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Abstract. Given two comparative maps, that is two sequences of mark-
ers each representing a genome, the Maximal Strip Recovery problem
(MSR) asks to extract a largest sequence of markers from each map such
that the two extracted sequences are decomposable into non-overlapping
strips (or synteny blocks). This aims at de�ning a robust set of synteny
blocks between di�erent species, which is a key to understand the evo-
lution process since their last common ancestor. In this paper, we add a
fundamental constraint to the initial problem, which expresses the biolog-
ically sustained need to bound the number of intermediate (non-selected)
markers between two consecutive markers in a strip. We therefore intro-
duce the problem δ-gap-MSR, where δ is a (usually small) non-negative
integer that upper bounds the number of non-selected markers between
two consecutive markers in a strip. Depending on the nature of the com-
parative maps (i.e., with or without duplicates), we show that δ-gap-MSR
is NP-complete for any δ ≥ 1, and even APX-hard for any δ ≥ 2. We also
provide two approximation algorithms, with ratio 1.8 for δ = 1, and ratio
4 for δ ≥ 2.
Keywords: algorithmic complexity, approximation algorithms, compar-
ative maps, genome comparison, synteny blocks

1 Introduction

In comparative genomics, �nding synteny blocks (that is, regions with similar
content and gene order) of two genomes is a crucial task, as the decomposition
of genomes into synteny blocks allows to estimate the nature of genome rear-
rangement events that hold during the evolution process since the last common
ancestor of the genomes.

In addition to the di�culty to de�ne a synteny block precisely, another dif-
�culty is introduced by the quality of genome annotation. Zheng et al. [9] make
a list of possible errors and ambiguities introduced by the mapping technology,
which is used to obtain a representation of a genome as a sequence of markers,
called a genomic map. Each marker represents a small, speci�c element which
has been identi�ed on the genome, at a speci�c position which is the marker's
position. Comparing two genomes is then possible using their genomic maps,



assuming that the pairs of identical markers on the two genomes are known (the
maps are then called comparative maps). Comparative maps are less precise than
genome sequences (either as DNA sequences or as sequences of genes), but still
allow the identi�cation of synteny blocks.

The problem that needs to be solved when no error occurs is the follow-
ing: Given two comparative maps, decompose them into non-intersecting syn-
teny blocks. In case of errors or ambiguities, Zheng et al. [9] propose to switch
to the following problem: Given two comparative maps, �nd a longest (possibly
non-contiguous) subsequence of markers in each comparative map, such that the
subsequences are decomposable into non-intersecting synteny blocks. The idea
behind this maximization problem is that true synteny is possibly interrupted
by erroneous or ambiguous markers, which should be discarded before searching
for synteny blocks.

The problem, called Maximal Strip Recovery (MSR), is obtained from
this maximization problem using comparative maps with signed, but not du-
plicated, markers, and a speci�c de�nition of synteny blocks. Synteny blocks
are de�ned as strips, which are contiguous sequences of at least two markers
that occur on each genome either in the same order, or in reverse order and
with a reversed sign. Zheng et al [9] and Choi et al. [4] propose two heuristics
to solve the MSR problem. Chen et al. [3] devise a 4-approximation algorithm
for it, propose its extension, called MSR-d, to an arbitrary number d ≥ 2 of
genomes and show that MSR-3 is NP-complete. The NP-completeness of MSR
(or equivalently MSR-2) is a result obtained by Wang et al. [8], who also pro-
pose FPT algorithms for MSR-d (with arbitrary d) and MSR-DU, the variant of
MSR where duplicated markers are allowed in the maps and in di�erent synteny
blocks.

The MSR problem takes into account the need to keep as much of the data as
possible from the initial comparative maps and the need to have con�ict-free syn-
teny blocks. However, it is too permissive as it allows two consecutive elements
from one strip to be separated by an arbitrary long gap (in terms of intermediate
markers) on the initial comparative maps, and possibly to be very close on one
map and very far from each other on the other. As the discarded elements are
supposed to be errors and ambiguities (which are rather the exception than the
rule), and the elements kept in the subsequences are supposed to be the safe
information (which is the major part of the comparative information), it follows
that a safe synteny block should not allow arbitrarily long gaps.

