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Given two comparative maps, that is two sequences of markers each representing a genome, the Maximal Strip Recovery problem (MSR) asks to extract a largest sequence of markers from each map such that the two extracted sequences are decomposable into non-overlapping strips (or synteny blocks). This aims at dening a robust set of synteny blocks between dierent species, which is a key to understand the evolution process since their last common ancestor. In this paper, we add a fundamental constraint to the initial problem, which expresses the biologically sustained need to bound the number of intermediate (non-selected) markers between two consecutive markers in a strip. We therefore introduce the problem δ-gap-MSR, where δ is a (usually small) non-negative integer that upper bounds the number of non-selected markers between two consecutive markers in a strip. Depending on the nature of the comparative maps (i.e., with or without duplicates), we show that δ-gap-MSR is NP-complete for any δ ≥ 1, and even APX-hard for any δ ≥ 2. We also provide two approximation algorithms, with ratio 1.8 for δ = 1, and ratio 4 for δ ≥ 2.

Introduction

In comparative genomics, nding synteny blocks (that is, regions with similar content and gene order) of two genomes is a crucial task, as the decomposition of genomes into synteny blocks allows to estimate the nature of genome rearrangement events that hold during the evolution process since the last common ancestor of the genomes.

In addition to the diculty to dene a synteny block precisely, another difculty is introduced by the quality of genome annotation. Zheng et al. [START_REF] Zheng | Removing noise and ambiguities from comparative maps in rearrangement analysis[END_REF] make a list of possible errors and ambiguities introduced by the mapping technology, which is used to obtain a representation of a genome as a sequence of markers, called a genomic map. Each marker represents a small, specic element which has been identied on the genome, at a specic position which is the marker's position. Comparing two genomes is then possible using their genomic maps, assuming that the pairs of identical markers on the two genomes are known (the maps are then called comparative maps). Comparative maps are less precise than genome sequences (either as DNA sequences or as sequences of genes), but still allow the identication of synteny blocks.

The problem that needs to be solved when no error occurs is the following: Given two comparative maps, decompose them into non-intersecting synteny blocks. In case of errors or ambiguities, Zheng et al. [START_REF] Zheng | Removing noise and ambiguities from comparative maps in rearrangement analysis[END_REF] propose to switch to the following problem: Given two comparative maps, nd a longest (possibly non-contiguous) subsequence of markers in each comparative map, such that the subsequences are decomposable into non-intersecting synteny blocks. The idea behind this maximization problem is that true synteny is possibly interrupted by erroneous or ambiguous markers, which should be discarded before searching for synteny blocks.

The problem, called Maximal Strip Recovery (MSR), is obtained from this maximization problem using comparative maps with signed, but not duplicated, markers, and a specic denition of synteny blocks. Synteny blocks are dened as strips, which are contiguous sequences of at least two markers that occur on each genome either in the same order, or in reverse order and with a reversed sign. Zheng et al [START_REF] Zheng | Removing noise and ambiguities from comparative maps in rearrangement analysis[END_REF] and Choi et al. [START_REF] Choi | Algorithms for the extraction of synteny blocks from comparative maps[END_REF] propose two heuristics to solve the MSR problem. Chen et al. [START_REF] Chen | On recovering syntenic blocks from comparative maps[END_REF] devise a 4-approximation algorithm for it, propose its extension, called MSR-d, to an arbitrary number d ≥ 2 of genomes and show that MSR-3 is NP-complete. The NP-completeness of MSR (or equivalently MSR-2) is a result obtained by Wang et al. [START_REF] Wang | On the tractability of maximal strip recovery[END_REF], who also propose FPT algorithms for MSR-d (with arbitrary d) and MSR-DU, the variant of MSR where duplicated markers are allowed in the maps and in dierent synteny blocks.

The MSR problem takes into account the need to keep as much of the data as possible from the initial comparative maps and the need to have conict-free synteny blocks. However, it is too permissive as it allows two consecutive elements from one strip to be separated by an arbitrary long gap (in terms of intermediate markers) on the initial comparative maps, and possibly to be very close on one map and very far from each other on the other. As the discarded elements are supposed to be errors and ambiguities (which are rather the exception than the rule), and the elements kept in the subsequences are supposed to be the safe information (which is the major part of the comparative information), it follows that a safe synteny block should not allow arbitrarily long gaps.

We therefore introduce and study in this paper the δ-gap-MSR problem, a restriction of the MSR problem where the allowed gaps along the comparative maps between two consecutive elements in a strip are upper bounded by parameter δ, where δ is a given (usually small) non-negative integer. We investigate the algorithmic complexity of δ-gap-MSR depending on the allowed multiplicity for a marker and prove the results given in Table 1. For the NP-complete or APX-hard cases, we provide two approximation algorithms, whose approximation ratios are given in Table 2. The organization of the paper is as follows. In Section 2, we introduce some notations, and we dene formally MSR, MSR-DU, δ-gap-MSR and δ-gap-MSR-DU. We prove in Section 3 the hardness results (NP-completeness for δ = 1 in Section 3.1, APX-completeness for δ ≥ 2 in Section 3.2). We then give approximation algorithms in Section 4: a 1.8-approximation for 1-gap-MSR in Section 4.1, and a general 4-approximation in Section 4.2. Due to space constraints, most of the proofs are omitted from this paper.

