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avenue Guy de Collongue,69134 Ecully Cedex, France.
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Abstract

This paper is devoted to the computation of nonlinear dynamic steady-state solutions of autonomous
systems subjected to multi-instabilities and proposes a new non-linear method for predicting periodic
and quasi-periodic solutions intended for application to the disc brake squeal phenomenon. Firstly, finite
element models of a pad and a disc are reduced to include only their contact nodes by using a Craig
and Bampton strategy. Secondly, a complex eigenvalue analysis is performed showing two unstable
modes for a wide range of friction coefficients, after which aGeneralized Constrained Harmonic Bal-
ance Method (GCHBM) is presented. This method can compute nonlinear periodic or pseudo-periodic
responses depending on the number of unstable frequencies.The numerical results are in good agreement
with those of time marching methods.

1 Introduction

Disc brake squeal is still an issue for engineers and scientific communities. A great deal of work has
been done in previous decades to understand the mechanism underlying squeal noise and formulate solu-
tions for eradicating it. Kinkaid et al. [1] and Ouyang et al.[2] have performed extensive reviews of this
phenomenon. The first models of disc brake squeal were built with one degree of freedom (dof) systems
in which velocity friction dependency was considered as thesqueal mechanism [3]. Then, Spurr [4]
developed a sprag-slip model with a constant friction coefficient and highlighted squeal conditions. A
generalization of this phenomenon was studied with geometrical coupling between bodies [5, 6]. The
mode coupling effect due to friction was considered and it was shown that squeal could occur even if the
friction coefficient is constant in relation to sliding velocity. This mechanism is now commonly consid-
ered as the first cause of squeal generation and many works arebased on the mode coupling effect for
squeal analysis. The continued development of computer software has led to the use of the finite element
method to study large and complex refined systems (see for example references [7, 8]). The primary
tool for predicting squeal propensity is complex eigenvalue analysis. Eigenvalues with positive real parts
are related to unstable modes that are responsible for squeal generation, whereas negative real parts are
related to stable modes. Stability and instability areas are then plotted versus system parameters and can
provide clues for squeal-free brake design. Nevertheless,the literature states [9–11] that the computation
of dynamic steady-states is increasingly employed becauseit leads to improved comprehension of the
nonlinear aspects of the system and facilitates robust brake design. A major drawback of time marching
methods is the CPU time consumed for computing steady-stateresponses. Besides, alternative methods
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in the frequency domain have been developed in order to enhance computation of stationary nonlinear
dynamic solutions. Mention can be made of the direct Harmonic Balance Method (HBM), which is the
most popular technique and used by many authors [6, 12]. Rather than computing all the transient parts
in the time domain, Harmonic Balance Methods are designed only to compute the Fourier coefficients of
the steady-state solution by balancing terms between displacements and nonlinear forces. A derivation
of Harmonic Balance Methods, called the Constrained Harmonic Balance Method (CHBM), developed
in reference [13], is used for autonomous systems in which noperiodic excitation exists.

In this paper, we perform a generalization of the Constrained Harmonic Balance Method (CHBM) by
applying it to autonomous systems subjected to multiple unstable modes. In general, the ratio between
two modal frequencies is not an integer and such frequenciesare considered incommensurate. Con-
sequently, such modes involved in the dynamic response produce pseudo-periodic solutions and HBM
based-methods can be designed to deal with multiple frequencies. Since disc brake squeal is related to
autonomous dynamic systems, several specific extensions are presented, leading to a proper algorithm
based on the Harmonic Balance Method. This algorithm can compute the steady-state responses of au-
tonomous systems with multiple input frequencies linked tounstable modes identified in the stability
analysis. This paper is divided into four parts: firstly, a numerical model is presented with the modeling
hypotheses. Secondly, a stability analysis is performed, highlighting two unstable modes for a given
range of parameter. Then, a Generalized Constrained Harmonic Balance Method (GCHBM) designed
for computing nonlinear steady-state responses is presented. The last part is devoted to the presenta-
tion and discussion of the results. A comparison with a time marching method is carried out with an
evaluation of computational performances.

2 Modeling of the Brake System

The nonlinear system considered here is a reduced finite element model of a pad and disc and is based on
a previous study by Sinou et al [14]. Based on a finite element procedure, each component of the system
shown in Figure (1) is reduced by using a Craig and Bampton strategy [15]. Since highly nonlinear
phenomena appear at the disc/pad interface, it is necessaryto conserve physical dofs on both components
at this location to ensure, for example, fine management of the contact status between the pad and the
disc. Nine contact nodes are conserved and distributed equally on the frictional pad surface. Since
the disc and pad meshes are compatible at the selected nodes,nine face to face nodes are kept on the
frictional disc surface. Using only nine contact nodes may not provide an accurate description of the
complex behavior of the surfaces, but it seems adequate for our purposes in terms of behavior and size
for validating the new algorithm presented in the following. It should be noted that the nodes remain
opposite each other during the computations and a relative velocity is imposed at the contact nodes to
generate friction forces. Certain generalized dofs are included in the final reduced model, as keeping
only static nodes gives a poor dynamic description of the super-elements. This procedure adds the first
n constrained modes in the reduction basis. We choosen = 50 for both components corresponding to a
cut-off frequency equal to10kHz for both super-elements. Finally, an equation of motion is derived:

