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Abstract

This paper is devoted to the computation of nonlinear dynasteady-state solutions of autonomous
systems subjected to multi-instabilities and proposesvaman-linear method for predicting periodic
and quasi-periodic solutions intended for applicatior®disc brake squeal phenomenon. Firstly, finite
element models of a pad and a disc are reduced to include laiy dontact nodes by using a Craig
and Bampton strategy. Secondly, a complex eigenvalue siraly performed showing two unstable
modes for a wide range of friction coefficients, after whickbaneralized Constrained Harmonic Bal-
ance Method (GCHBM) is presented. This method can computénear periodic or pseudo-periodic
responses depending on the number of unstable frequenitiesiumerical results are in good agreement
with those of time marching methods.

1 Introduction

Disc brake squeal is still an issue for engineers and séiectbmmunities. A great deal of work has
been done in previous decades to understand the mechanitamyimg squeal noise and formulate solu-
tions for eradicating it. Kinkaid et al. [1] and Ouyang et[al. have performed extensive reviews of this
phenomenon. The first models of disc brake squeal were bitiitame degree of freedom (dof) systems
in which velocity friction dependency was considered asdfjeeal mechanism [3]. Then, Spurr [4]
developed a sprag-slip model with a constant friction coieffit and highlighted squeal conditions. A
generalization of this phenomenon was studied with geaoca¢tcoupling between bodies [5, 6]. The
mode coupling effect due to friction was considered and & slzown that squeal could occur even if the
friction coefficient is constant in relation to sliding velty. This mechanism is now commonly consid-
ered as the first cause of squeal generation and many worksaseel on the mode coupling effect for
squeal analysis. The continued development of computexaid has led to the use of the finite element
method to study large and complex refined systems (see fonmrareferences [7, 8]). The primary
tool for predicting squeal propensity is complex eigeneadmalysis. Eigenvalues with positive real parts
are related to unstable modes that are responsible for lsgeearation, whereas negative real parts are
related to stable modes. Stability and instability areadtaen plotted versus system parameters and can
provide clues for squeal-free brake design. Neverthetasditerature states [9—11] that the computation
of dynamic steady-states is increasingly employed beciusads to improved comprehension of the
nonlinear aspects of the system and facilitates robuseldakign. A major drawback of time marching
methods is the CPU time consumed for computing steady-stgpmnses. Besides, alternative methods



in the frequency domain have been developed in order to eehemmputation of stationary nonlinear
dynamic solutions. Mention can be made of the direct Harm8wilance Method (HBM), which is the
most popular technique and used by many authors [6, 12].eR#thn computing all the transient parts
in the time domain, Harmonic Balance Methods are designgdtorcompute the Fourier coefficients of
the steady-state solution by balancing terms betweenatispients and nonlinear forces. A derivation
of Harmonic Balance Methods, called the Constrained HaioBalance Method (CHBM), developed
in reference [13], is used for autonomous systems in whicparmdic excitation exists.

In this paper, we perform a generalization of the Constdhidarmonic Balance Method (CHBM) by
applying it to autonomous systems subjected to multiplealrhs modes. In general, the ratio between
two modal frequencies is not an integer and such frequerasiesonsidered incommensurate. Con-
sequently, such modes involved in the dynamic responseupeodseudo-periodic solutions and HBM
based-methods can be designed to deal with multiple freg®nSince disc brake squeal is related to
autonomous dynamic systems, several specific extensiengresented, leading to a proper algorithm
based on the Harmonic Balance Method. This algorithm carpotenthe steady-state responses of au-
tonomous systems with multiple input frequencies linkedinstable modes identified in the stability
analysis. This paper is divided into four parts: firstly, amarical model is presented with the modeling
hypotheses. Secondly, a stability analysis is performéghlighting two unstable modes for a given
range of parameter. Then, a Generalized Constrained HacrBatance Method (GCHBM) designed
for computing nonlinear steady-state responses is prederthe last part is devoted to the presenta-
tion and discussion of the results. A comparison with a tinggaining method is carried out with an
evaluation of computational performances.

2 Modeling of the Brake System

The nonlinear system considered here is a reduced finiteeelfiermodel of a pad and disc and is based on
a previous study by Sinou et al [14]. Based on a finite elemmutguiure, each component of the system
shown in Figure (1) is reduced by using a Craig and Bamptategfy [15]. Since highly nonlinear
phenomena appear at the disc/pad interface, it is necasseopserve physical dofs on both components
at this location to ensure, for example, fine managementettmtact status between the pad and the
disc. Nine contact nodes are conserved and distributedllgqurathe frictional pad surface. Since
the disc and pad meshes are compatible at the selected migkesace to face nodes are kept on the
frictional disc surface. Using only nine contact nodes mal/provide an accurate description of the
complex behavior of the surfaces, but it seems adequateufgourposes in terms of behavior and size
for validating the new algorithm presented in the following should be noted that the nodes remain
opposite each other during the computations and a relaél@city is imposed at the contact nodes to
generate friction forces. Certain generalized dofs artuded in the final reduced model, as keeping
only static nodes gives a poor dynamic description of theesefements. This procedure adds the first
n constrained modes in the reduction basis. We chaose50 for both components corresponding to a
cut-off frequency equal tdé0k H =z for both super-elements. Finally, an equation of motioneiswed:

MU 4+ DU + KU + Fy, (U) = Fou (1)

whereM, D, K are the linear mass, damping and stiffness matrices regglgctF,; (U) is related
to a vector of nonlinear forces occurring at the disc/paérface and,,,;; is the vector of external forces.
U,U,U are respectively acceleration, velocity and displacerentors. The model hascontact ele-
ments and 58 dofs includings4 nonlinear dofs and04 linear dofs. Contacts are included in the physical



Figure 1: Split view of the finite element model of the braketeyn. The red dots represent the contact
nodes

systems to add constraints in the equation of motion (1). déarvenience, we choose to consider the
penalty method. Springs are added at the disc/pad intetdaogoose contact conditions. Measurements
of pad compressibility show a nonlinear relationship betwihe pressure and the displacement. This ef-
fectis included at the interfaces where nonlinear cont#thasses are considered in our model. Finally,

the mathematical function used to describe the contacéfistc

/{1 (u1 - UQ) + knl(ul — UQ)S if (u1 — ’ILQ) >0
0 otherwise

(@)

whereu; andus are respectively displacements of contact nodes of themédiac at contact element
i. For the frictional definition, we consider a simplified Comrb law with a constant friction coefficient
without stick-slip motion. Moreover, a unidirectionaldtion effort is considered. Then a friction force
F; ; located at nodeis derived from a contact effoffconact,i With:

F contact,i — {

Ff,i = ,UFcontact,ngr(Ur,i) (3)

where. is the friction coefficient and, ; the relative velocity between the disc and pad at node
The damping matriD is built by considering a Rayleigh damping withand 5 chosen to obtain modal
damping¢ = 0.1 on non-frictional coupled mode30Hz and940Hz. The external force is directly
applied on the back pad on four nodes for almost piston likssure distribution. Table 1 provides the
model parameters. To enhance understanding, it may be ti@tethe chosen finite element model (with
the contact and damping assumption) does not attempt tareagit effects realistically. This modeling
has been chosen to illustrate a suitable range of behavibtoainvestigate the efficiency of the proposed
non-linear method.

3 Static computation and stability analysis

The classical tool for predicting unstable modes in squealyais is a linear computation consisting in
finding unstable modes around a linearized static posifitwe. first step considers only the static part of



Pad
Young Modulust (G Pa) 2
Poison rationv 0.1
Densityp (kg.m=3) | 2500
Disc
Young Modulust (G Pa) 125
Poison ratiorv 0.3
Densityp (kg.m=3) | 7200

Table 1: Physical characteristics
a (s) 1.6e=7
B (s7h 6.1
ke (Nm™ 1) | 1.8¢°
ko (Nom™3) | 5e?

Four  (N) 7000

Table 2: Parameter values

the system with nonlinear terms at the contact interface:

KUO + Fnl (UO) = Fout (4)

Then, a nonlinear steady sliding equilibrium positioy is computed and its stability is analyzed by
using a perturbation step procedure:

U=U,+U0 %)

substituting the previous solution in the equation of moiib) with a linearization step gives:

MU+ DU+ (K+Jm)T=0 (6)

where J, is the frictional contact Jacobian matrix derived from dniged expressions of contact
efforts. An elementary Jacobian matdy,, at contact node takes the form:

aFnll,i aFnlu
ouy Oug ;

Jny, = OF 1, “ OF o (7)
Ouu uo Ouzi uo

Note that]J,, is asymmetric since the model contains friction forces. Gtmplex eigenvalue com-
putation of (6) then gives the local stability of the nonAnesystem. Eigenvalues take the form

/\j = Gj + iOJj (8)

wherew; is the natural pulsation inad.s~' of modej, defined asv; = 2« f; with f; being the
natural frequency inffz anda; its associated real part. The modal damping can be expressgd=
—2a, /wj, since as long as the real part remains negative the asseiaide is stable with a positive
modal damping; > 0. However, whem:; becomes positive, the associated mode has a negative modal
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Figure 2: Evolution of the Frequencies (a) and Real Partsvith) the friction coefficient (dashed lines:
unstable modes)