Notations and Denitions

A comparative map M is a sequence of signed integers, where the absolute value of each integer represents a specic marker, and the sign represents the orientation of the marker on the chromosome. A marker may appear several times in a comparative map, possibly with dierent orientations: in this case, we say that the comparative map M has duplicates (the presence of duplicates is useful if we do not want to distinguish paralogs in the comparative map). A sequence M is denoted M= m 1 , m 2 , . . . , m l , and its i th element m i is (also) denoted M [i].

A subsequence σ of M is a sequence σ 1 , . . . , σ h of markers from M with h ≥ 2 and positions i 1 < i 2 < . . . < i h respectively on M. The vector

(i 1 , . . . , i h ) is denoted idx(σ, M). The gap of σ in M is max{i k+1 -i k -1 : 1 ≤ k < h}, its length |σ| is h.
Two subsequences σ and τ are non-overlapping in M if one appears strictly before the other (i.e., if the last element of idx(σ, M) is strictly smaller than the rst element of idx(τ, M) or vice-versa). The reversed opposite

of σ 1 , . . . , σ h is -σ h , -σ h-1 , . . . , -σ 1 .
Given two comparative maps M 1 and M 2 , a prestrip is a subsequence σ of M 1 such that either σ or its reversed opposite is a subsequence of M 2 , and such that the markers in σ are pairwise dierent. The gap of a prestrip is the maximum of the gaps of the two corresponding subsequences in M 1 and M 2 . Two prestrips are non-overlapping if the corresponding subsequences are non-overlapping, both in M 1 and M 2 . A strip is a prestrip with gap 0. Strips represent synteny blocks between two comparative maps. A prestrip can also be seen as a synteny bock, but only if we consider that there is noise in the comparative maps (false markers appear between two consecutive markers of the true synteny block). A set of prestrips S is said to be feasible if it contains pairwise non-overlapping prestrips, and we write ||S|| for its total size: ||S|| = σ∈S |σ|.

We nally dene some notions of graph theory: a graph G = (V, E) is cubic if every vertex u ∈ V has degree exactly 3. A set X ⊂ V is said to be independent if for every edge (u, v) ∈ E, u / ∈ X or v / ∈ X. The cardinality of a maximum independent set of G is written α(G).

The problems MSR (for Maximal Strip Recovery, see [START_REF] Zheng | Removing noise and ambiguities from comparative maps in rearrangement analysis[END_REF]) and MSR-DU [START_REF] Chen | On recovering syntenic blocks from comparative maps[END_REF] The idea behind both those problems is that, if we nd a set of compatible prestrips with maximum total size, the elements appearing in no prestrip are considered as noise: we can remove them to clean the data. Indeed, once those elements are removed, the comparative maps can be partitioned into common strips, i.e. we have decomposed both genomes into synteny blocks with the same set of blocks in both genomes. Heuristics for the rst problem have been given in [START_REF] Zheng | Removing noise and ambiguities from comparative maps in rearrangement analysis[END_REF][START_REF] Choi | Algorithms for the extraction of synteny blocks from comparative maps[END_REF]. They have been improved in [START_REF] Chen | On recovering syntenic blocks from comparative maps[END_REF] into a 4-approximation algorithm. Finally, those problems have been proved NP-complete in [START_REF] Wang | On the tractability of maximal strip recovery[END_REF], where an FPT algorithm is also provided.

The variant we introduce, δ-gap-MSR, takes into account the fact that it is unlikely that long sequences of markers can appear only from noise and errors. If a large number of elements are inserted between two consecutive elements of a prestrip (thus, if it has a large gap), then they are not errors, and the prestrip cannot be considered a synteny block of the original genomes. Thus we dene the following two problems: Problem: δ-gap-MSR Input: Two comparative maps M 1 and M 2 without duplicates, k ∈ N. Question: Is there a feasible set S of prestrips of M 1 and M 2 , such that every σ ∈ S has gap at most δ, and ||S|| ≥ k ? Problem: δ-gap-MSR-DU Input: Two comparative maps M 1 and M 2 (possibly with duplicates), k ∈ N.

Table 1 .

 1 Complexity of variants of MSR.

	Problem	Without duplicates	With duplicates
			(-DU variant)
	0-gap-MSR	P (Section 4.2)	?
	1-gap-MSR	NP-complete (Section 3.1) NP-complete (Section 3.1)
	δ-gap-MSR (δ ≥ 2) APX-complete (Section 3.2) APX-complete (Section 3.2)
	MSR	NP-complete [8]	NP-complete [8]

Table 2 .