MÜ+DU̇+KU+ Fnl (U) = Fout (1)

whereM, D, K are the linear mass, damping and stiffness matrices respectively. Fnl (U) is related
to a vector of nonlinear forces occurring at the disc/pad interface andFout is the vector of external forces.
Ü,U̇,U are respectively acceleration, velocity and displacementvectors. The model has9 contact ele-
ments and158 dofs including54 nonlinear dofs and104 linear dofs. Contacts are included in the physical
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Figure 1: Split view of the finite element model of the brake system. The red dots represent the contact
nodes

systems to add constraints in the equation of motion (1). Forconvenience, we choose to consider the
penalty method. Springs are added at the disc/pad interfaceto impose contact conditions. Measurements
of pad compressibility show a nonlinear relationship between the pressure and the displacement. This ef-
fect is included at the interfaces where nonlinear contact stiffnesses are considered in our model. Finally,
the mathematical function used to describe the contact force is:

Fcontact,i =

{

kl (u1 − u2) + knl(u1 − u2)
3 if (u1 − u2) > 0

0 otherwise
(2)

whereu1 andu2 are respectively displacements of contact nodes of the pad and disc at contact element
i. For the frictional definition, we consider a simplified Coulomb law with a constant friction coefficient
without stick-slip motion. Moreover, a unidirectional friction effort is considered. Then a friction force
Ff,i located at nodei is derived from a contact effortFcontact,i with:

Ff,i = µFcontact,isgn(vr,i) (3)

whereµ is the friction coefficient andvr,i the relative velocity between the disc and pad at nodei.
The damping matrixD is built by considering a Rayleigh damping withα andβ chosen to obtain modal
dampingζ = 0.1 on non-frictional coupled modes900Hz and940Hz. The external force is directly
applied on the back pad on four nodes for almost piston like pressure distribution. Table 1 provides the
model parameters. To enhance understanding, it may be notedthat the chosen finite element model (with
the contact and damping assumption) does not attempt to capture all effects realistically. This modeling
has been chosen to illustrate a suitable range of behavior and to investigate the efficiency of the proposed
non-linear method.

3 Static computation and stability analysis

The classical tool for predicting unstable modes in squeal analysis is a linear computation consisting in
finding unstable modes around a linearized static position.The first step considers only the static part of
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Pad
Young ModulusE (GPa) 2

Poison rationν 0.1

Densityρ (kg.m−3) 2500

Disc
Young ModulusE (GPa) 125

Poison rationν 0.3

Densityρ (kg.m−3) 7200

Table 1: Physical characteristics
α (s) 1.6e−7

β (s−1) 6.1

kl (N.m−1) 1.8e5

knl (N.m−3) 5e9

Fout (N) 7000

Table 2: Parameter values

the system with nonlinear terms at the contact interface:

KU0 +Fnl (U0) = Fout (4)

Then, a nonlinear steady sliding equilibrium positionU0 is computed and its stability is analyzed by
using a perturbation step procedure:

U = U0 + Ū (5)

substituting the previous solution in the equation of motion (1) with a linearization step gives:

M
¨̄
U+D

˙̄
U+ (K+ Jnl) Ū = 0 (6)

whereJnl is the frictional contact Jacobian matrix derived from linearized expressions of contact
efforts. An elementary Jacobian matrixJnli at contact nodei takes the form:

Jnli =









∂Fnl1,i

∂u1,i

∣

∣

∣

∣

u0

∂Fnl1,i

∂u2,i

∣

∣

∣

∣

u0

∂Fnl2,i

∂u1,i

∣

∣

∣

∣

u0

∂Fnl2,i

∂u2,i

∣

∣

∣

∣

u0









(7)

Note thatJnl is asymmetric since the model contains friction forces. Thecomplex eigenvalue com-
putation of (6) then gives the local stability of the nonlinear system. Eigenvalues take the form

λj = aj + iωj (8)

whereωj is the natural pulsation inrad.s−1 of modej, defined asωj = 2πfj with fj being the
natural frequency inHz andaj its associated real part. The modal damping can be expressedasζj =
−2aj/ωj, since as long as the real part remains negative the associated mode is stable with a positive
modal dampingζj > 0. However, whenaj becomes positive, the associated mode has a negative modal
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Figure 2: Evolution of the Frequencies (a) and Real Parts (b)with the friction coefficient (dashed lines:
unstable modes)

dampingζj < 0 that supplies energy. Then, modej is considered as unstable and can generate vibrations
at its natural frequency, resulting in squeal noise emission. Figure 2 shows the evolution of (a) the
frequencies and (b) the real parts. We clearly see the frequency coalescence of non-frictional coupled
modes due to friction. An unstable mode appears at the Hopf bifurcation point whereµ = 0.26 and the
frequency isf2 = 1514Hz. The real parts split with one becoming positive while theother remains in the
negative area. Frequency coalescence is not perfect due to unevenly distributed damping between modes
[16]. Another unstable mode atf1 = 920Hz appears for a larger friction coefficient value (µ = 0.28).
Frequency coalescence is perfect because both non-frictional coupled modes are equally damped, as seen
previously. Both modes are considered as unstable above this second Hopf bifurcation point. In brief,
we distinguish three main areas in the coalescence pattern of Figure (2). The first considers a friction
coefficient under0.26 where no instability occurs. The second is between the two Hopf bifurcation
points (i.e.µ ranges from0.26 to 0.28) where only modef2 at 1514Hz is unstable. The third part starts
from µ = 0.28 until µ = 1, where two modes are unstable at two distinct frequenciesf1 andf2. Note
that the growth rate of the real part of the first modef1 is the highest in the model.

