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ABSTRACT 

In this paper the advantages of verification and validation 
to support changes of an existing PLC program are shown. 
The controller is defined using Signal Interpreted Petri Nets 
(SIPN) and verification and validation are performed using 
symbolic model-checking. The main focus of this paper is 
to show the process and the benefits of verification and 
validation for the reliability of the control algorithm when 
specified changes are to make. This is clarified by the ex-
ample of a heating tank controller throughout the text. 

1 INTRODUCTION 
In industrial applications, PLC programs are often modified 
to take into account changes of the plant or of the require-
ments. Using formal methods to develop control algorithms 
enhances their changeability. Formal methods like verifica-
tion and validation (V&V), together with appropriate for-
mal algorithm descriptions like SIPN prove the require-
ments to be fulfilled.  
This paper points out how V&V can be used to modify suc-
cessfully an existing control algorithm. Indeed it will be 
shown that modifying a correct algorithm often leads to 
formal and functional requirements no longer to be ful-
filled. Using V&V, the errors can be found and solved be-
fore the control algorithm is implemented on the PLC. 
This paper is organized as follows. In section 2, the SIPN 
concept is briefly presented and used to design a first con-
trol algorithm for a heating tank. Section 3 discusses verifi-
cation, validation and the model-checking technique. They 
are applied on the former designed SIPN in section 4. In 
section 5 the informal specification is extended and the al-
gorithm is redesigned. It is shown how to develop the new 
algorithm step by step and how to ensure the quality of the 
resulting algorithm by verification and validation. Finally, 
section 6 concludes the paper. 

2 SIGNAL INTERPRETED PETRI NETS 

2.1 Definition 
Signal Interpreted Petri Nets (SIPN) are an extension of 
Condition/Event Petri nets and allow the handling of binary 
I/O-signals in a well-defined way. They are well suited to 
design control algorithms for discrete event systems result-
ing in languages standardized in IEC 61131-3. SIPNs are 
defined as a 9-tupel 

SIPN=(P,T,F,M0,I,O,C,A,Ω) 
with the sets P of places, T of transitions, F of arcs and an 
initial binary marking M0 like in ordinary C/E Petri net. To 
become SIPN, the extensions are:  
- Transitions are associated to a set C of firing conditions 

as Boolean functions of the input variables I.  
- Places are associated with a mapping A of actions de-

fining a subset of output signals O. Marked places de-
fine a subset of output signals 

- A Signal Algebra Ω defines how to handle the output 
subsets of all binary marked places. 

For a more formal definition of SIPN, see [1]. 

2.2 Dynamic behavior 
The dynamic Behavior of an SIPN is given by the firing 
process defined by four rules, see also Figure 1: 
1. A transition is enabled, if all its pre-places are marked 

and firing ensures binary marking of all its post-places. 
2. A transition fires immediately, if it is enabled and its fir-

ing condition is fulfilled. 
3. All transitions that can fire and are not in conflict with 

other transitions fire simultaneously. 
4. The firing process is iterated until a stable marking is 

reached (i.e. until no transition can fire anymore). Since 
firing of a transition is supposed to take no time, itera-
tive firing is interpreted as simultaneous, too. For that 
reason, no changes of input signals may occur during 
the firing process. 



 

After a new stable marking is reached, the output signals 
are computed according to the marking and the signal alge-
bra. 
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Figure 1. Evolution algorithm of an SIPN. 

2.3 Example 
As an example for controller design with SIPN, a heating 
tank is used. A description of the tank is given in Figure 2 
and the signals are defined in Table 1 and Table 2. 
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Figure 2. Description of the heating tank 

Table 1. Table of input signals 
Name Description 
i1 Lower level sensor 
i2 Upper level sensor  
i3 Temperature sensor 
i4 Start button 

Table 2. Table of output signals 
Name Description 
o1 Valve 1 (filling) 
o2 Valve 2 (emptying) 
o3 Stirring motor 
o4 Valve 3 (Heating) 

The informal specification is the description of the client’s 
requirements in natural language. These are: 
After pressing the start button the tank is filled. The full 
tank is heated until the desired temperature is reached. 