damping¢; < 0 that supplies energy. Then, mogles considered as unstable and can generate vibrations
at its natural frequency, resulting in squeal noise emissiBigure 2 shows the evolution of (a) the
frequencies and (b) the real parts. We clearly see the frexyueoalescence of non-frictional coupled
modes due to friction. An unstable mode appears at the Hdyfclaition point wherg: = 0.26 and the
frequency isfo = 1514Hz. The real parts split with one becoming positive whiledkiger remains in the
negative area. Frequency coalescence is not perfect duetenly distributed damping between modes
[16]. Another unstable mode & = 920Hz appears for a larger friction coefficient valye € 0.28).
Frequency coalescence is perfect because both non4figddtimupled modes are equally damped, as seen
previously. Both modes are considered as unstable abavadhbnd Hopf bifurcation point. In brief,
we distinguish three main areas in the coalescence pattdfigare (2). The first considers a friction
coefficient undel0.26 where no instability occurs. The second is between the twpfHdurcation
points (i.e.x ranges fron).26 to 0.28) where only modefs at 1514Hz is unstable. The third part starts
from p = 0.28 until 4 = 1, where two modes are unstable at two distinct frequengtieand f,. Note

that the growth rate of the real part of the first mges the highest in the model.

This simple model raises one of the problems of the squealgrhenon: that of the vibrations when
more than one mode is considered as unstable. To solve thiidepn, and since the real parts of the
unstable modes are not an indicator of dynamic behaviopéeah analysis is generally employed for the
whole system (1). Hence, we are able to obtain a good regegsmsnof nonlinear behavior, providing
a great deal of information such as vibration level and fesgny components. However, the major
drawback of this approach is the computation time requiceditain the dynamic steady-state of the
nonlinear autonomous system. An alternative method knawv@tBM [13] can be used to compute
the dynamic steady-state of autonomous systems with onahl@esnode faster than with time marching
methods. An extension of CHBM for dealing with a wide rangaofonomous systems with multiple
instabilities is proposed in the following.



4 Generalized Harmonic Balance Method

4.1 Quasi periodic functions

Responses are no longer periodic when oscillatory systemsubjected tg incommensurable fre-
guencies. The nonlinear oscillations contain the frequ&eenponents of any linear combination of the
incommensurable frequency components

kiwi + kowo + -+ - + kjwj + - - + kpwp )

with k; = —Np, —Np+1,...,-1,0,1,..., N, — 1, N, fori = 1,...,p. N; defines the order for each
fundamental frequency andthe number of incommensurable frequencies.

Thus the dynamic solution of equation (1) can be express#d avjeneralized Fourier series such
that:

Np, Np,
U (t) ~ Z . Z ak,.. kp €08 (k1wi + ... + kpwp) t + by, 1k, sin (krwr + ...+ kpwp) t
ki=—Np,  kp=—Np
(10)
ag, .k, andby, . i, define the unknown Fourier coefficients of any linear comtms of the
incommensurable frequency componentswo, . . . ,w, that have been defined previously in (9).
The previous expression can be rewritten in a condensed form
U(t) =ap+ Z ay cos (kw)t+ Z by sin (k.w)t (11)

kezZp kezr

where the(.) denotes the dot produdt, is the harmonic number vector of each frequency directiah an
w is the vector of the incommensurable frequencies considered in the solutioncénvenience, it is
wise to deal with a multiple time parametersuch that

T =wt (12)
and equation (11) is rewritten as
U(r)=ap+ Z ay cos (k.7) + Z by sin (k.7) (13)
keZp kezp
whererT = [11...7p] is a non dimensional time parameter and refers tohyyer-time concept

proposed by [17]. Consequently, rather than dealing witingls time domaint € R, for solution
U(t), a multiple periodic time domaim € R is considered where each dimensigncorresponds to
one incommensurable fundamental frequency identified enstiiution. Therefore (13) i8r periodic
on every hyper-time dimension ef. U(7) representdJ(¢) in ap dimensional time space where each
frequency is independent from the others. For example |@ahet al. [18] defingorus functions which
represent the hyper-time domain i dimensional space f@&rincommensurate frequencies. An analogy
with numerical image processing can be considered to lidtesthehyper-time concept when applying
a filter on an image. It can be considered as a visual signaratpg on both parameters, its two
orthogonal directions$z, y) that are similar ta andr, in a hyper-time domain.

Theoretically, (13) is able to treat a great range of apéidginamic systems where a finite number
of p incommensurable frequencies have been identified. A defingiven by [17] for defining/Ny,
harmonics in a multiple Fourier series is:



p
> lkil < N (14)
j=1

This choice is justified by the fact that the major part of tlgmal energy is generally included in the
very first harmonics and the very first coupling frequencies.
Equation (14) will be used in the following for the multipl®®rier series truncation.