This simple model raises one of the problems of the squeal phenomenon: that of the vibrations when
more than one mode is considered as unstable. To solve this problem, and since the real parts of the
unstable modes are not an indicator of dynamic behavior, temporal analysis is generally employed for the
whole system (1). Hence, we are able to obtain a good representation of nonlinear behavior, providing
a great deal of information such as vibration level and frequency components. However, the major
drawback of this approach is the computation time required to obtain the dynamic steady-state of the
nonlinear autonomous system. An alternative method known as CHBM [13] can be used to compute
the dynamic steady-state of autonomous systems with one unstable mode faster than with time marching
methods. An extension of CHBM for dealing with a wide range ofautonomous systems with multiple
instabilities is proposed in the following.
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4 Generalized Harmonic Balance Method

4.1 Quasi periodic functions

Responses are no longer periodic when oscillatory systems are subjected top incommensurable fre-
quencies. The nonlinear oscillations contain the frequency components of any linear combination of the
incommensurable frequency components

k1ω1 + k2ω2 + · · ·+ kjωj + · · ·+ kpωp (9)

with ki = −Nh,−Nh + 1, . . . ,−1, 0, 1, . . . , Nh − 1, Nh for i = 1, . . . , p. Nh defines the order for each
fundamental frequency andp the number of incommensurable frequencies.

Thus the dynamic solution of equation (1) can be expressed with a generalized Fourier series such
that:

U (t) ≈

Nh
∑

k1=−Nh

. . .

Nh
∑

kp=−Nh

ak1...kp
cos (k1ω1 + . . .+ kpωp) t+ bk1...kp

sin (k1ω1 + . . .+ kpωp) t

(10)
ak1,...,kp

andbk1,...,kp
define the unknown Fourier coefficients of any linear combinations of the

incommensurable frequency componentsω1, ω2, . . . , ωp that have been defined previously in (9).
The previous expression can be rewritten in a condensed form

U (t) = a0 +
∑

k∈Zp

ak cos (k.ω) t+
∑

k∈Zp

bk sin (k.ω) t (11)

where the(.) denotes the dot product,k is the harmonic number vector of each frequency direction and
ω is the vector of thep incommensurable frequencies considered in the solution. For convenience, it is
wise to deal with a multiple time parameterτ such that

τ = ωt (12)

and equation (11) is rewritten as

U (τ ) = a0 +
∑

k∈Zp

ak cos (k.τ ) +
∑

k∈Zp

bk sin (k.τ ) (13)

whereτ = [τ1 . . . τp] is a non dimensional time parameter and refers to thehyper-time concept
proposed by [17]. Consequently, rather than dealing with a single time domaint ∈ R+ for solution
U(t), a multiple periodic time domainτ ∈ R

p
+ is considered where each dimensionτj corresponds to

one incommensurable fundamental frequency identified in the solution. Therefore (13) is2π periodic
on every hyper-time dimension ofτ . U(τ ) representsU(t) in a p dimensional time space where each
frequency is independent from the others. For example, Schilder et al. [18] definetorus functions which
represent the hyper-time domain in a3 dimensional space for2 incommensurate frequencies. An analogy
with numerical image processing can be considered to illustrate thehyper-time concept when applying
a filter on an image. It can be considered as a visual signal depending on both parameters, its two
orthogonal directions(x, y) that are similar toτ1 andτ2 in a hyper-time domain.

Theoretically, (13) is able to treat a great range of aperiodic dynamic systems where a finite number
of p incommensurable frequencies have been identified. A definition given by [17] for definingNh

harmonics in a multiple Fourier series is:
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p
∑

j=1

|kj | ≤ Nh (14)

This choice is justified by the fact that the major part of the signal energy is generally included in the
very first harmonics and the very first coupling frequencies.

Equation (14) will be used in the following for the multiple Fourier series truncation.

4.2 Generalized Harmonic Balance Method

Substituting (11) in the behavior equation (1) and considering equation (14) gives:

R (t) ≈
∑

k∈Zn
Nh

[(

K− (k.ω)2 M
)

ak + ((k.ω)D)bk

]

cos (k.τ )+

∑

k∈Zn
Nh

[(

K− (k.ω)2 M
)

bk − ((k.ω)D)ak

]

sin (k.τ ) + Fnl (ak,bk)− Fout

(15)

Since sine and cosine are orthogonal functions, they are used as bases and we use a Galerkin procedure
for computing Fourier coefficients:

∫ 2π

0

. . .

∫ 2π

0

R cos (k1.τ1 + . . . + kp.τp) dτ1 . . . dτp = 0 for all kj such
p

∑

j=1

|kj | ≤ Nh

∫ 2π

0

. . .

