,O,C,A,Ω)
with the sets P of places, T of transitions, F of arcs and an
initial binary marking M0 like in ordinary C/E Petri net. To
become SIPN, the extensions are:
- Transitions are associated to a set C of firing conditions

as Boolean functions of the input variables I.
- Places are associated with a mapping A of actions de-

fining a subset of output signals O. Marked places de-
fine a subset of output signals

- A Signal Algebra Ω defines how to handle the output
subsets of all binary marked places.

For a more formal definition of SIPN, see [1].

2.2 Dynamic behavior
The dynamic Behavior of an SIPN is given by the firing
process defined by four rules, see also Figure 1:
1. A transition is enabled, if all its pre-places are marked

and firing ensures binary marking of all its post-places.
2. A transition fires immediately, if it is enabled and its fir-

ing condition is fulfilled.
3. All transitions that can fire and are not in conflict with

other transitions fire simultaneously.
4. The firing process is iterated until a stable marking is

reached (i.e. until no transition can fire anymore). Since
firing of a transition is supposed to take no time, itera-
tive firing is interpreted as simultaneous, too. For that
reason, no changes of input signals may occur during
the firing process.

After a new stable marking is reached, the output signals
are computed according to the marking and the signal alge-
bra.

Read input signals

Compute firable
transitions

Fire transitions AND
Set new marking

Compute output
signals

Stability check

Non stable
marking

Stable
marking

Figure 1. Evolution algorithm of an SIPN.

2.3 Example
As an example for controller design with SIPN, a heating
tank is used. A description of the tank is given in Figure 2
and the signals are defined in Table 1 and Table 2.

LIS+
01

LIS+
02

M
US 1

Heating
Vapor

Product In

Product Out

US 1 UV
1.3

US 1

US 1UV
1.1

US 1UV
1.2

TIS+
01

US 1

Valve 1

Valve 2

Valve 3

US 1

Figure 2. Description of the heating tank

Table 1. Table of input signals
Name Description
i1 Lower level sensor
i2 Upper level sensor
i3 Temperature sensor
i4 Start button

Table 2. Table of output signals
Name Description
o1 Valve 1 (filling)
o2 Valve 2 (emptying)
o3 Stirring motor
o4 Valve 3 (Heating)

The informal specification is the description of the client’s
requirements in natural language. These are:
After pressing the start button the tank is filled. The full
tank is heated until the desired temperature is reached.

Then the heated tank is emptied. During the whole process
the contents are stirred.

2.4 Design of the control algorithm
Based on the informal specification, the control algorithm is
designed using SIPN. This algorithm is given in Figure 3.

P1 ・Stand by
(0, 0, 0, 0)

P2
Stirring

(-, -, 1, -)

P3 ・Filling
(1, 0, -, 0)

P4 ・Heating
(0, 0, -, 1)

P5 ・Emptying
(0, 1, -, 0)

T1 ・Start
i4 & !i1 & !i2

T2
Temp. OK
i2 & i3

T3 -Temp. low
i2 & !i3

T5 - Tank is empty
!i1 & !i2 & !i4

T4 - Temp. OK
i2 & i3

Figure 3. Control algorithm of the heating tank (Version 1)
Starting form the initial place P1, transition T1 can fire if
the tank is empty (!i1), not full (!i2) and the start button (i4)
is pressed. After this transition has fired, the stirring motor
is set ON (o3 = 1) in place P2 and the tank is being filled
(o1 = 1) in place P3. Once the tank is full and the tempera-
ture of its contents is beyond the desired limit (i3 = 1), tran-
sition T2 fires and the tank is emptied (o2 = 1) in place P5.
If the temperature of the full tank is below the limit, the
contents are heated (o4 = 1) in place P4 before the tank is
emptied in P5. When the tank is empty, transition T5 fires
and the initial state where al the actions are set to 0 is
reached again.