4.2 Generalized Harmonic Balance Method

Substituting (11) in the behavior equation (1) and consigeequation (14) gives:

Rt~ > [(K ~ (kw)? M) a, + (kw)D) bk} cos (k.7) +
kezy a5
S [(K - (kw)? M) by — ((lew) D) ay] sin (ler) + Fun (g, br) = Foue
kezy,

Since sine and cosine are orthogonal functions, they ackasskases and we use a Galerkin procedure
for computing Fourier coefficients:

27 27 p
/ Rcos (ki.71 + ... 4+ kp.1p)dry ... d1, = O forall k; suchZ|kj| < Ny
0 0

j=1
27 27 p (16)
/ Rsin (k.71 + ... 4+ kp.1p) dry ... d7, = O for all k; suchz |kj| < Np
0 0 -
7=1
And the following set of algebraic equations is derived:
A7+ Fy (2) = Fou 17)
WhereA refers to the block diagonal dynamic stiffness matrix:
K 0 0 0 0 O]
0O A; 0 0 O 0
0o 0 ° 0O O 0
A= 0O O A; O 0 (18)
O 0 0 O - 0
(0 0 0 0 0 Ay
with )
—(kw)"M+K (k.w)D .
A = f 1, N, 19
C(ke)D - (k)M K] OrE LN (19)

N, represents the total number of frequency components imguall harmonic terms up tév,, of
each frequency direction and all the coupling frequenctessen by using (14). They must also be



positive. ThereforeV, depends o, values. A particular case whepe= 2 is studied in the following
and thus\V,. is defined.

7, Fy (z) and Foy are respectively the Fourier coefficient vectors of dispfaent, nonlinear fric-
tional contact forces and external forces of the systemy e expressed as:

zZ = [ao al b1 e aN,. ch] (20)
Fy = [FnLO Fﬁu Fgl,l FﬁLNC FEI,NC] (1)
Fout = |:Fout,0 f‘ﬁut,l F]gut,l Fgut,Nc F(l:))ut,Nc:| (22)

Since the behavior df,,; is nonlinear with respect to the displacement vector, éongf7) must be
solved iteratively by using Newton-Raphson root-findingogithms. The analytical computation Bf,,
in the frequency domain is prohibitive when defined as a piesEnonlinear function of displacement.
To get round this issue, certain techniques have been gmatlfor computing nonlinear terms. The
Incremental Harmonic Balance Method (IHBM) or High Dimemsl Harmonic Balance Method (HD-
HBM) [19,20] is applied to nonlinear systems under multigeitation frequencies. The nonlinear treat-
ment of Fourier coefficients is performed by using multiplad scales where transformation matrices
of equally spaced sub-time levels are built to compute th@dimear Fourier coefficients. Cameron [21]
proposes the Alternating-Frequency Time (AFT) method topate the periodic nonlinear forces in the
time domain and then extract their exact Fourier coeffici@hj. As we use dyper-time domain where
the functions ar@r periodic on every orthogonal time dimension, the geneatibn of the AFT can
be extended to a-dimensional frequency domain by using-alimensional FFT. The procedure is as
follows:

" U (1) — Fu (U(1) 25 £ () (23)

OnceF,,; (U(7)) is evaluated, its Fourier coefficients are computed andtegeinto equation (17). In
brief, GHBM is written as an objective functioh of a dynamic system subjected to multiple frequency
inputs:

Iy (2) = HAZ P () — Fowl| < 1 (24)

where||.|| defines the euclidean norm aadis a chosen tolerance.

4.3 Additional constraint equations

This derivation of GHBM can be applied to a wide variety of dgmc systems exhibiting pseudo-
periodic responses due to a finite number of identified exgifrequencies. As seen previously, disc
brake squeal is equivalent to an autonomous system, i.edyti@mic response implicitly depends on
time or, in other words, no external excitation forces extite structure. Thus GHBM gives the trivial
solution in which the Fourier coefficients would be null egtéor the static components, even though
a local minimum exists for the dynamic steady-state in thénmdpation domain [13]. The existence of
both solutions is related to the nature of the dynamic sy#llestirated by equation (1). Under unstable
static conditions, the system may or may not oscillate, dejpg only on the initial conditions or a per-
turbation of the system’s parameters. Hence a set of additiequations has to be included in equation
(17) to reach the minimum related to the dynamic solution.

8



If we consider that the nonlinear response of an autonomyaisrs is driven by unstable modes:

p
Ut)=> ;e (25)
j=1

where ¥; is an unstable mode ang;, = a; + iw; its eigenvalue. It can be seen thlt andp;
depend implicitly onU(¢) since they are subjected to nonlinear effects thus a changenitact status.
Hence [V ... \IJP]T should be considered as unstable modes of a dynamic statéhweit corresponding
complex eigenvalueg; . . . <pp]T, as opposed to unstable modes of the sliding steady-statéoscseen
in section 3. Hence, when looking at equation (25), a null paat of o; indicates that the dynamic
responsdJ;(t) = ¥ et is stationary through time and oscillates with pulsatign Therefore, when
all p unstable modes have a null real pdit;(¢) becomes a pseudo-periodic motion that is the steady-
state response of the autonomous system considered. @ieenaihimizing the real parts of eigenvalues
@; (with j € [1,p]) in the optimization process would lead to the correct cotaon of the Fourier
coefficients linked to the steady-state solution.