Then the heated tank is emptied. During the whole process 
the contents are stirred. 

2.4 Design of the control algorithm 
Based on the informal specification, the control algorithm is 
designed using SIPN. This algorithm is given in Figure 3. 

P1 ・Stand by
(0, 0, 0, 0)

P2
Stirring

(-, -, 1, -)

P3 ・Filling
(1, 0, -, 0)

P4 ・Heating
(0, 0, -, 1)

P5 ・Emptying
(0, 1, -, 0)

T1 ・Start
i4 & !i1 & !i2

T2
Temp. OK
i2 & i3

T3 -Temp. low
i2 & !i3

T5 - Tank is empty
!i1 & !i2 & !i4

T4 - Temp. OK
i2 & i3

 
Figure 3. Control algorithm of the heating tank (Version 1) 
Starting form the initial place P1, transition T1 can fire if 
the tank is empty (!i1), not full (!i2) and the start button (i4) 
is pressed. After this transition has fired, the stirring motor 
is set ON (o3 = 1) in place P2 and the tank is being filled 
(o1 = 1) in place P3. Once the tank is full and the tempera-
ture of its contents is beyond the desired limit (i3 = 1), tran-
sition T2 fires and the tank is emptied (o2 = 1) in place P5. 
If the temperature of the full tank is below the limit, the 
contents are heated (o4 = 1) in place P4 before the tank is 
emptied in P5. When the tank is empty, transition T5 fires 
and the initial state where al the actions are set to 0 is 
reached again. 

3 VERIFICATION AND VALIDATION 

3.1 Definition 
Verification and Validation are often confused. Therefore, 
let us remind the definitions given by Boehm [2]: 

“Verification: am I building the product right ?” 
“Validation: am I building the right product ?” 

Hence, according to [3], the verification is the proof that the 
internal semantics of a model is correct without regard to 
the modeled system whereas the validation determines if 
the model agrees with the designer’s intention. 
In [1], four properties for the formal correctness of an al-
gorithm are defined. Besides completeness they ensure the 
deterministic behavior of the control algorithm, which can 
be defined in an informal way as follows: 
Every control algorithm must have deterministically de-
fined dynamics and I/O-behavior. If it had not, its behavior 
in a given situation would depend on implementation as-
pects. In detail, this means that in every state of the control-



 

ler the reaction on possible input signals is defined and a 
non-contradictory value for each output signal is specified. 
Properties like these (verification part) are widely accepted 
as mandatory and can be found in many works on formal 
methods in control. They can be automatically formulated 
for every designed SIPN.  
Properties to express that the designed SIPN fulfills the 
customer’s needs are problem-dependent (validation part). 
Hence, there is no way to formulate them automatically. 
They must be generated anew for every problem. 
Nevertheless, with symbolic model-checking [4] the same 
method can be used to perform V&V.  

3.2 Model-checking 
Model-Checking is a technique in which a finite state 
model of the system is built and the expected properties of 
the system are checked on this model [5]. The system is 
modeled as a finite state machine, whose evolution is given 
in an algorithm and the properties are expressed in a tempo-
ral logic. A search procedure (exhaustive state space 
search) is then used to check whether the expected proper-
ties hold on the finite state transition system or not. Figure 
4 shows the tasks that have to be done within the model-
checking procedure. 
In this work, the symbolic model-checker SMV [6] is used 
to perform V&V. 
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Figure 4. Model-checking process. 