3 VERIFICATION AND VALIDATION

3.1 Definition
Verification and Validation are often confused. Therefore,
let us remind the definitions given by Boehm [2]:

“Verification: am I building the product right ?”
“Validation: am I building the right product ?”

Hence, according to [3], the verification is the proof that the
internal semantics of a model is correct without regard to
the modeled system whereas the validation determines if
the model agrees with the designer’s intention.
In [1], four properties for the formal correctness of an al-
gorithm are defined. Besides completeness they ensure the
deterministic behavior of the control algorithm, which can
be defined in an informal way as follows:
Every control algorithm must have deterministically de-
fined dynamics and I/O-behavior. If it had not, its behavior
in a given situation would depend on implementation as-
pects. In detail, this means that in every state of the control-

ler the reaction on possible input signals is defined and a
non-contradictory value for each output signal is specified.
Properties like these (verification part) are widely accepted
as mandatory and can be found in many works on formal
methods in control. They can be automatically formulated
for every designed SIPN.
Properties to express that the designed SIPN fulfills the
customer’s needs are problem-dependent (validation part).
Hence, there is no way to formulate them automatically.
They must be generated anew for every problem.
Nevertheless, with symbolic model-checking [4] the same
method can be used to perform V&V.

3.2 Model-checking
Model-Checking is a technique in which a finite state
model of the system is built and the expected properties of
the system are checked on this model [5]. The system is
modeled as a finite state machine, whose evolution is given
in an algorithm and the properties are expressed in a tempo-
ral logic. A search procedure (exhaustive state space
search) is then used to check whether the expected proper-
ties hold on the finite state transition system or not. Figure
4 shows the tasks that have to be done within the model-
checking procedure.
In this work, the symbolic model-checker SMV [6] is used
to perform V&V.

verdict (true / false) and diagnosis (counterexample as a trace

Formalization

V&V
Does SIPN run
on E holdϕ ?

Model-checking tool

Control Algorithm
(SIPN)

Properties to
prove

ϕ
Temporal Logic

Formulae

Evolution rules

Evolution
Algorithm

E

Figure 4. Model-checking process.

3.3 Temporal logic formulae
The properties that are to be checked have to be written in
temporal logic (TL) [4]. This is a special logic tailored for
statements and reasoning which involve the notion of order
in time. In TL, the parameter t (time) is not explicitly pre-
sent in the formulae. TL offers concepts immediately ready
for use. Its operators mimic linguistic constructions (the ad-
verbs “always”, “until”, the tenses of verbs, etc.) with the
result that natural language and their TL formalization are
fairly close. The SMV model-checker uses Computation
Tree Logic (CTL), which is together with PLTL (Proposi-
tional Linear Temporal Logic) the most used TL in model-
checking tools.
An application of V&V on SIPN using model-checking
with CTL formulae is described in [7].

4 V&V PROCESS BY EXAMPLE

4.1 Specification
To apply V&V on the controller designed in sub-section
2.4, formal properties have to be derived by formalization
of all the informal specifications given in sub-sections 2.3
and 3.1. The specification in 2.3 was also used to formalize
the control algorithm by SIPN. It may seem to be redundant
having two different formalization steps. But two formal-
izations performed by different methods (SIPN and TL)
considerably enhance the reliability. For it is very improb-
able to make the same mistake twice following the com-
pletely different attempts of SIPN and TL.
To be used in V&V with model-checking, the SIPN has to
be translated into SMV input code. This translation consid-
ers the structure and the evolution of the SIPN, as well. To
reproduce the evolution algorithm of an SIPN (Figure 1), a
variable eoc (End of Cycle) [8] is introduced. It is set to 1 as
soon as a stable marking is reached. No more transition can
fire in that case without changing of the input values.
Hence this variable when remaining false all the time de-
tects infinite loops in the control algorithm, called unstable
marking. During V&V eoc is used to check properties in-
volving output signals since these are only set in stable
markings. For more details see [9].