We therefore introduce and study in this paper the δ-gap-MSR problem, a
restriction of the MSR problem where the allowed gaps along the comparative
maps between two consecutive elements in a strip are upper bounded by param-
eter δ, where δ is a given (usually small) non-negative integer. We investigate the
algorithmic complexity of δ-gap-MSR depending on the allowed multiplicity for a
marker and prove the results given in Table 1. For the NP-complete or APX-hard
cases, we provide two approximation algorithms, whose approximation ratios are
given in Table 2.



Table 1. Complexity of variants of MSR.

Problem Without duplicates With duplicates
(-DU variant)

0-gap-MSR P (Section 4.2) ?
1-gap-MSR NP-complete (Section 3.1) NP-complete (Section 3.1)
δ-gap-MSR (δ ≥ 2) APX-complete (Section 3.2) APX-complete (Section 3.2)
MSR NP-complete [8] NP-complete [8]

Table 2. Best approximation ratios of variants of MSR.

Problem Without duplicates With duplicates
(-DU variant)

0-gap-MSR - 4 (Section 4.2)
1-gap-MSR 1.8 (Section 4.1) 4 (Section 4.2)
δ-gap-MSR (δ ≥ 2) 4 (Section 4.2) 4 (Section 4.2)
MSR 4 [3] 4 [3]

The organization of the paper is as follows. In Section 2, we introduce some
notations, and we de�ne formally MSR, MSR-DU, δ-gap-MSR and δ-gap-MSR-
DU. We prove in Section 3 the hardness results (NP-completeness for δ = 1 in
Section 3.1, APX-completeness for δ ≥ 2 in Section 3.2). We then give approxima-
tion algorithms in Section 4: a 1.8-approximation for 1-gap-MSR in Section 4.1,
and a general 4-approximation in Section 4.2. Due to space constraints, most of
the proofs are omitted from this paper.

2 Notations and De�nitions

A comparative map M is a sequence of signed integers, where the absolute
value of each integer represents a speci�c marker, and the sign represents the
orientation of the marker on the chromosome. A marker may appear several
times in a comparative map, possibly with di�erent orientations: in this case,
we say that the comparative map M has duplicates (the presence of duplicates
is useful if we do not want to distinguish paralogs in the comparative map). A
sequence M is denoted M=〈m1,m2, . . . , ml〉, and its ith element mi is (also)
denoted M[i].

A subsequence σ of M is a sequence 〈σ1, . . . , σh〉 of markers from M with
h ≥ 2 and positions i1 < i2 < . . . < ih respectively onM. The vector (i1, . . . , ih)
is denoted idx(σ,M). The gap of σ in M is max{ik+1 − ik − 1 : 1 ≤ k < h},
its length |σ| is h. Two subsequences σ and τ are non-overlapping in M if one
appears strictly before the other (i.e., if the last element of idx(σ,M) is strictly
smaller than the �rst element of idx(τ,M) or vice-versa). The reversed opposite
of 〈σ1, . . . , σh〉 is 〈−σh,−σh−1, . . . ,−σ1〉.

Given two comparative maps M1 and M2, a prestrip is a subsequence σ of
M1 such that either σ or its reversed opposite is a subsequence ofM2, and such
that the markers in σ are pairwise di�erent. The gap of a prestrip is the maximum



of the gaps of the two corresponding subsequences inM1 andM2. Two prestrips
are non-overlapping if the corresponding subsequences are non-overlapping, both
inM1 andM2. A strip is a prestrip with gap 0. Strips represent synteny blocks
between two comparative maps. A prestrip can also be seen as a synteny bock,
but only if we consider that there is noise in the comparative maps (false markers
appear between two consecutive markers of the �true� synteny block). A set of
prestrips S is said to be feasible if it contains pairwise non-overlapping prestrips,
and we write ||S|| for its total size: ||S|| = ∑

σ∈S |σ|.
We �nally de�ne some notions of graph theory: a graph G = (V, E) is cubic if

every vertex u ∈ V has degree exactly 3. A set X ⊂ V is said to be independent
if for every edge (u, v) ∈ E, u /∈ X or v /∈ X. The cardinality of a maximum
independent set of G is written α(G).