3.3 Temporal logic formulae 
The properties that are to be checked have to be written in 
temporal logic (TL) [4]. This is a special logic tailored for 
statements and reasoning which involve the notion of order 
in time. In TL, the parameter t (time) is not explicitly pre-
sent in the formulae. TL offers concepts immediately ready 
for use. Its operators mimic linguistic constructions (the ad-
verbs “always”, “until”, the tenses of verbs, etc.) with the 
result that natural language and their TL formalization are 
fairly close. The SMV model-checker uses Computation 
Tree Logic (CTL), which is together with PLTL (Proposi-
tional Linear Temporal Logic) the most used TL in model-
checking tools. 
An application of V&V on SIPN using model-checking 
with CTL formulae is described in [7]. 

4 V&V PROCESS BY EXAMPLE 

4.1 Specification 
To apply V&V on the controller designed in sub-section 
2.4, formal properties have to be derived by formalization 
of all the informal specifications given in sub-sections 2.3 
and 3.1. The specification in 2.3 was also used to formalize 
the control algorithm by SIPN. It may seem to be redundant 
having two different formalization steps. But two formal-
izations performed by different methods (SIPN and TL) 
considerably enhance the reliability. For it is very improb-
able to make the same mistake twice following the com-
pletely different attempts of SIPN and TL.  
To be used in V&V with model-checking, the SIPN has to 
be translated into SMV input code. This translation consid-
ers the structure and the evolution of the SIPN, as well. To 
reproduce the evolution algorithm of an SIPN (Figure 1), a 
variable eoc (End of Cycle) [8] is introduced. It is set to 1 as 
soon as a stable marking is reached. No more transition can 
fire in that case without changing of the input values. 
Hence this variable when remaining false all the time de-
tects infinite loops in the control algorithm, called unstable 
marking. During V&V eoc is used to check properties in-
volving output signals since these are only set in stable 
markings. For more details see [9]. 

4.2 Verification 
Verification has to make sure hat the designed SIPN be-
haves in a deterministic way yielding the properties: 
1. The algorithm always produces stable markings what-

ever happens in the future. In TL, this is  
AG EF eoc 

2. The output signals are correctly defined, meaning that 
in every stable marking an output signal oi is set either 
to 0 or to 1 (XOR).  
AG ! (eoc & ((set_oi & reset_oi) | (!set_oi & !reset_oi))) 

3. There are no transition conflicts. When there is a 
choice between several ways to mark or unmark a 
place, only one of them must be possible: 
AG ! (T2 & T3) 

These properties ensure that the designed SIPN has a de-
terministic behavior. Some further properties about the be-
havior of the SIPN can be added. These are: 
4. The algorithm is reversible, i.e. the initial marking can 

always be reached again: 
AG EF m0 

5. The SIPN is live, i.e. every part of the controller can be 
executed again and again: 
AG ((EF T1) | (EF T2) | (EF T3) | (EF T4) | (EF T5)) 

6. The algorithm is deadlock free. This means that the al-
gorithm never gets stuck without any way to evolve: 
AG EF (T1 | T2 | T3 | T4 | T5) 

Using SMV to perform verification, the six properties were 
all verified on the given SIPN. 



 

4.3 Validation 
The validation has to check whether the designed control 
algorithm fulfills the functional specifications given in 2.3 
in an informal way. Formalization means translating them 
into temporal logic formulae. Let us consider two proper-
ties:  
Property 1: The contents of the tank remain stirred during 
the whole process.  
First “during the whole process” has to be defined. In this 
case, it means during the phases where the tank is filled, 
heated and emptied. Therefore, we can express this prop-
erty as follows: When the tank is being filled, heated or 
emptied, the stirring motor has to be turned on. In TL, the 
following formula results: 
AG ((o1 | o2 | o4) -> o3) 

Property 2: When the start button is pressed in the initial 
state the tank must be filled. 
Here the “initial state” has to be interpreted in a more tech-
nical sense. The tank has also to be empty at the beginning 
of the cycle. Furthermore, outputs are only computed after a 
stable marking has been reached. Hence the property can 
only be checked on stable markings. This results in: 
AG (m0 & !i1 & !i2 & i4 & eoc -> AX o1) 

After the translation of the SIPN, the validation is per-
formed using SMV and does not show any errors. As the 
SIPN has been verified and validated, it can now be imple-
mented on a PLC.  