∫ 2π

0

R sin (k1.τ1 + . . . + kp.τp) dτ1 . . . dτp = 0 for all kj such
p

∑

j=1

|kj | ≤ Nh

(16)

And the following set of algebraic equations is derived:

Λz̃+ F̃nl (z̃) = F̃out (17)

WhereΛ refers to the block diagonal dynamic stiffness matrix:

Λ =





















K 0 0 0 0 0

0 Λ1 0 0 0 0

0 0
. . . 0 0 0

0 0 0 Λi 0 0

0 0 0 0
. . . 0

0 0 0 0 0 ΛNc





















(18)

with

Λi =

[

− (k.ω)2 M+K (k.ω)D

− (k.ω)D − (k.ω)2M+K

]

for i ∈ [1, Nc] (19)

Nc represents the total number of frequency components including all harmonic terms up toNh of
each frequency direction and all the coupling frequencies chosen by using (14). They must also be
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positive. ThereforeNc depends onωk values. A particular case wherep = 2 is studied in the following
and thusNc is defined.

z̃, F̃nl (z̃) and F̃out are respectively the Fourier coefficient vectors of displacement, nonlinear fric-
tional contact forces and external forces of the system. They are expressed as:

z̃ =
[

a0 a1 b1 · · · aNc
bNc

]

(20)

F̃nl =
[

F̃nl,0 F̃
a
nl,1 F̃

b
nl,1 · · · F̃

a
nl,Nc

F̃
b
nl,Nc

]

(21)

F̃out =
[

F̃out,0 F̃
a
out,1 F̃

b
out,1 · · · F̃

a
out,Nc

F̃
b
out,Nc

]

(22)

Since the behavior of̃Fnl is nonlinear with respect to the displacement vector, equation (17) must be
solved iteratively by using Newton-Raphson root-finding algorithms. The analytical computation ofF̃nl

in the frequency domain is prohibitive when defined as a piecewise nonlinear function of displacement.
To get round this issue, certain techniques have been developed for computing nonlinear terms. The
Incremental Harmonic Balance Method (IHBM) or High Dimensional Harmonic Balance Method (HD-
HBM) [19,20] is applied to nonlinear systems under multipleexcitation frequencies. The nonlinear treat-
ment of Fourier coefficients is performed by using multiple time scales where transformation matrices
of equally spaced sub-time levels are built to compute the nonlinear Fourier coefficients. Cameron [21]
proposes the Alternating-Frequency Time (AFT) method to compute the periodic nonlinear forces in the
time domain and then extract their exact Fourier coefficients F̃nl. As we use ahyper-time domain where
the functions are2π periodic on every orthogonal time dimension, the generalization of the AFT can
be extended to ap-dimensional frequency domain by using ap-dimensional FFT. The procedure is as
follows:

z̃
IFFTp

−→ U (τ ) −→ Fnl (U(τ ))
FFTp

−→ F̃nl (z̃) (23)

OnceFnl (U(τ )) is evaluated, its Fourier coefficients are computed and injected into equation (17). In
brief, GHBM is written as an objective functionJ1 of a dynamic system subjected to multiple frequency
inputs:

J1 (z̃) =
∥

∥

∥
Λz̃+ F̃nl (z̃)− F̃out

∥

∥

∥
< ǫ1 (24)

where||.|| defines the euclidean norm andǫ1 is a chosen tolerance.

4.3 Additional constraint equations

This derivation of GHBM can be applied to a wide variety of dynamic systems exhibiting pseudo-
periodic responses due to a finite number of identified exciting frequencies. As seen previously, disc
brake squeal is equivalent to an autonomous system, i.e. thedynamic response implicitly depends on
time or, in other words, no external excitation forces excite the structure. Thus GHBM gives the trivial
solution in which the Fourier coefficients would be null except for the static components, even though
a local minimum exists for the dynamic steady-state in the optimization domain [13]. The existence of
both solutions is related to the nature of the dynamic systemillustrated by equation (1). Under unstable
static conditions, the system may or may not oscillate, depending only on the initial conditions or a per-
turbation of the system’s parameters. Hence a set of additional equations has to be included in equation
(17) to reach the minimum related to the dynamic solution.

8



If we consider that the nonlinear response of an autonomous system is driven byp unstable modes:

U(t) =

p
∑

j=1

Ψje
ϕjt (25)

whereΨj is an unstable mode andϕj = aj + iωj its eigenvalue. It can be seen thatΨj andϕj

depend implicitly onU(t) since they are subjected to nonlinear effects thus a change in contact status.
Hence,[Ψ1 . . .Ψp]

T should be considered as unstable modes of a dynamic state with their corresponding
complex eigenvalues[ϕ1 . . . ϕp]

T, as opposed to unstable modes of the sliding steady-state solution seen
in section 3. Hence, when looking at equation (25), a null real part of ϕj indicates that the dynamic
responseUj(t) = Ψje

iωjt is stationary through time and oscillates with pulsationωj. Therefore, when
all p unstable modes have a null real part,Uj(t) becomes a pseudo-periodic motion that is the steady-
state response of the autonomous system considered. Therefore minimizing the real parts of eigenvalues
ϕj (with j ∈ [1, p]) in the optimization process would lead to the correct computation of the Fourier
coefficients linked to the steady-state solution.

The computation ofϕj is performed by considering an equivalent linear system to equation (1) and
refers to the equivalent linear concept proposed by Iwan [22, 23] where the nonlinear termsFnl (U(t))
are replaced with a linear approximation matrixJnl such that:

ζ = Fnl (U(t)) − JnlU(t) with ζ → 0 (26)

Jnl refers to a time independent Jacobian matrix of the nonlinear temporal forcesFnl (U(t)) at the
dynamic stationary stateU(t).

Since a Fourier Transformation is a linear application,Jnl can also be computed in the frequency
domain with Fourier coefficients:

ζ = F̃nl (z̃)− Jnlz̃ with ζ → 0 (27)

A good linear approximation of (1) is obtained whenζ → 0. Then (1) is substituted by:

MÜ+DU̇+ (K+ Jnl)U = Fout (28)

By using a perturbation method, the complex eigenvaluesϕ of equation (28) are computed and thep
real parts linked to the unstable modes are extracted and gathered in a vector, forming a second objective
functionJ2.