The computation of; is performed by considering an equivalent linear systengtegon (1) and
refers to the equivalent linear concept proposed by lwanZ2Pwhere the nonlinear ternis,,; (U(¢))
are replaced with a linear approximation matliy; such that:

C=Fn(U) —IJaU({)with{ —0 (26)

Jn1 refers to a time independent Jacobian matrix of the nonliteraporal forced',, (U(¢)) at the
dynamic stationary staf€ ().

Since a Fourier Transformation is a linear applicatidg; can also be computed in the frequency
domain with Fourier coefficients:

¢ =Fpn(z) — Imzwith¢ — 0 (27)
A good linear approximation of (1) is obtained whénr- 0. Then (1) is substituted by:

MU + DU + (K + Jnl) U=Fou (28)

By using a perturbation method, the complex eigenvalne$ equation (28) are computed and the
real parts linked to the unstable modes are extracted ahérgat in a vector, forming a second objective
function Js.

Secondly, since there is no external excitation, ihr@nlinear pulsations); are undefined and thus
have to be considered asndependent unknowns. In brief, a Generalized Constraitaanonic Bal-
ance Method (GCHBM) applicable to autonomous systems stdoje¢op incommensurate frequency
components is arranged in a set of two objective functions:

{ Jl (Zvﬂ) = HA(Z>Q)Z+FH1 (279)_FoutH < €1 (29)
J2 (Z,92) = [[Re (¢; (Z, Q)| < ez with j € [1,p]
In more detailJ, takes the form
|Re (¢1 (2, )|l
Re z,Q
Ty (5.9) = | (wz_( NI (30)



with vectorQ of p unknown frequencies:

Q- (31)

Computation is performed whea J;, Jo > are respectively below chosen toleranees:,es >.
Such a set of objective functions has(1 + 2N.) + p) equations to be solved wittn (1 + 2N..) + p)
unknowns and is therefore well-determinedis the dimension of the dynamic systef, is the total
number of frequency combinations apds the number of unstable modes used in the solution.

4.4 Reduction step

The computation time of any nonlinear system is related émimber of unknowns so any reduction in
the size of the system would increase performance. The eutfi¢24] propose a reduction method for
nonlinear systems studied in the frequency domain withosg bf accuracy. After reorganizing linear
and nonlinear dof&,; andz,,, the system described by equation (17) can be expressetmegsto

Aln In Aln nl:| { Z1n } { 0 } { Fout In }
s ’ ~ + ~ — ~ ’ 32
|:An1,1n A Zy) Fo Fout,nl (32)
and equation (17) is rewritten in term of nonlinear compdsenich that:

Acqzn) + Fui (7)) = Feq (33)

with
Acq = Anint — Aniin (Alnin) ™ Al (34)

and
Foq = Foutnl — Antin (Alnin) ™ Foutin (35)

This step reduces the number of equations ff@2N,. + 1) + p) to (n,; (2N, + 1) + p) wheren
andn,, are the numbers of total dofs and nonlinear dofs respegtivighus this reduction step is very
efficient for large systems with only few nonlinear dofs. Wiz, is known,zy,, is easily obtained by:

Z, = Afn,lln (Fout,ln - Aln,nlznl) (36)

Hence, a reduced form of equation (29) is:

< €]

{ 1 oty ) = || e (Fa, @) Zt + Bt (701, ) — Fg| 7

J2 (Zn1, ) = [|Re (¢j (Zn1, Q))|| < €2 With j € [1, p]

Computation is done whea J1, Jo > are respectively below chosen toleranees;, e >. Figure
3 represents the general algorithm procedure of a GCHBM.

10



45 GCHBM initialization

Regarding time marching methods, optimization processesl @ starting point to find a solution in
the optimization domain. A bad choice of initial conditiorsssynonymous with slow convergence.
As explained in [13] and inspired by the concept of ComplexiNinear Modal Analysis (CNLMA)
developed by Sinou et al. [25], Fourier coefficients of thstfirarmonic are initialized by the unstable
mode vectors found in the stability analysis. This is basedhe assumption that dynamic behavior
is mainly driven by unstable modes. Thus for every first harim¢in Fourier basis) of every unstable
mode, the initial prediction takes the form:

ZLj =7 (‘I’j + ‘T’J) with j € [1,])] (38)

where ¥; defines thej®" nonlinear unstable mode shapg; is its conjugate ang is an arbitrarily
chosen coefficient with a range fra2f to 60 to ensure convergence of the optimization problem. As can
be observed, the pulsations aeriori unknown while a good initial estimate considers those foinnd
the stability analysis.