5 CHANGEABILITY AND V&V 

5.1 General problem 
Any changes of the SIPN, e.g. adding places and transitions 
modify its behavior. Therefore it has to be ensured anew 
that the modified SIPN is still formally correct and that it 
fulfills the new set of requirements. Normally, this results 
in cycles of SIPN changes with a new verification and vali-
dation steps until the results all become true. 

5.2 Extended specification 
To discuss the changeability, the specification given so far 
is changed by adding hardware and a new requirement. A 
Stop button (i5) is implemented and the informal specifica-
tion is extended as follows:  
After pressing the stop button, the chemical process has to 
be stopped. To start again, the start button has to be 
pressed. The tank is then emptied before a new cycle can 
begin. 

5.3 SIPN Redesign with V&V 
SIPN Version 2 
To take this new requirement into account, the original 
SIPN of section 2.4 is modified, see Figure 5. A place has 
been inserted in which the filling, the heating and the emp-
tying can be stopped. Thus the chemical process is sup-
posed to be stopped. 

Before the functional requirements are checked, the SIPN 
must be declared as formally correct. Like the former de-
signed SIPN, this one has to fulfill the standard expecta-
tions formulated in section 4.1. Performing verification on 
this SIPN does not reveal any errors. 
After extending the expectations, new properties have been 
added. That means that the redesigned control algorithm 
has to fulfill the properties given in section 4.3 as well as 
the following one: 
Property 3: When the stop button is pressed then the proc-
ess is stopped. That means that in all the stable markings 
reached after pressing the stop button, the actuators must be 
set to 0. In TL it can expressed as: 
AG (i5 & eoc -> AX (!o1 & !o2 & !o3 & !o4) 

P1 – Stand by
(0, 0, 0, 0)

P2
Stirring

(-, -, 1, -)

P3 – Filling
(1, 0, -, 0)

P4 – Heating
(0, 0, -, 1)

P5 – Emptying
(0, 1, -, 0)

P6 – Stop
(0, 0, -, 0)

T1 – Start
i4 & !i1 & !i2

T2
Temp. OK

i2 & i3 & !i5

T3 - Temp. low
i2 & !i3 & !i5

T5 - Tankis empty
!i1 & !i2 & !i4 & ~i5

T6 - Stop
i5

T4 - Temp. OK
i2 & i3 & !i5T7 - Stop

i5

T8 - Stop
i5

T9 - Start
i4 & !i5

 
Figure 5. SIPN with extended specification (Version 2) 
Performing validation with the newly defined algorithm 
tells us that the old properties are fulfilled but that the new 
one is not. Table 3 shows a sequence leading to a state 
where the property does not hold. 
In state 4, i5 and eoc hold but in the next stable state (state 
5), o3 still has value 1. When stop is pressed while place P3 
is active, the filling is stopped but the stirring still remains. 
Indeed there is no stop transition leading from P2 to a place 
where o3 is reset. In this interpretation the chemical process 
is supposed to be stopped when filling, heating and empty-
ing are stopped. During the formalization of the corre-
sponding TL formula, The process has to be stopped has 
been interpreted differently, “all actions are stopped”. 
 
SIPN Version 3 
After redefining the requirement more precisely, the second 
way (all actions stopped) is chosen. Hence the SIPN has to 
be modified again. In Figure 6, a transition T10 leading 
from P2 to P6 has been added. 
 



 

Before looking at functional properties the formal ones 
have to be checked again. As a result of verification, SMV 
shows a conflict between transitions T6 and T10 as illus-
trated in the counter-example given in Table 4.  