The problems MSR (for Maximal Strip Recovery, see [9]) and MSR-
DU [3] are de�ned, in their decision formulation, as follows:

Problem: MSR
Input: Two comparative maps M1 and M2 without duplicates, k ∈ N.
Question: Is there a feasible set S of prestrips of M1 and M2, s.t. ||S|| ≥ k ?

Problem: MSR-DU
Input: Two comparative maps M1 and M2 (possibly with duplicates), k ∈ N.
Question: Is there a feasible set S of prestrips of M1 and M2, s.t. ||S|| ≥ k ?

The idea behind both those problems is that, if we �nd a set of compati-
ble prestrips with maximum total size, the elements appearing in no prestrip
are considered as noise: we can remove them to �clean� the data. Indeed, once
those elements are removed, the comparative maps can be partitioned into com-
mon strips, i.e. we have decomposed both genomes into synteny blocks with the
same set of blocks in both genomes. Heuristics for the �rst problem have been
given in [9,4]. They have been improved in [3] into a 4-approximation algorithm.
Finally, those problems have been proved NP-complete in [8], where an FPT
algorithm is also provided.

The variant we introduce, δ-gap-MSR, takes into account the fact that it is
unlikely that long sequences of markers can appear only from noise and errors.
If a large number of elements are inserted between two consecutive elements of
a prestrip (thus, if it has a large gap), then they are not errors, and the prestrip
cannot be considered a synteny block of the original genomes. Thus we de�ne
the following two problems:

Problem: δ-gap-MSR
Input: Two comparative maps M1 and M2 without duplicates, k ∈ N.
Question: Is there a feasible set S of prestrips of M1 and M2, such that every
σ ∈ S has gap at most δ, and ||S|| ≥ k ?

Problem: δ-gap-MSR-DU
Input: Two comparative maps M1 and M2 (possibly with duplicates), k ∈ N.



Question: Is there a feasible set S of prestrips of M1 and M2, such that every
σ ∈ S has gap at most δ, and ||S|| ≥ k ?

With the gap constraint we introduce, we keep only prestrips which are nearly
contiguous, while tolerating some noise in the input data. Note that those prob-
lems are de�ned for uni-chromosomal genomes. However, algorithms can easily
be adapted to handle multi-chromosomal instances.

3 Hardness Results
3.1 NP-hardness of 1-gap-MSR
In this section, we prove the following theorem.
Theorem 1 1-gap-MSR and 1-gap-MSR-DU are NP-hard.

Note that we need to consider only 1-gap-MSR (without duplicates) since NP-
hardness of 1-gap-MSR-DU directly follows from NP-hardness of 1-gap-MSR.

The proof uses a reduction from a variant of Maximum Independent Set,
3-colored-MIS, which is de�ned below. A 3-edge-coloring (also known as Tait
Coloring) of a cubic graph G = (V, E) is a partition of its edges in three classes
E = EA ∪ EB ∪ EC such that if two edges e1, e2 ∈ E are incident to a common
vertex, they belong to di�erent classes.
Problem: 3-colored-MIS
Input: A cubic graph G = (V, E), a 3-edge-coloring (EA, EB, EC) of G, an
integer k.
Question: Is α(G) ≥ k ?
Lemma 2 3-colored-MIS is NP-hard.

Starting from any instance of 3-colored-MIS, we construct two comparative
maps as follows. First, we assign a list of 4 positive integers (or 4 �markers�)
to each vertex u ∈ V : they are denoted yA1

u , yA2
u , yB1

u and yB2
u . We also assign a

list of 10 integers x1
uv, . . . , x10

uv to each edge (u, v) ∈ EC, in such a way that no
integer appears in two di�erent lists. We will also use peg markers: written with
the symbol ×, they are integers appearing only once, either in M1 or in M2

(and thus cannot belong to any prestrip).
We construct the comparative maps with the following iterative procedure.