5 Application to squeal vibration

5.1 Brake model with two unstable modes

As indicated previously in section 3, two modes are foundeabstable, with the potential to vibrate.
Thus,J; and(2 are two-dimensional and take the following form:

. _ | IRe(p1 (Zu1, 21-2))]|
JQ (an 91—2) - { ||Re (()02 (an’ 91—2))H } (39)
Q2= { g; } (40)

A geometric interpretation dt € Z? (i.e. p = 2 and N, = 3) is given in Figure 4. It can be seen
that the harmonic combinations are constrained by equétidphand that the resulting frequencies are
positive.

According to Figure 4N, = 12 and as seen in section 2, the nonlinear terms are equig); te: 54.
Thus the whole equation set heg52 unknowns and equations. It should be noted that for the chseaw
k1 = ko = 0 stands for the static Fourier coefficients and is not inalligeV ...

5.2 Nonlinear Steady-State

In this section, the results of the GCHBM procedure and caispas with temporal results from refer-
ence [14] are presented and discussed. Steady-stateosslii three different friction coefficients are
studied. The efficiency of GCHBM is underlined as are therojiation process parameters. Finally,
results relating to the evolution of frequencies and amgétlevel as a function of friction coefficient are
discussed. Table 2 groups the parameter values and Tablb&g&equency values for three different
friction coefficients.

11



Case Friction coefficient fi1(Hz) f2(Hz)

1 L= 0.29 896.0 1497.1
2 1 =0.35 903.8  1495.4
3 p=0.4 898.3 _

Table 3: Parameter table

5.2.1 Limit cycles with two unstable modes

Figure 5 displays pseudo-periodic responses for a disc gradanterface node for both methods at
= 0.29 (with N, = 3).

Since the responses are pseudo-periodic due to both incosumate frequencies, the limit cycles
are no longer closed. They are delimited by a maximum anggitshape and remain inside it. Good
correlation between time integration and GCHBM is found #rerelative errors on displacements and
velocities are less thab%o. Limit cycle evolution is complicated due to both unstabled®s; conse-
qguently, the Power Spectrum Density (PSD) is plotted on iieidguto facilitate understanding. Since
both modes participate in the nonlinear dynamic solutibe, gpectrum includes both fundamental fre-
qguencies,f; = 897Hz and fy = 1497Hz, as well as their respective harmonit§, 3f1, 2/, and3fs.
Note that frequencieg; and f> of the final response are slightly different from those of gtability
analysis, therefore taking them as unknowns in a GCHBM ploeeis a reasonable hypothesis. More-
over, modulation frequencies are also found in the specttuento nonlinearities. The combinations are
2f1— foufo—f1, 2fo— f1, f1+ fa, 2f1+ fo, f1+2f2, as indicated by equation (14) whah, = 3. These
couplings have a strong effect on dynamic behavior and ampbeais shown in Figure 6 (b), where the
amplitude level aff; — f1 is almost100 times higher than the amplitude level of fundamental freqye
f2. Since the number of harmonicg;, retained is equal t8, several frequencies were not taken into
account in GCHBM, whereas the time integration shows thespiencies. For example, there is a peak
at2f, — 2, (Figure 6 (a,b)) for the time integration but no amplitude ®CHBM.

Nonlinear behavior can be affected by all the frequency doattons if their contributions are non
negligible. For Figure 6 (a) which corresponds to the paé cimtribution off; — f; seems to be small,
but for 6 (b) which is a disc node, its power is higher than tnedamental frequency levéh. What is
more, in Figure 5 (c,d) differences can be clearly distisgad on the limit cycle patterns despite the fact
that the maximum amplitude shape remains the same. As atrdtion, Figure 7 shows the responses
of the interface nodes of a disc and paduat= 0.35 (with V;, = 3). The limit cycle shapes are still
complicated and the same frequency combination can bewaabar PSD in Figure 8. Nevertheless, the
third harmonic off, appears to be absent from the frequency spectrum for the gael (frigure 8 (a))
while the fifth harmonic off; is dominant in the frequency rang@&500 — 5000]Hz. SinceN;, = 3, 5f1
is taken into account only by the time integration. In Fig8réb), 3 f5 is still absent but heréf; no
longer responds. As for = 0.29, a frequency peak atf, — 2f7 is taken into account only by time
integration. Despite a higher friction coefficient, the ditople of the limit cycles is lower in comparison
to casel at = 0.29. For both caseg = 0.29 andu = 0.35, the disc nodes show a very low response
of fundamental frequency, and its harmonics compared to the first mg@de However, in some cases
coupling frequencies have the most preponderant conwifboith dynamic responses, such as— fi in
Figure 6 (b). Therefore keepinfy in the computation is essential.
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5.2.2 Choice and influence of the harmonic number

A common problem when dealing with harmonic balance methedsaking the right choice of har-
monic numbers to compute a solution. An excessively low remebuld lead to a poor estimation of the
response, especially if strong nonlinearities exist, atosing too many harmonics leads to unnecessar-
ily intensive computation. Consequently, a compromisetrbasfound. By way of example, we try to
compute a nonlinear solution with the following parametérg, = 2, u = 0.29) under the same initial
conditions as fof N, = 3, u = 0.29). It should be recalled that these initial conditions areéveer from
section 4.5.