Table 3. Counter-example for property 3 
State 1 2 3 4 5 
P1 1 1 0 0 0 
P2 0 0 1 1 1 
P3 0 0 1 1 0 
P4 0 0 0 0 0 
P5 0 0 0 0 0 
P6 0 0 0 0 1 
o1 0 0 1 0 0 
o2 0 0 0 0 0 
o3 0 0 1 1 1 
o4 0 0 0 0 0 
i1 0 0 0 0 0 
i2 0 0 0 0 0 
i3 0 0 0 0 0 
i4 0 1 1 1 0 
i5 0 1 1 1 0 
T1 0 1 0 0 0 
T2 0 0 0 0 0 
T3 0 0 0 0 0 
T4 0 0 0 0 0 
T5 0 0 0 0 0 
T6 0 0 1 0 0 
T7 0 0 0 0 0 
T8 0 0 0 0 0 
T9 0 0 0 0 0 
eoc 0 0 0 1 1 

 

P1 ・Stand by
(0, 0, 0, 0)

P2
Stirring

(-, -, 1, -)

P3 ・Filling
(1, 0, -, 0)

P4 ・Heating
(0, 0, -, 1)

P5 ・Emptying
(0, 1, -, 0)

P6 ・Stop
(0, 0, 0, 0)

T1 ・Start
i4 & !i1 & !i2

T2
Temp. OK

i2 & i3 & !i5

T3 - Temp. low
i2 & !i3 & !i5

T5 - Tank is empty
!i1 & !i2 & !i4 & ~i5

T6 - Stop
i5

T4 - Temp. OK
i2 & i3 & !i5T7 - Stop

i5

T8 - Stop
i5

T10 - Stop
i5

T9 - Start
i4 & !i5

 
Figure 6. Modified SIPN (Version 3) 
 
When P2 and P3 are marked and the stop button is pressed, 
we can not decide whether T6 or T10 fires. The designed 
algorithm is not deterministic. This clearly is a design error. 

Table 4. Counter-example for the conflict between T6 and T10 
State 1 2 3 
P1 1 1 0 
P2 0 0 1 
P3 0 0 1 
P4 0 0 0 
P5 0 0 0 
P6 0 0 0 
i1 0 0 0 
i2 0 0 0 
i3 0 0 0 
i4 0 1 1 
i5 0 1 1 
T1 0 1 0 
T2 0 0 0 
T3 0 0 0 
T4 0 0 0 
T5 0 0 0 
T6 0 0 1 
T7 0 0 0 
T8 0 0 0 
T9 0 0 0 
T10 0 0 1 
eoc 1 0 0 

 
SIPN Version 4 
As a solution, a new place P7 where the stirring motor is set 
to 0 is added, see Figure 7. Again this SIPN has to be veri-
fied before we can perform validation. Now, SMV tells us 
that the SIPN has a deadlock. 

P1 ・Stand by
(0, 0, 0, 0)

P2
Stirring

(-, -, 1, -)

P3 ・Filling
(1, 0, -, 0)

P4 ・Heating
(0, 0, -, 1)

P5 ・Emptying
(0, 1, -, 0)

P6 ・Stop
(0, 0, -, 0)

P7 ・Stop
(-, -, 0, -)

T1 ・Start
i4 & !i1 & !i2

T2
Temp. OK

i2 & i3 & !i5

T3 - Temp. low
i2 & !i3 & !i5

T5 - Tank is empty
!i1 & !i2 & !i4 & ~i5

T6 - Stop
i5

T4 - Temp. OK
i2 & i3 & !i5T7 - Stop

i5

T8 - Stop
i5

T10 - Stop
i5

T9 - Start
i4 & !i5

 
Figure 7. Modified SIPN (Version 4) 
Examining the counter-example in Table 5, we see that af-
ter stop button has been pressed and the cycle started again, 
place P5 is marked and the tank is emptied. After P5 has 
been reached (state 6), only one transition (T8) is enabled. 
When this transition has fired, only P6 is marked. Since P7 
is no more marked, transition T10 is not enabled and the 
algorithm gets stuck. 