Suppose we have arbitrarily ordered the vertices in V . In that case:
1. For all (u, v) ∈ EA such that u < v, add 〈yA1

u , yA1
v , yA2

u , yA2
v ,×,×〉 to M1.

2. For all (u, v) ∈ EB such that u < v, add 〈yB1
u , yB1

v , yB2
u , yB2

v ,×,×〉 to M2.
3. For all (u, v) ∈ EC such that u < v, add Γ1(u, v) to M1, Γ2(u, v) to M2,

where Γ1 and Γ2 are de�ned as:
Γ1(u, v) =

〈
x1

uv, x5
uv, x2

uv, x6
uv, x3

uv, x7
uv, x4

uv,×,×,

yB1
u , x8

uv, yB2
u , x9

uv, yB1
v , x10

uv, yB2
v ,×,×〉

;

Γ2(u, v) =
〈

x1
uv, x8

uv, x2
uv, x9

uv, x3
uv, x10

uv, x4
uv,×,×,

yA1
u , x5

uv, yA2
u , x6

uv, yA1
v , x7

uv, yA2
v ,×,×〉

.



Property 3 Let G = (V,E) be an n-vertex cubic graph with a 3-edge-coloring,
and let M1 and M2 be the two comparative maps obtained by the construction
de�ned above. Then the optimal value of 1-gap-MSR over (M1,M2) equals 4n+
2α(G).

Proof (of Theorem 1). The above property directly implies that our construction
(which can clearly be done in polynomial time) leads to a reduction from 3-
colored-MIS to 1-gap-MSR, which proves Theorem 1. ut

3.2 δ-gap-MSR and δ-gap-MSR-DU are APX-hard

In this section, we prove the following theorem.

Theorem 4 δ-gap-MSR and δ-gap-MSR-DU are APX-hard for any δ ≥ 2.

As in the previous section, we note that we need to consider only δ-gap-MSR
(without duplicates) since APX-hardness of δ-gap-MSR-DU directly follows from
APX-hardness of δ-gap-MSR. For this, we use an L-reduction [7] from the variant
of Maximum Independent Set restricted to cubic graphs, that we call 3-MIS
here. Note that the L-reduction refers to the optimization versions of problems
δ-gap-MSR and δ-gap-MSR-DU, which are easy to deduce from the decision
versions presented here.
Problem: 3-MIS
Input: A cubic graph G = (V, E), an integer k.
Question: Is α(G) ≥ k ?

It is proved in [1] that 3-MIS is APX-hard. Given a cubic graph G = (V, E),
our reduction consists in constructing two comparative maps M1 and M2, hav-
ing properties P1, P2 and P3 described below, where Ω denotes the set of all
prestrips of M1 and M2 having gap at most δ:

P1. There exists a bijection Φ between V and Ω
P2. Every prestrip in Ω has length 2
P3. Two prestrips σ1 and σ2 of Ω are overlapping i�

(
Φ−1(σ1), Φ−1(σ2)

) ∈ E

Let Pk denote the path graph with k vertices.

Lemma 5 Given a cubic graph G = (V,E), one can compute in polynomial time
a partition of E into two classes EB and EW (for �Black� and �White� edges),
such that (1) each connected component of (V, EB) (called �black component�) is
isomorphic to a path Pk , and (2) each connected component of (V, EW) (called
�white component�) is isomorphic to a path Pk′ , with k′ ≤ 4.

The �rst step of the reduction is to compute a partition of E into two classes
EB and EW according to Lemma 5. We then construct two comparative maps
M1 and M2, satisfying properties P1, P2 and P3. Moreover, incompatibilities
in M1 (resp. M2) will correspond to black (resp. white) edges. We begin by



assigning a di�erent pair of integers (xa, x′a) to every vertex a ∈ V (G); we write
Φ(a) = 〈xa, x′a〉.