Secondly, since there is no external excitation, thep nonlinear pulsationsωj are undefined and thus
have to be considered asp independent unknowns. In brief, a Generalized ConstrainedHarmonic Bal-
ance Method (GCHBM) applicable to autonomous systems subjected top incommensurate frequency
components is arranged in a set of two objective functions:

{

J1 (z̃,Ω) =
∥

∥

∥
Λ (z̃,Ω) z̃+ F̃nl (z̃,Ω)− F̃out

∥

∥

∥
< ǫ1

J2 (z̃,Ω) = ‖Re (ϕj (z̃,Ω))‖ < ǫ2 with j ∈ [1, p]
(29)

In more detailJ2 takes the form

J2 (z̃,Ω) =



















‖Re (ϕ1 (z̃,Ω))‖
‖Re (ϕ2 (z̃,Ω))‖

...
‖Re (ϕp (z̃,Ω))‖



















(30)
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with vectorΩ of p unknown frequencies:

Ω =



















ω1

ω2

...
ωp



















(31)

Computation is performed when< J1, J2 > are respectively below chosen tolerances< ǫ1, ǫ2 >.
Such a set of objective functions has(n (1 + 2Nc) + p) equations to be solved with(n (1 + 2Nc) + p)
unknowns and is therefore well-determined.n is the dimension of the dynamic system,Nc is the total
number of frequency combinations andp is the number of unstable modes used in the solution.

4.4 Reduction step

The computation time of any nonlinear system is related to the number of unknowns so any reduction in
the size of the system would increase performance. The authors of [24] propose a reduction method for
nonlinear systems studied in the frequency domain without loss of accuracy. After reorganizing linear
and nonlinear dofs̃znl andz̃ln, the system described by equation (17) can be expressed as follows:

[

Λln,ln Λln,nl

Λnl,ln Λnl,nl

]{

z̃ln

z̃nl

}

+

{

0

F̃nl

}

=

{

F̃out,ln

F̃out,nl

}

(32)

and equation (17) is rewritten in term of nonlinear components such that:

Λeqz̃nl + F̃nl (z̃nl) = F̃eq (33)

with
Λeq = Λnl,nl −Λnl,ln (Λln,ln)

−1
Λln,nl (34)

and
F̃eq = F̃out,nl −Λnl,ln (Λln,ln)

−1
F̃out,ln (35)

This step reduces the number of equations from(n (2Nc + 1) + p) to (nnl (2Nc + 1) + p) wheren
andnnl are the numbers of total dofs and nonlinear dofs respectively. Thus this reduction step is very
efficient for large systems with only few nonlinear dofs. When z̃nl is known,z̃ln is easily obtained by:

z̃ln = Λ
−1
ln,ln

(

F̃out,ln −Λln,nlz̃nl

)

(36)

Hence, a reduced form of equation (29) is:

{

J1 (z̃nl,Ω) =
∥

∥

∥
Λeq (z̃nl,Ω) z̃nl + F̃nl (z̃nl,Ω)− F̃eq

∥

∥

∥
< ǫ1

J2 (z̃nl,Ω) = ‖Re (ϕj (z̃nl,Ω))‖ < ǫ2 with j ∈ [1, p]
(37)

Computation is done when< J1, J2 > are respectively below chosen tolerances< ǫ1, ǫ2 >. Figure
3 represents the general algorithm procedure of a GCHBM.
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4.5 GCHBM initialization

Regarding time marching methods, optimization processes need a starting point to find a solution in
the optimization domain. A bad choice of initial conditionsis synonymous with slow convergence.
As explained in [13] and inspired by the concept of Complex Non Linear Modal Analysis (CNLMA)
developed by Sinou et al. [25], Fourier coefficients of the first harmonic are initialized by the unstable
mode vectors found in the stability analysis. This is based on the assumption that dynamic behavior
is mainly driven by unstable modes. Thus for every first harmonic (in Fourier basis) of every unstable
mode, the initial prediction takes the form:

z̃1,j = η
(

Ψj + Ψ̄j

)

with j ∈ [1, p] (38)

whereΨj defines thejth nonlinear unstable mode shape,Ψ̄j is its conjugate andη is an arbitrarily
chosen coefficient with a range from20 to 60 to ensure convergence of the optimization problem. As can
be observed, the pulsations area priori unknown while a good initial estimate considers those foundin
the stability analysis.

5 Application to squeal vibration

5.1 Brake model with two unstable modes

As indicated previously in section 3, two modes are found to be unstable, with the potential to vibrate.
Thus,J2 andΩ are two-dimensional and take the following form:

J2 (z̃nl,Ω1−2) =

{

‖Re (ϕ1 (z̃nl,Ω1−2))‖
‖Re (ϕ2 (z̃nl,Ω1−2))‖

}

(39)

Ω1−2 =

{

ω1

ω2

}

(40)

A geometric interpretation ofk ∈ Z
2 (i.e. p = 2 andNh = 3) is given in Figure 4. It can be seen

that the harmonic combinations are constrained by equation(14) and that the resulting frequencies are
positive.

According to Figure 4,Nc = 12 and as seen in section 2, the nonlinear terms are equal tonnl = 54.
Thus the whole equation set has1352 unknowns and equations. It should be noted that for the case where
k1 = k2 = 0 stands for the static Fourier coefficients and is not included inNc.