4.2 Verification
Verification has to make sure hat the designed SIPN be-
haves in a deterministic way yielding the properties:
1. The algorithm always produces stable markings what-

ever happens in the future. In TL, this is
AG EF eoc

2. The output signals are correctly defined, meaning that
in every stable marking an output signal oi is set either
to 0 or to 1 (XOR).
AG ! (eoc & ((set_oi & reset_oi) | (!set_oi & !reset_oi)))

3. There are no transition conflicts. When there is a
choice between several ways to mark or unmark a
place, only one of them must be possible:
AG ! (T2 & T3)

These properties ensure that the designed SIPN has a de-
terministic behavior. Some further properties about the be-
havior of the SIPN can be added. These are:
4. The algorithm is reversible, i.e. the initial marking can

always be reached again:
AG EF m0

5. The SIPN is live, i.e. every part of the controller can be
executed again and again:
AG ((EF T1) | (EF T2) | (EF T3) | (EF T4) | (EF T5))

6. The algorithm is deadlock free. This means that the al-
gorithm never gets stuck without any way to evolve:
AG EF (T1 | T2 | T3 | T4 | T5)

Using SMV to perform verification, the six properties were
all verified on the given SIPN.

4.3 Validation
The validation has to check whether the designed control
algorithm fulfills the functional specifications given in 2.3
in an informal way. Formalization means translating them
into temporal logic formulae. Let us consider two proper-
ties:
Property 1: The contents of the tank remain stirred during
the whole process.
First “during the whole process” has to be defined. In this
case, it means during the phases where the tank is filled,
heated and emptied. Therefore, we can express this prop-
erty as follows: When the tank is being filled, heated or
emptied, the stirring motor has to be turned on. In TL, the
following formula results:
AG ((o1 | o2 | o4) -> o3)

Property 2: When the start button is pressed in the initial
state the tank must be filled.
Here the “initial state” has to be interpreted in a more tech-
nical sense. The tank has also to be empty at the beginning
of the cycle. Furthermore, outputs are only computed after a
stable marking has been reached. Hence the property can
only be checked on stable markings. This results in:
AG (m0 & !i1 & !i2 & i4 & eoc -> AX o1)

After the translation of the SIPN, the validation is per-
formed using SMV and does not show any errors. As the
SIPN has been verified and validated, it can now be imple-
mented on a PLC.

5 CHANGEABILITY AND V&V

5.1 General problem
Any changes of the SIPN, e.g. adding places and transitions
modify its behavior. Therefore it has to be ensured anew
that the modified SIPN is still formally correct and that it
fulfills the new set of requirements. Normally, this results
in cycles of SIPN changes with a new verification and vali-
dation steps until the results all become true.

5.2 Extended specification
To discuss the changeability, the specification given so far
is changed by adding hardware and a new requirement. A
Stop button (i5) is implemented and the informal specifica-
tion is extended as follows:
After pressing the stop button, the chemical process has to
be stopped. To start again, the start button has to be
pressed. The tank is then emptied before a new cycle can
begin.

5.3 SIPN Redesign with V&V
SIPN Version 2
To take this new requirement into account, the original
SIPN of section 2.4 is modified, see Figure 5. A place has
been inserted in which the filling, the heating and the emp-
tying can be stopped. Thus the chemical process is sup-
posed to be stopped.