Then, for every black component Bi of order k, let V (Bi) = {ah : 1 ≤ h ≤ k}
and let (ah, ah+1) ∈ EB for 1 ≤ h < k; we construct the following sequence:

Ii =
〈
xa1 ,×,×δ−2, xa2 , x

′
a1

,×δ−2, . . . , xah
, x′ah−1

,×δ−2, . . . ,×, x′ak

〉

where ×l represents l consecutive peg markers. The full comparative map M1

is given by M1 =
〈
I1,×δ+1, I2,×δ+1, . . .

〉
.

For M2, we use a similar construction, but we need to take the reversed
opposite of some subsequences to avoid creating undesired prestrips. For a white
component Wj having 4 vertices, say a, b, c and d with (a, b), (b, c), (c, d) ∈ EW,
we create the following sequence:

Jj = 〈xa, xb, x
′
a,−x′c, x

′
b,−x′d,−xc,−xd〉 .

If Wj is of order three (resp. two), we remove the extra elements from Jj , i.e.
Jj = 〈xa, xb, x

′
a,−x′c, x

′
b,−xc〉 (resp. Jj = 〈xa, xb, x

′
a, x′b〉). Finally,M2 is created

in the same way as M1: M2 =
〈
J1,×δ+1, J2,×δ+1, . . .

〉
.

Lemma 6 The set Ω of the prestrips of M1 and M2 with gap less than or
equal to δ is exactly {Φ(a) : a ∈ V }. Moreover, Φ(a) and Φ(b) overlap in M1

i� (a, b) ∈ EB, and Φ(a) and Φ(b) overlap in M2 i� (a, b) ∈ EW.

The consequence of this lemma is that M1 and M2 satisfy the three prop-
erties P1, P2 and P3 de�ned above. The reduction we have described is an
L-reduction from 3-MIS to δ-gap-MSR: indeed, Φ transforms an independent
set of size l into a feasible set of prestrips with gap δ of total size 2l, and Φ−1

does the reverse operation. So δ-gap-MSR, like 3-MIS, is APX-hard for δ ≥ 2.

4 Approximation Algorithms
4.1 1.8-approximation for 1-gap-MSR
In this section, we present an approximation algorithm for 1-gap-MSR. Our
result is the following.

Theorem 7 There exists a factor-1.8 approximation algorithm for 1-gap-MSR.

Proof. Our algorithm makes uses of an exact algorithm to solve Maximum
Weight Independent Set (MWIS) on claw-free graphs. A claw is the 4-vertex
graph (V,E) with V = {a, b, c, d} and E = {(a, b), (a, c), (a, d)}. A graph is said
to be claw-free if none of its induced subgraphs is isomorphic to a claw. The
variant of MWIS on claw-free graphs, Claw-Free-MWIS (which is known to be
in P, [6]), is stated as follows:
Problem: Claw-Free-MWIS
Input: A claw-free graph G = (V,E), a weight function w : V → R+, k ∈ R+

Question: Is there an independent set X of G such that
∑

x∈X w(x) ≥ k ?



Our 1.8-approximation algorithm (given in Algorithm 1) works as follows.
Given two comparative maps M1 and M2, compute the set Ω of all prestrips
with length 2 or 3 (and gap at most 1). Longer prestrips are ignored, since
they can be split into smaller ones appearing in Ω. Select a subset V λ ⊆ Ω
(according to some parameter λ: see the selection process described below), and
create Eλ, the set of all overlapping pairs of prestrips of V λ. The pair (V λ, Eλ)
forms a graph which is claw-free (see Lemma 8). An independent set for this
graph (computable in polynomial time) yields a feasible set of prestrips V λ

Ind.
The selection of V λ amongst Ω is done as follows: given a prestrip σ of

M1 and M2, take the values of idx(σ,M2) − λ modulo 9. This is done by the
arithmetic function π9, which takes the values of a list modulo 9: for example, if
σ has indices (30, 32, 33) in M2, and λ = 5, then idx(σ,M2)− λ = (25, 27, 28),
and π9(idx(σ,M2) − λ) = (7, 9, 1). If the result of π9(idx(σ,M2) − λ) belongs
to some list (the list T in Algorithm 1), add σ to V λ. We only need to test the
9 di�erent values of λ to obtain 9 di�erent feasible sets of prestrips.