In Figure 9, the GCHBM withN, = 2 are wrong, compared to those of the time integration, as
seen in Figure 10 where the harmonic components of GCHBM dditnwith those from the temporal
integration. When looking at the convergence chart in Fadlt, it can be seen that has not reached
a minimum (Figure 11 a) and the real pastsanda, that describes (Figure 11 b) are not minimized
sincea; ~ —6.1 andas ~ 2. The solver stopped because it could not find any downwaeggtitim.

One of the reasons for this could be the fact that the resttinumber of harmonics leads to an over-
large approximation of displacements and thus of the neatiriorces used for the dynamic Jacobian
computation, see equation (27). Therefore the critetjoterived from the real parts associated with the
complex eigenvalues applied for equation (30) would notatisféed.

Regarding validation, Figure 12 displays the density offbeer spectra when usiny,; = 5 for
u = 0.29. As expected, higher harmonics suchigs, 5f1, 4 f2, 5f2, 2fo — 2f1, 3f1 — fo and2f1 + 2f
are found in the spectrum and the GCHBM pattern is very siniilahe temporal pattern. However, the
amplitude of these high frequency harmonics is negligibheemvcompared to those found wit¥y, = 3
and they do not appear to affect the stationary response.

Now we considerV, = 2 in a sequential continuation where we re-use the previcsidteeas initial
conditions for a solution computed with a new set of paramsetén practice, the computation is per-
formed from< N, = 3, = 0.345 >to < Ny = 2, u = 0.35 >. The advantage of this procedure is
that we can determine whether, under better initial cood#j GCHBM is able to provide good results
with fewer harmonics. The response is no, as indicated bydi@a, where the limit cycles computed
by GCHBM are still far from the temporal solution. In Figuré it can be seen that the harmonic com-
ponentsf; and2f; merge with those of the temporal integration, but 2/, are almost absent from
the spectrum. Combination frequencies suctf-as f; or f» + f are also badly computed, meaning
that usingN;, = 2 in such cases is unsatisfactory. Therefdfg = 3 seems to be a good compromise
between accuracy and computation time and could be useé ioltbwing.

5.2.3 Limit cycles with one unstable mode

An interesting phenomenon appears when computing limikesyfor ;» = 0.4. Figure 15 shows the
results of time integration and GCHBM procedure. To enhamwerstanding, Figure 15(a) and (b) are
for two distinct pad nodes and Figure 15(c) and (d) are fordigtinct disc nodes.

Although the stability analysis shows the presence of twatalvle modes for this set of parameters,
the dynamic behavior of the system is only driven by the firsitable modef, = 898.3Hz and the
second unstable modg is totally absent in the spectrum of Figure 16. Thereforg o fundamental
frequencyf; and its harmonicg f; and3f, are found and coupling frequencies suchfas- fo, fo —
f1 and so on are no longer available. The inner loops in Figuréal@re due to the harmoni@s;
and 3 f; exacerbated by nonlinearities. Obviously, singg = 3 was chosen for the Fourier series,
harmonics higher tha®if; are not computed and they are found to be absent from the GCs{igetrum.
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Nevertheless, these harmonics are not preponderant iligos when comparing their power density
to the three first harmonics.

As seen previously, the GCHBM results are close to the tirtegnation results with a relative error
on displacement less thafit. Note that GCHBM functions like a CHBM when only one unstablede
is considered in the final solution.

5.3 Parameter evolution according tou

In this section we present the evolution of limit cycles wassociated unstable frequencies and the total
amplitude energy of the system withvarying fromy = 0.29 up top = 0.60 which is a part of the
unstable domain. Figure 17 shows a set of limit cycles coptpat different friction coefficient values.
As seen previously, both modes are involved in the dynanmia fow friction coefficient with a complex
limit cycle shape. Whem is above(.36, we found closed limit cycles, indicating that only one mode
remains in the dynamic.

To study the squeal propensity of each mode, an index wasedeéind the following were chosen
from the literature:

Re();)
Im(A;)

The ratioa; /ay versus the friction coefficient is displayed in Figure 18. Itis interesting to compare
how the ratio behaves with and its effects on the dynamic steady-state. When lookirtlgeafirst part
of the curve, i.e. f00.29 < p < 0.36, a very steep slope can be seen, but fem: 0.36 ratio «y /s
remains almost constant with respecttoWhen looking at Figure 17 it can be seen that the transition
between a pseudo-periodic response to a periodic resptsseaurs at around = 0.36. It seems as
if there is an analogy between the transition of the indelosadf both modes and their availability or
non-availability in the dynamic response. The ratio insesauntil the first mode:; replaces the second
modems and remains constant whem, is the only mode providing a response.