Before the functional requirements are checked, the SIPN
must be declared as formally correct. Like the former de-
signed SIPN, this one has to fulfill the standard expecta-
tions formulated in section 4.1. Performing verification on
this SIPN does not reveal any errors.
After extending the expectations, new properties have been
added. That means that the redesigned control algorithm
has to fulfill the properties given in section 4.3 as well as
the following one:
Property 3: When the stop button is pressed then the proc-
ess is stopped. That means that in all the stable markings
reached after pressing the stop button, the actuators must be
set to 0. In TL it can expressed as:
AG (i5 & eoc -> AX (!o1 & !o2 & !o3 & !o4)

P1 – Stand by
(0, 0, 0, 0)

P2
Stirring

(-, -, 1, -)

P3 – Filling
(1, 0, -, 0)

P4 – Heating
(0, 0, -, 1)

P5 – Emptying
(0, 1, -, 0)

P6 – Stop
(0, 0, -, 0)

T1 – Start
i4 & !i1 & !i2

T2
Temp. OK

i2 & i3 & !i5

T3 - Temp. low
i2 & !i3 & !i5

T5 - Tankis empty
!i1 & !i2 & !i4 & ~i5

T6 - Stop
i5

T4 - Temp. OK
i2 & i3 & !i5T7 - Stop

i5

T8 - Stop
i5

T9 - Start
i4 & !i5

Figure 5. SIPN with extended specification (Version 2)
Performing validation with the newly defined algorithm
tells us that the old properties are fulfilled but that the new
one is not. Table 3 shows a sequence leading to a state
where the property does not hold.
In state 4, i5 and eoc hold but in the next stable state (state
5), o3 still has value 1. When stop is pressed while place P3
is active, the filling is stopped but the stirring still remains.
Indeed there is no stop transition leading from P2 to a place
where o3 is reset. In this interpretation the chemical process
is supposed to be stopped when filling, heating and empty-
ing are stopped. During the formalization of the corre-
sponding TL formula, The process has to be stopped has
been interpreted differently, “all actions are stopped”.

SIPN Version 3
After redefining the requirement more precisely, the second
way (all actions stopped) is chosen. Hence the SIPN has to
be modified again. In Figure 6, a transition T10 leading
from P2 to P6 has been added.

Before looking at functional properties the formal ones
have to be checked again. As a result of verification, SMV
shows a conflict between transitions T6 and T10 as illus-
trated in the counter-example given in Table 4.

Table 3. Counter-example for property 3
State 1 2 3 4 5
P1 1 1 0 0 0
P2 0 0 1 1 1
P3 0 0 1 1 0
P4 0 0 0 0 0
P5 0 0 0 0 0
P6 0 0 0 0 1
o1 0 0 1 0 0
o2 0 0 0 0 0
o3 0 0 1 1 1
o4 0 0 0 0 0
i1 0 0 0 0 0
i2 0 0 0 0 0
i3 0 0 0 0 0
i4 0 1 1 1 0
i5 0 1 1 1 0
T1 0 1 0 0 0
T2 0 0 0 0 0
T3 0 0 0 0 0
T4 0 0 0 0 0
T5 0 0 0 0 0
T6 0 0 1 0 0
T7 0 0 0 0 0
T8 0 0 0 0 0
T9 0 0 0 0 0
eoc 0 0 0 1 1

P1 ・Stand by
(0, 0, 0, 0)

P2
Stirring

(-, -, 1, -)

P3 ・Filling
(1, 0, -, 0)

P4 ・Heating
(0, 0, -, 1)

P5 ・Emptying
(0, 1, -, 0)

P6 ・Stop
(0, 0, 0, 0)

T1 ・Start
i4 & !i1 & !i2

T2
Temp. OK

i2 & i3 & !i5

T3 - Temp. low
i2 & !i3 & !i5

T5 - Tank is empty
!i1 & !i2 & !i4 & ~i5

T6 - Stop
i5

T4 - Temp. OK
i2 & i3 & !i5T7 - Stop

i5

T8 - Stop
i5

T10 - Stop
i5

T9 - Start
i4 & !i5

Figure 6. Modified SIPN (Version 3)

When P2 and P3 are marked and the stop button is pressed,
we can not decide whether T6 or T10 fires. The designed
algorithm is not deterministic. This clearly is a design error.