 

Table 5. Counter-example for the deadlock  
State 1 2 3 4 5 6 7 8 
P1 1 1 0 0 0 0 0 0 
P2 0 0 1 0 0 0 0 0 
P3 0 0 1 0 0 0 0 0 
P4 0 0 0 0 0 0 0 0 
P5 0 0 0 0 0 1 1 0 
P6 0 0 0 1 1 0 0 1 
P7 0 0 0 1 1 0 0 0 
i1 0 0 0 0 0 0 0 0 
i2 0 0 0 0 0 0 0 0 
i3 0 0 0 0 0 0 0 0 
i4 0 1 1 1 1 1 0 0 
i5 0 1 1 1 0 0 1 1 
T1 0 1 0 0 0 0 0 0 
T2 0 0 0 0 0 0 0 0 
T3 0 0 0 0 0 0 0 0 
T4 0 0 0 0 0 0 0 0 
T5 0 0 0 0 0 0 0 0 
T6 0 0 1 0 0 0 0 0 
T7 0 0 0 0 0 0 0 0 
T8 0 0 0 0 0 0 1 0 
T9 0 0 0 0 1 0 0 0 
T10 0 0 1 0 0 0 0 0 
eoc 1 0 0 1 0 1 0 1 

 
SIPN Version 5 
Analyzing the SIPN, a second way to quit P5 would be fir-
ing T5. Unfortunately T5 can not be enabled if place P2 is 
not marked. Thus starting the cycle again should produce a 
token in P2. This is done by an arc from T9 to P2 in the 
new algorithm, see Figure 8. 

P1 ・Stand by
(0, 0, 0, 0)

P2
Stirring

(-, -, 1, -)

P3 ・Filling
(1, 0, -, 0)

P4 ・Heating
(0, 0, -, 1)

P5 ・Emptying
(0, 1, -, 0)

P6 ・Stop
(0, 0, -, 0)

P7 ・Stop
(-, -, 0, -)

T1 ・Start
i4 & !i1 & !i2

T2
Temp. OK

i2 & i3 & !i5

T3 - Temp. low
i2 & !i3 & !i5

T5 - Tank is empty
!i1 & !i2 & !i4 & ~i5

T6 - Stop
i5

T4 - Temp. OK
i2 & i3 & !i5T7 - Stop

i5

T8 - Stop
i5

T10 - Stop
i5

T9 - Start
i4 & !i5

 
Figure 8. New design of the SIPN (Version 5) 
 
Performing V&V on Version 5 does show no more errors. 
Thus this SIPN will be implemented on the PLC. 

6 CONCLUSION 
In this paper the heating tank example is used to show the 
advantages of formal verification and validation for a con-
trol algorithm after changing the informal specification. 
Starting from a verified and validated SIPN, the initial spe-
cification is extended by some hardware and the correspon-
ding behavioral specification. Often, these changes seem to 
be quite easy. Nevertheless, before the modified algorithm 
is implemented on a PLC, several cycles of algorithm re-
design with verification and validation are necessary. 
The chosen example emphasizes the fact that each modifi-
cation of a formerly correct SIPN may involve errors. An 
error may cause either formal and functional requirements 
or one of them not to be fulfilled. Before the functional 
properties of an algorithm are checked, it should be made 
sure that it is formally correct, i.e. it behaves in a determi-
nistic way. Verification and validation of the modified 
SIPN are pursued until the model checker proves all the 
properties to be true. An important aspect of the formal 
method described here is related to the redundancy in the 
two formal specifications of SIPN and Temporal Logic. 
This redundancy can reveal different kinds of errors, e.g. 
those due to different interpretations of the requirements or 
due to a contradictory or incomplete informal specification. 
As a conclusion, there are no “small” changes in the redes-
ign of an algorithm. 
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