As can be seen, a squeal propensity index higher by tenfdtliisd for the1® mode compared to
the 2" mode aty = 0.4. The energy of the first mode appears to replace the second ewath if the
latter is present in the stability analysis.

To facilitate understanding, Figure 19 (a) shows frequesiéor ;. varying fromp = 0.29 to p =
0.36 where both modes are unstable. The frequencies are fricbefficient dependent, and whijg
decreases gsincreases, the slope ¢f curve is positive in this range. Neverthelegsdisappears from
the dynamic steady-state at aroyne- 0.36 as can be seen in Figure 19 (b) where only the first unstable
mode f7 is present in the limit cycle in the range betwgen- 0.36 to ;» = 0.68. Frequencyf; follows
a negative slope regarding it decreases frori05Hz aty = 0.36 to 860Hz aty = 0.68.

Figure 19 (c) shows the total amplitude energy of the whostesy for;, ranging fromo0.29 to 0.68.

In the first part, untilx = 0.36 where both modes are unstable, the energy decreases andnaumin
is found whenfs; vanishes from the solution. From = 0.36, the energy of the system increases with
a quadratic form with respect {@. The first unstable modg¢ seems to act as energy pulsating in the
active range of the second modge before it disappears from the solution. As described abthe,
friction coefficient not only modifies the amplitude of thendynic behavior of autonomous systems,
but it also influences their frequencies. This dependentydsn friction and frequency could have an
effect on neighboring modes by exciting them. Consequgetiitgy may participate in the final dynamic
solution.

aj =100 * 2 for the j'* mode (41)
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5.4 Convergence and Computation Time

Convergence problems stem from many sources when attegrgyiimization. The main problems come
from initial estimates made far from the target solutionrédeonvergence is achieved with the GCHBM
algorithm because a set of conditions considered as oz used. For each iteration, Figure 20
displays the norm of the real parts (a), both optimized fezmies (b), and the norm of the residue (c).
More precisely, frequency plot (b) corresponds to the diffee between the optimized frequencies and
those obtained by a stability analysis.

The total number of iterations 8., = 35. The real parts both tend to zero at the end of the
optimization process, as does the norm of the residue. Aiffetehce between the initial frequencies
obtained by the stability analysis and those at the end ahdggation is shown. For the first modg, the
frequency evolution is abo@Hz. GCHBM enhances computation time, which falls to al®bours,

20 minutes, whereas time integration needs aldoutours to obtain the dynamic steady-state. A better
convergence result could be obtained by trying a new indiaiting point or by changing the tolerance
valuese; andes, since Figure 20 clearly shows that both real parts and &egies as well as the norm

of the residue have almost converged at iterafibn This would significantly reduce total computation
time. Here we have chosen = ¢; = 0.01. It should be noted that these convergence results stem from
the very first computation. When using another set of pararagsuch as a change of friction coefficient,
the results computed previously are injected as an initatiag point and computation is performed.
Hence the number of iterations and thus computation timeansiderably reduced, since only a few
iterations are required to converge to the final solutiongéneral, a new steady-state solution can be
computed in less tha2 minutes.

6 Conclusion

In this paper we develop a new method called GCHBM able to ewenfhe dynamic steady-states of
autonomous systems such as disc brake squeal in the case stéigifity analysis reveals large numbers
of unstable modes. The computed solutions are either pgeerdtadic if at least two unstable modes
generate vibrations, or periodic if dynamic behavior ien by only one unstable mode. When at least
two unstable modes vibrate, the stationary dynamic regsmbscome pseudo-periodic and the cycle
plotted in the displacement-velocity coordinates is naykmclosed. Particular care regarding the total
harmonic number must be considered to avoid missing impodaupling frequencies or even the non
convergence of the solver. Finally, GCHBM is well suitedlboake squeal analysis when a large number
of unstable modes are taken into account. It could help kdakegners by computing the amplitudes of
limit cycles for sets of parameters faster than with timegnation. Frequency responses are analyzed
and modal behavior is better understood. For example, @atietthe absence of the second mgde

at © = 0.36 although the stability analysis predicts two unstable nsodBynamic behavior can be
computed for numerous parameter sets and an optimal ardzedannd easily. For example, the lowest
dynamic response of our model occursat 0.36 in the unstable area, the point at which the second
mode f5 disappears from the dynamic response.
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Figure 17: Limit cycles from the GCHBM with varying frictiocoefficienty
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Figure 18: Propensity index ratio; /a5 versusu. The dotted line indicates the transition from two to
one unstable mode in the dynamic steady-state.
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Figure 19: Evolution of parameters with (a) Both unstable mode8,29 < p < 0.36; (b) First unstable
mode0.36 < u < 0.68; (c) Total amplitude energy).29 < i < 0.68
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Figure 20: Evolution of parameters with iteratiops= 0.29). (a) Real Parts: —+*! mode, -.-2"¢ mode;
(b) Frequencies: —%* mode, -.-2"¢ mode; (c) Norm of Residue
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