Finally, Lemma 9 proves that there exists some λ for which the total size of
the corresponding V λ

Ind is at least 5/9th of a maximum feasible set of prestrips
of M1 and M2. Thus, Algorithm 1 is a polynomial-time algorithm giving a 1.8-
approximation to 1-gap-MSR, and Theorem 7 is proved. ut

Algorithm 1 A factor-1.8 approximation algorithm for 1-gap-MSR
Input: Two comparative mapsM1,M2 without duplicates.
T ← {(1, 2, 3), (2, 3, 4), (3, 4, 5), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5),

(6, 7), (6, 8), (7, 8), (7, 9), (8, 9)};
Ω ← set of all prestrips ofM1 andM2 of length 2 or 3, with gap at most 1;
for λ← 1 to 9 do

V λ ← {σ : σ ∈ Ω, π9(idx(σ,M2)− λ) ∈ T};
Eλ ← {(σ1, σ2) : σ1, σ2 overlapping prestrips of V λ};
w(σ)← |σ| (for all σ ∈ V λ);
V λ

Ind ←Maximum Weight Independent Set of (V λ, Eλ) with weight w;
end for
return max{||V λ

Ind|| : 1 ≤ λ ≤ 9};

Lemma 8 For each λ, the graph (V λ, Eλ) created by Algorithm 1 is claw-free.

Lemma 9 If O is a feasible set of prestrips ofM1,M2 with gap 1, Algorithm 1
provides a solution of total size at least 5||O||/9.

4.2 Reduction to Maximum Weight Independent Set

In this section we consider the variants of Maximum Weight Independent
Set on two classes of graphs: interval graphs and 2-interval graphs.



An interval graph is a graph G = (V, E), where every vertex in V is seen as
an interval I of R, and such that (I, J) ∈ E i� (1) I and J are distinct intervals
from V , and (2) I ∩ J 6= ∅.

A 2-interval graph is a graph G = (V, E), where every vertex in V is seen as
a pair of disjoint intervals (I1, I2) of R (also called a 2-interval), and such that
((I1, I2), (J1, J2)) ∈ E i� (1) (I1, I2) and (J1, J2) are distinct 2-intervals from V ,
and (2) (I1 ∪ I2) ∩ (J1 ∪ J2) 6= ∅.
Problem: Interval-MWIS
Input: An interval graph G = (V,E), a weight function w : V → R+, k ∈ R+

Question: Is there an independent set X of G such that
∑

x∈X w(x) ≥ k ?
Problem: 2-Interval-MWIS
Input: A 2-interval graph G = (V, E), a weight function w : V → R+, k ∈ R+

Question: Is there an independent set X of G such that
∑

x∈X w(x) ≥ k ?
The problem Interval-MWIS is known to be polynomial [5]. On the other

hand, 2-Interval-MWIS is APX-hard, and we know a 4-approximation for it [2].

Theorem 10 There exists a factor-4 approximation algorithm for δ-gap-MSR
for all δ ≥ 2, and for δ-gap-MSR-DU for all δ ≥ 0.

Proof. In this proof, we describe a reduction from δ-gap-MSR to 2-Interval-
MWIS. Given a pair of comparative maps and a maximal gap δ, we construct a
set of 2-intervals in the following way. First, compute the set Ω of all prestrips
of M1 and M2 having gap at most δ. Then, to each prestrip σ ∈ Ω, assign the
following 2-interval (where l is |M1|+ 1):

Iσ = ( [min(idx(σ,M1)), max(idx(σ,M1))],
[min(idx(σ,M2)) + l, max(idx(σ,M2)) + l]) ,

with the weight:
w(Iσ) = |σ| .