5.2 Nonlinear Steady-State

In this section, the results of the GCHBM procedure and comparisons with temporal results from refer-
ence [14] are presented and discussed. Steady-state solutions for three different friction coefficients are
studied. The efficiency of GCHBM is underlined as are the optimization process parameters. Finally,
results relating to the evolution of frequencies and amplitude level as a function of friction coefficient are
discussed. Table 2 groups the parameter values and Table 3 gathers frequency values for three different
friction coefficients.
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Case Friction coefficient f1(Hz) f2(Hz)
1 µ = 0.29 896.9 1497.1
2 µ = 0.35 903.8 1495.4
3 µ = 0.4 898.3

Table 3: Parameter table

5.2.1 Limit cycles with two unstable modes

Figure 5 displays pseudo-periodic responses for a disc and apad interface node for both methods at
µ = 0.29 (with Nh = 3).

Since the responses are pseudo-periodic due to both incommensurate frequencies, the limit cycles
are no longer closed. They are delimited by a maximum amplitude shape and remain inside it. Good
correlation between time integration and GCHBM is found andthe relative errors on displacements and
velocities are less than5%. Limit cycle evolution is complicated due to both unstable modes; conse-
quently, the Power Spectrum Density (PSD) is plotted on Figure 6 to facilitate understanding. Since
both modes participate in the nonlinear dynamic solution, the spectrum includes both fundamental fre-
quencies,f1 = 897Hz andf2 = 1497Hz, as well as their respective harmonics2f1, 3f1, 2f2 and3f2.
Note that frequenciesf1 andf2 of the final response are slightly different from those of thestability
analysis, therefore taking them as unknowns in a GCHBM procedure is a reasonable hypothesis. More-
over, modulation frequencies are also found in the spectrumdue to nonlinearities. The combinations are
2f1−f2,f2−f1, 2f2−f1, f1+f2, 2f1+f2, f1+2f2, as indicated by equation (14) whenNh = 3. These
couplings have a strong effect on dynamic behavior and an example is shown in Figure 6 (b), where the
amplitude level atf2 − f1 is almost100 times higher than the amplitude level of fundamental frequency
f2. Since the number of harmonicsNh retained is equal to3, several frequencies were not taken into
account in GCHBM, whereas the time integration shows these frequencies. For example, there is a peak
at2f2 − 2f1 (Figure 6 (a,b)) for the time integration but no amplitude for GCHBM.

Nonlinear behavior can be affected by all the frequency combinations if their contributions are non
negligible. For Figure 6 (a) which corresponds to the pad, the contribution off2 − f1 seems to be small,
but for 6 (b) which is a disc node, its power is higher than the fundamental frequency levelf2. What is
more, in Figure 5 (c,d) differences can be clearly distinguished on the limit cycle patterns despite the fact
that the maximum amplitude shape remains the same. As an illustration, Figure 7 shows the responses
of the interface nodes of a disc and pad atµ = 0.35 (with Nh = 3). The limit cycle shapes are still
complicated and the same frequency combination can be observed in PSD in Figure 8. Nevertheless, the
third harmonic off2 appears to be absent from the frequency spectrum for the pad node (Figure 8 (a))
while the fifth harmonic off1 is dominant in the frequency range[3500 − 5000]Hz. SinceNh = 3, 5f1
is taken into account only by the time integration. In Figure8 (b), 3f2 is still absent but here5f1 no
longer responds. As forµ = 0.29, a frequency peak at2f2 − 2f1 is taken into account only by time
integration. Despite a higher friction coefficient, the amplitude of the limit cycles is lower in comparison
to case1 atµ = 0.29. For both casesµ = 0.29 andµ = 0.35, the disc nodes show a very low response
of fundamental frequencyf2 and its harmonics compared to the first modef1. However, in some cases
coupling frequencies have the most preponderant contribution in dynamic responses, such asf2 − f1 in
Figure 6 (b). Therefore keepingf2 in the computation is essential.
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5.2.2 Choice and influence of the harmonic number

A common problem when dealing with harmonic balance methodsis making the right choice of har-
monic numbers to compute a solution. An excessively low number could lead to a poor estimation of the
response, especially if strong nonlinearities exist, but choosing too many harmonics leads to unnecessar-
ily intensive computation. Consequently, a compromise must be found. By way of example, we try to
compute a nonlinear solution with the following parameters, (Nh = 2, µ = 0.29) under the same initial
conditions as for(Nh = 3, µ = 0.29). It should be recalled that these initial conditions are derived from
section 4.5.

In Figure 9, the GCHBM withNh = 2 are wrong, compared to those of the time integration, as
seen in Figure 10 where the harmonic components of GCHBM do not fit with those from the temporal
integration. When looking at the convergence chart in Figure 11, it can be seen thatǫ1 has not reached
a minimum (Figure 11 a) and the real partsa1 anda2 that describeǫ2 (Figure 11 b) are not minimized
sincea1 ≈ −6.1 anda2 ≈ 2. The solver stopped because it could not find any downward direction.

One of the reasons for this could be the fact that the restricted number of harmonics leads to an over-
large approximation of displacements and thus of the nonlinear forces used for the dynamic Jacobian
computation, see equation (27). Therefore the criterionǫ2 derived from the real parts associated with the
complex eigenvalues applied for equation (30) would not be satisfied.