Table 4. Counter-example for the conflict between T6 and T10
State 1 2 3
P1 1 1 0
P2 0 0 1
P3 0 0 1
P4 0 0 0
P5 0 0 0
P6 0 0 0
i1 0 0 0
i2 0 0 0
i3 0 0 0
i4 0 1 1
i5 0 1 1
T1 0 1 0
T2 0 0 0
T3 0 0 0
T4 0 0 0
T5 0 0 0
T6 0 0 1
T7 0 0 0
T8 0 0 0
T9 0 0 0
T10 0 0 1
eoc 1 0 0

SIPN Version 4
As a solution, a new place P7 where the stirring motor is set
to 0 is added, see Figure 7. Again this SIPN has to be veri-
fied before we can perform validation. Now, SMV tells us
that the SIPN has a deadlock.

P1 ・Stand by
(0, 0, 0, 0)

P2
Stirring

(-, -, 1, -)

P3 ・Filling
(1, 0, -, 0)

P4 ・Heating
(0, 0, -, 1)

P5 ・Emptying
(0, 1, -, 0)

P6 ・Stop
(0, 0, -, 0)

P7 ・Stop
(-, -, 0, -)

T1 ・Start
i4 & !i1 & !i2

T2
Temp. OK

i2 & i3 & !i5

T3 - Temp. low
i2 & !i3 & !i5

T5 - Tank is empty
!i1 & !i2 & !i4 & ~i5

T6 - Stop
i5

T4 - Temp. OK
i2 & i3 & !i5T7 - Stop

i5

T8 - Stop
i5

T10 - Stop
i5

T9 - Start
i4 & !i5

Figure 7. Modified SIPN (Version 4)
Examining the counter-example in Table 5, we see that af-
ter stop button has been pressed and the cycle started again,
place P5 is marked and the tank is emptied. After P5 has
been reached (state 6), only one transition (T8) is enabled.
When this transition has fired, only P6 is marked. Since P7
is no more marked, transition T10 is not enabled and the
algorithm gets stuck.

Table 5. Counter-example for the deadlock
State 1 2 3 4 5 6 7 8
P1 1 1 0 0 0 0 0 0
P2 0 0 1 0 0 0 0 0
P3 0 0 1 0 0 0 0 0
P4 0 0 0 0 0 0 0 0
P5 0 0 0 0 0 1 1 0
P6 0 0 0 1 1 0 0 1
P7 0 0 0 1 1 0 0 0
i1 0 0 0 0 0 0 0 0
i2 0 0 0 0 0 0 0 0
i3 0 0 0 0 0 0 0 0
i4 0 1 1 1 1 1 0 0
i5 0 1 1 1 0 0 1 1
T1 0 1 0 0 0 0 0 0
T2 0 0 0 0 0 0 0 0
T3 0 0 0 0 0 0 0 0
T4 0 0 0 0 0 0 0 0
T5 0 0 0 0 0 0 0 0
T6 0 0 1 0 0 0 0 0
T7 0 0 0 0 0 0 0 0
T8 0 0 0 0 0 0 1 0
T9 0 0 0 0 1 0 0 0
T10 0 0 1 0 0 0 0 0
eoc 1 0 0 1 0 1 0 1

SIPN Version 5
Analyzing the SIPN, a second way to quit P5 would be fir-
ing T5. Unfortunately T5 can not be enabled if place P2 is
not marked. Thus starting the cycle again should produce a
token in P2. This is done by an arc from T9 to P2 in the
new algorithm, see Figure 8.

P1 ・Stand by
(0, 0, 0, 0)

P2
Stirring

(-, -, 1, -)

P3 ・Filling
(1, 0, -, 0)

P4 ・Heating
(0, 0, -, 1)

P5 ・Emptying
(0, 1, -, 0)

P6 ・Stop
(0, 0, -, 0)

P7 ・Stop
(-, -, 0, -)

T1 ・Start
i4 & !i1 & !i2

T2
Temp. OK

i2 & i3 & !i5

T3 - Temp. low
i2 & !i3 & !i5

T5 - Tank is empty
!i1 & !i2 & !i4 & ~i5

T6 - Stop
i5

T4 - Temp. OK
i2 & i3 & !i5T7 - Stop

i5

T8 - Stop
i5

T10 - Stop
i5

T9 - Start
i4 & !i5

Figure 8. New design of the SIPN (Version 5)

Performing V&V on Version 5 does show no more errors.
Thus this SIPN will be implemented on the PLC.