We denote Gδ(M1,M2) the weighted 2-interval graph with vertex set {Iσ :
σ ∈ Ω} and weight w. It has the following property:

Property 11 The set {Iσ : σ ∈ S} is an independent set of Gδ(M1,M2) with
weight W i� S is a feasible subset of Ω with total size W .

The 4-approximation algorithm for δ-gap-MSR and δ-gap-MSR-DU is the fol-
lowing (adapted from the 4-approximation algorithm for MSR and MSR-DU [3]):

1. Compute the weighted 2-interval graph Gδ(M1,M2) as described above.
2. Compute X, a 4-approximation to 2-Interval-MWIS(Gδ(M1,M2)).
3. Deduce a feasible set of prestrips S = {σ : Iσ ∈ X}.

Property 11 tells us that the total size of S is the weight of X, and that δ-gap-
MSR-DU(M1,M2) and 2-Interval-MWIS(Gδ(M1,M2)) have the same optimal
values: so S is indeed a 4-approximation of the optimal solution of δ-gap-MSR-
DU(M1,M2). We have proved Theorem 10. ut



Theorem 12 There exists an exact polynomial-time algorithm for 0-gap-MSR.

Proof. We consider the case whereM1 has no duplicates and the maximum gap
is 0 (we only consider strips instead of prestrips): this is the case for instances
of 0-gap-MSR.

We use the same reduction as for Theorem 10, with the di�erence that now,
G0(M1,M2) is in fact an interval graph. It can be seen by considering intervals

I ′σ = [min(idx(σ,M1)), max(idx(σ,M1))].

We no longer need to consider the interval coming from M2 for the following
reason. If two strips overlap in M2, since they have gap zero, they must have
a common marker m appearing in M2. But since m can appear only once in
M1, they also overlap in M1. Thus Iσ and Iτ intersect i� I ′σ and I ′τ intersect:
G0(M1,M2) can thus be seen as an interval graph. Hence, we can adapt the
previous algorithm to obtain an optimal solution, and complete the proof of
Theorem 12:

1. Compute the weighted interval graph Gδ(M1,M2).
2. Compute X, an optimal solution to Interval-MWIS(Gδ(M1,M2)).
3. Deduce a maximal feasible set of prestrips S = {σ : Iσ ∈ X}.

ut

References
1. P. Alimonti and V. Kann. Hardness of approximating problems on cubic graphs. In

G. C. Bongiovanni, D. P. Bovet, and G. Di Battista, editors, CIAC, volume 1203 of
LNCS, pages 288�298. Springer, 1997.

2. R. Bar-Yehuda, M.M. Halldórsson, J. Naor, H. Shachnai, and I. Shapira. Scheduling
split intervals. SIAM J. Comput., 36(1):1�15, 2006.

3. Z. Chen, B. Fu, M. Jiang, and B. Zhu. On recovering syntenic blocks from compar-
ative maps. In B. Yang, D. Du, and C. A. Wang, editors, COCOA, volume 5165 of
LNCS, pages 319�327. Springer, 2008.

4. V. Choi, C. Zheng, Q. Zhu, and D. Sanko�. Algorithms for the extraction of synteny
blocks from comparative maps. In R. Giancarlo and S. Hannenhalli, editors, WABI,
volume 4645 of LNCS, pages 277�288. Springer, 2007.

5. M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New
York, 1980.

6. G. J. Minty. On maximal independent sets of vertices in claw-free graphs. J. Comb.
Theory, Ser. B, 28(3):284�304, 1980.

7. C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity
classes. J. Comput. Syst. Sci., 43(3):425�440, 1991.

8. L. Wang and B. Zhu. On the tractability of maximal strip recovery. In J. Chen
and S. B. Cooper, editors, TAMC, volume 5532 of LNCS, pages 400�409. Springer,
2009.

9. C. Zheng, Q. Zhu, and D. Sanko�. Removing noise and ambiguities from compar-
ative maps in rearrangement analysis. IEEE/ACM Trans. Comput. Biology Bioin-
form., 4(4):515�522, 2007.