Regarding validation, Figure 12 displays the density of thepower spectra when usingNh = 5 for
µ = 0.29. As expected, higher harmonics such as4f1, 5f1, 4f2, 5f2, 2f2 − 2f1, 3f1 − f2 and2f1 +2f2
are found in the spectrum and the GCHBM pattern is very similar to the temporal pattern. However, the
amplitude of these high frequency harmonics is negligible when compared to those found withNh = 3
and they do not appear to affect the stationary response.

Now we considerNh = 2 in a sequential continuation where we re-use the previous results as initial
conditions for a solution computed with a new set of parameters. In practice, the computation is per-
formed from< Nh = 3, µ = 0.345 > to < Nh = 2, µ = 0.35 >. The advantage of this procedure is
that we can determine whether, under better initial conditions, GCHBM is able to provide good results
with fewer harmonics. The response is no, as indicated by figure 13, where the limit cycles computed
by GCHBM are still far from the temporal solution. In Figure 14 it can be seen that the harmonic com-
ponentsf1 and2f1 merge with those of the temporal integration, butf2, 2f2 are almost absent from
the spectrum. Combination frequencies such asf2 − f1 or f2 + f1 are also badly computed, meaning
that usingNh = 2 in such cases is unsatisfactory. ThereforeNh = 3 seems to be a good compromise
between accuracy and computation time and could be used in the following.

5.2.3 Limit cycles with one unstable mode

An interesting phenomenon appears when computing limit cycles for µ = 0.4. Figure 15 shows the
results of time integration and GCHBM procedure. To enhanceunderstanding, Figure 15(a) and (b) are
for two distinct pad nodes and Figure 15(c) and (d) are for twodistinct disc nodes.

Although the stability analysis shows the presence of two unstable modes for this set of parameters,
the dynamic behavior of the system is only driven by the first unstable modef1 = 898.3Hz and the
second unstable modef2 is totally absent in the spectrum of Figure 16. Therefore only the fundamental
frequencyf1 and its harmonics2f1 and3f1 are found and coupling frequencies such asf1 + f2, f2 −
f1 and so on are no longer available. The inner loops in Figure 15(a) are due to the harmonics2f1
and 3f1 exacerbated by nonlinearities. Obviously, sinceNh = 3 was chosen for the Fourier series,
harmonics higher than3f1 are not computed and they are found to be absent from the GCHBMspectrum.
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Nevertheless, these harmonics are not preponderant in the solution when comparing their power density
to the three first harmonics.

As seen previously, the GCHBM results are close to the time integration results with a relative error
on displacement less than1%. Note that GCHBM functions like a CHBM when only one unstablemode
is considered in the final solution.

5.3 Parameter evolution according toµ

In this section we present the evolution of limit cycles withassociated unstable frequencies and the total
amplitude energy of the system withµ varying fromµ = 0.29 up toµ = 0.60 which is a part of the
unstable domain. Figure 17 shows a set of limit cycles computed at different friction coefficient values.
As seen previously, both modes are involved in the dynamic for a low friction coefficient with a complex
limit cycle shape. Whenµ is above0.36, we found closed limit cycles, indicating that only one mode
remains in the dynamic.

To study the squeal propensity of each mode, an index was defined and the following were chosen
from the literature:

αj = 100 ∗ 2
Re(λj)

Im(λj)
for thejth mode (41)

The ratioα1/α2 versus the friction coefficientµ is displayed in Figure 18. It is interesting to compare
how the ratio behaves withµ and its effects on the dynamic steady-state. When looking atthe first part
of the curve, i.e. for0.29 < µ < 0.36, a very steep slope can be seen, but fromµ = 0.36 ratio α1/α2

remains almost constant with respect toµ. When looking at Figure 17 it can be seen that the transition
between a pseudo-periodic response to a periodic response also occurs at aroundµ = 0.36. It seems as
if there is an analogy between the transition of the index ratios of both modes and their availability or
non-availability in the dynamic response. The ratio increases until the first modem1 replaces the second
modem2 and remains constant whenm1 is the only mode providing a response.

As can be seen, a squeal propensity index higher by tenfold isfound for the1st mode compared to
the2nd mode atµ = 0.4. The energy of the first mode appears to replace the second mode even if the
latter is present in the stability analysis.

To facilitate understanding, Figure 19 (a) shows frequencies forµ varying fromµ = 0.29 to µ =
0.36 where both modes are unstable. The frequencies are frictioncoefficient dependent, and whilef2
decreases asµ increases, the slope off1 curve is positive in this range. Nevertheless,f2 disappears from
the dynamic steady-state at aroundµ = 0.36 as can be seen in Figure 19 (b) where only the first unstable
modef1 is present in the limit cycle in the range betweenµ = 0.36 to µ = 0.68. Frequencyf1 follows
a negative slope regardingµ, it decreases from905Hz atµ = 0.36 to 860Hz atµ = 0.68.

Figure 19 (c) shows the total amplitude energy of the whole system forµ ranging from0.29 to 0.68.
In the first part, untilµ = 0.36 where both modes are unstable, the energy decreases and a minimum
is found whenf2 vanishes from the solution. Fromµ = 0.36, the energy of the system increases with
a quadratic form with respect toµ. The first unstable modef1 seems to act as energy pulsating in the
active range of the second modef2 before it disappears from the solution. As described above,the
friction coefficient not only modifies the amplitude of the dynamic behavior of autonomous systems,
but it also influences their frequencies. This dependency between friction and frequency could have an
effect on neighboring modes by exciting them. Consequently, they may participate in the final dynamic
solution.