6 CONCLUSION
In this paper the heating tank example is used to show the
advantages of formal verification and validation for a con-
trol algorithm after changing the informal specification.
Starting from a verified and validated SIPN, the initial spe-
cification is extended by some hardware and the correspon-
ding behavioral specification. Often, these changes seem to
be quite easy. Nevertheless, before the modified algorithm
is implemented on a PLC, several cycles of algorithm re-
design with verification and validation are necessary.
The chosen example emphasizes the fact that each modifi-
cation of a formerly correct SIPN may involve errors. An
error may cause either formal and functional requirements
or one of them not to be fulfilled. Before the functional
properties of an algorithm are checked, it should be made
sure that it is formally correct, i.e. it behaves in a determi-
nistic way. Verification and validation of the modified
SIPN are pursued until the model checker proves all the
properties to be true. An important aspect of the formal
method described here is related to the redundancy in the
two formal specifications of SIPN and Temporal Logic.
This redundancy can reveal different kinds of errors, e.g.
those due to different interpretations of the requirements or
due to a contradictory or incomplete informal specification.
As a conclusion, there are no “small” changes in the redes-
ign of an algorithm.

REFERENCES
[1] G. Frey; Design and formal Analysis of Petri Net based Logic Control

Algorithms. (ISBN 3-8322-0043-6), Dissertation, University of
Kaiserslautern, Shaker Verlag, Aachen, April 2002.

[2] B. W. Boehm; "Guidelines for Verifying and Validating Software Re-
quirements and Design Specifications", P.A. Samet (Editor), Proc. of
the EURO IFIP 79, North-Holland Publishing Company, 1979.

[3] J.-M. Roussel, J.-J. Lesage; "Validation and Verification of grafcets
using finite state machine", Proc. of IMACS-IEEE "CESA'96", pp.
758-764, Lille (France), 9-12 July 1996.

[4] B. Bérard, M. Bidiot, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci
and Ph. Schnoebelen; "Systems and Software Verification, Model-
Checking Techniques and Tools", Springer, Berlin, New-York, 2001.

[5] S. Lampérière-Couffin, O. Rossi, J.-M. Roussel, J.-J. Lesage; "Formal
Validation of PLC programs: a Survey", Proc. of ECC'99, EUCA
(European Union Control Association) - IFAC - IEEE Control Sys-
tems Society, paper n°741, Karlsruhe (Germany), 31. August - 3. Sep-
tember 1999.

[6] K. L. Mc Millan; "The SMV system for SMV version 2.5.4". School
for Computer Science, Canergie Melon University, Nov. 2000.

[7] X. Weng, L. Litz,: Model checking: towards generating a correct
specification for logic controllers. Proc. of the American Control Con-
ference 2002 (ACC2002), Anchorage (USA), pp. 4457-4462, May 8-
10, 2002.

[8] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, Ph. Schnoebelen; "To-
wards the automatic verification of PLC programs written in Instruc-
tion List", Proc. of the IEEE Conference on Systems Man and Cyber-
netics SMC 2000, pp. 2449-2454, Nashville, Tennessee (USA), Oct.
8-11, 2000.

[9] S. Klein, G. Frey and L. Litz; "Designing fault-tolerant controllers us-
ing SIPN and model-checking". To be published in the proc. of the 5th
IFAC Symposium on Fault Detection, Supervision and Safety of
Technical Processes (SAFEPROCESS 2003), Washington D.C.
(USA), June 9-11, 2003.