14



5.4 Convergence and Computation Time

Convergence problems stem from many sources when attempting optimization. The main problems come
from initial estimates made far from the target solution. Here convergence is achieved with the GCHBM
algorithm because a set of conditions considered as optimized is used. For each iteration, Figure 20
displays the norm of the real parts (a), both optimized frequencies (b), and the norm of the residue (c).
More precisely, frequency plot (b) corresponds to the difference between the optimized frequencies and
those obtained by a stability analysis.

The total number of iterations isNiter = 35. The real parts both tend to zero at the end of the
optimization process, as does the norm of the residue. A net difference between the initial frequencies
obtained by the stability analysis and those at the end of optimization is shown. For the first modef1, the
frequency evolution is about20Hz. GCHBM enhances computation time, which falls to about3 hours,
20 minutes, whereas time integration needs about10 hours to obtain the dynamic steady-state. A better
convergence result could be obtained by trying a new initialstarting point or by changing the tolerance
valuesǫ1 andǫ2, since Figure 20 clearly shows that both real parts and frequencies as well as the norm
of the residue have almost converged at iteration25. This would significantly reduce total computation
time. Here we have chosenǫ1 = ǫ2 = 0.01. It should be noted that these convergence results stem from
the very first computation. When using another set of parameters, such as a change of friction coefficient,
the results computed previously are injected as an initial starting point and computation is performed.
Hence the number of iterations and thus computation time areconsiderably reduced, since only a few
iterations are required to converge to the final solution. Ingeneral, a new steady-state solution can be
computed in less than20 minutes.

6 Conclusion

In this paper we develop a new method called GCHBM able to compute the dynamic steady-states of
autonomous systems such as disc brake squeal in the case where stability analysis reveals large numbers
of unstable modes. The computed solutions are either pseudo-periodic if at least two unstable modes
generate vibrations, or periodic if dynamic behavior is driven by only one unstable mode. When at least
two unstable modes vibrate, the stationary dynamic responses become pseudo-periodic and the cycle
plotted in the displacement-velocity coordinates is no longer closed. Particular care regarding the total
harmonic number must be considered to avoid missing important coupling frequencies or even the non
convergence of the solver. Finally, GCHBM is well suited forbrake squeal analysis when a large number
of unstable modes are taken into account. It could help brakedesigners by computing the amplitudes of
limit cycles for sets of parameters faster than with time integration. Frequency responses are analyzed
and modal behavior is better understood. For example, it detects the absence of the second modef2
at µ = 0.36 although the stability analysis predicts two unstable modes. Dynamic behavior can be
computed for numerous parameter sets and an optimal area canbe found easily. For example, the lowest
dynamic response of our model occurs atµ = 0.36 in the unstable area, the point at which the second
modef2 disappears from the dynamic response.
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Figure 3: General algorithm for the GCHBM procedure
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Figure 5: Limit cycles forµ = 0.29. (a,b,c,d) Pad node: (a,c) GCHBM withNh = 3, (b,d) Time
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Figure 7: Limit cycles forµ = 0.35. (a,b,c,d) Pad node: (a,c) GCHBM withNh = 3, (b,d) Time
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Figure 8: Power Spectrum Density forµ = 0.35 with Nh = 3. (a) Pad node: - - GCHBM, — Time
Integration; (b) Disc node: - - GCHBM, — Time Integration
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Figure 9: Limit cycles forµ = 0.29 andNh = 2. (a,b) Pad node: (a) GCHBM, (b) Time Integration;
(c,d) Disc node: (c) GCHBM, (d) Time Integration
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Figure 10: Power Spectrum Density forµ = 0.29 andNh = 2. (a) Pad node: - - GCHBM, — Time
Integration; (b) Disc node: - - GCHBM, — Time Integration
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Figure 11: Evolution of parameters with iterations (Nh = 2, µ = 0.29). (a) Norm of Residue; (b) Real
Parts: —1st mode, -.-2nd mode
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Figure 12: Power Spectrum Density forµ = 0.29 with Nh = 5. (a) Pad node: - - GCHBM, — Time
Integration; (b) Disc node: - - GCHBM, — Time Integration
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Figure 13: Limit cycles forµ = 0.35 andNh = 2. (a,b) Pad node: (a) GCHBM, (b) Time Integration;
(c,d) Disc node: (c) GCHBM, (d) Time Integration
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Figure 14: Power Spectrum Density forµ = 0.35 andNh = 2. (a) Pad node: - - GCHBM, — Time
Integration; (b) Disc node: - - GCHBM, — Time Integration
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Figure 15: Limit cycles forµ = 0.40. (a,b) Pad node: - - GCHBM, — Time Integration; (c,d) Disc
node:- - GCHBM, — Time Integration
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Figure 16: Power Spectrum Density forµ = 0.40. (a) Pad node: - - GCHBM, — Time Integration; (b)
Disc node: - - GCHBM, — Time Integration
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Figure 17: Limit cycles from the GCHBM with varying frictioncoefficientµ
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Figure 19: Evolution of parameters withµ. (a) Both unstable modes,0.29 < µ < 0.36; (b) First unstable
mode0.36 < µ < 0.68; (c) Total amplitude energy,0.29 < µ < 0.68
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Figure 20: Evolution of parameters with iterations (µ = 0.29). (a) Real Parts: —1st mode, -.-2nd mode;
(b) Frequencies: —1st mode, -.-2nd mode; (c) Norm of Residue
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