 2 Best approximation ratios of variants of MSR.

	Problem	Without duplicates With duplicates
			(-DU variant)
	0-gap-MSR	-	4 (Section 4.2)
	1-gap-MSR	1.8 (Section 4.1) 4 (Section 4.2)
	δ-gap-MSR (δ ≥ 2) 4 (Section 4.2)	4 (Section 4.2)
	MSR	4 [3]	4 [3]

  are dened, in their decision formulation, as follows: Problem: MSR Input: Two comparative maps M 1 and M 2 without duplicates, k ∈ N. Question: Is there a feasible set S of prestrips of M 1 and M 2 , s.t. ||S|| ≥ k ? Problem: MSR-DU Input: Two comparative maps M 1 and M 2 (possibly with duplicates), k ∈ N. Question: Is there a feasible set S of prestrips of M 1 and M 2 , s.t. ||S|| ≥ k ?

Question: Is there a feasible set S of prestrips of M 1 and M 2 , such that every σ ∈ S has gap at most δ, and ||S|| ≥ k ?

With the gap constraint we introduce, we keep only prestrips which are nearly contiguous, while tolerating some noise in the input data. Note that those problems are dened for uni-chromosomal genomes. However, algorithms can easily be adapted to handle multi-chromosomal instances.

3 Hardness Results

NP-hardness of 1-gap-MSR

In this section, we prove the following theorem.

Theorem 1 1-gap-MSR and 1-gap-MSR-DU are NP-hard.

Note that we need to consider only 1-gap-MSR (without duplicates) since NPhardness of 1-gap-MSR-DU directly follows from NP-hardness of 1-gap-MSR.

The proof uses a reduction from a variant of Maximum Independent Set, 3-colored-MIS, which is dened below. A 3-edge-coloring (also known as Tait Coloring) of a cubic graph G = (V, E) is a partition of its edges in three classes E = E A ∪ E B ∪ E C such that if two edges e 1 , e 2 ∈ E are incident to a common vertex, they belong to dierent classes.

Problem: 3-colored-MIS

Starting from any instance of 3-colored-MIS, we construct two comparative maps as follows. First, we assign a list of 4 positive integers (or 4 markers) to each vertex u ∈ V : they are denoted y A1 u , y A2 u , y B1 u and y B2 u . We also assign a list of 10 integers x 1 uv , . . . , x 10 uv to each edge (u, v) ∈ E C , in such a way that no integer appears in two dierent lists. We will also use peg markers: written with the symbol ×, they are integers appearing only once, either in M 1 or in M 2 (and thus cannot belong to any prestrip).

We construct the comparative maps with the following iterative procedure. Suppose we have arbitrarily ordered the vertices in V . In that case:

where Γ 1 and Γ 2 are dened as:

Property 3 Let G = (V, E) be an n-vertex cubic graph with a 3-edge-coloring, and let M 1 and M 2 be the two comparative maps obtained by the construction dened above. Then the optimal value of 1-gap-MSR over (M 1 , M 2 ) equals 4n + 2α(G).

Proof (of Theorem 1). The above property directly implies that our construction (which can clearly be done in polynomial time) leads to a reduction from 3colored-MIS to 1-gap-MSR, which proves Theorem 1.

δ-gap-MSR and δ-gap-MSR-DU are APX-hard

In this section, we prove the following theorem.

Theorem 4 δ-gap-MSR and δ-gap-MSR-DU are APX-hard for any δ ≥ 2.

As in the previous section, we note that we need to consider only δ-gap-MSR (without duplicates) since APX-hardness of δ-gap-MSR-DU directly follows from APX-hardness of δ-gap-MSR. For this, we use an L-reduction [START_REF] Papadimitriou | Optimization, approximation, and complexity classes[END_REF] from the variant of Maximum Independent Set restricted to cubic graphs, that we call 3-MIS here. Note that the L-reduction refers to the optimization versions of problems δ-gap-MSR and δ-gap-MSR-DU, which are easy to deduce from the decision versions presented here.

Problem: 3-MIS

It is proved in [START_REF] Alimonti | Hardness of approximating problems on cubic graphs[END_REF] that 3-MIS is APX-hard. Given a cubic graph G = (V, E), our reduction consists in constructing two comparative maps M 1 and M 2 , having properties P1, P2 and P3 described below, where Ω denotes the set of all prestrips of M 1 and M 2 having gap at most δ:

P1. There exists a bijection Φ between V and Ω P2. Every prestrip in Ω has length 2 P3. Two prestrips σ 1 and σ 2 of Ω are overlapping i Φ -1 (σ 1 ), Φ -1 (σ 2 ) ∈ E Let P k denote the path graph with k vertices.

Lemma 5 Given a cubic graph G = (V, E), one can compute in polynomial time a partition of E into two classes E B and E W (for Black and White edges), such that [START_REF] Alimonti | Hardness of approximating problems on cubic graphs[END_REF] 

The rst step of the reduction is to compute a partition of E into two classes E B and E W according to Lemma 5. We then construct two comparative maps M 1 and M 2 , satisfying properties P1, P2 and P3. Moreover, incompatibilities in M 1 (resp. M 2 ) will correspond to black (resp. white) edges. We begin by assigning a dierent pair of integers (x a , x a ) to every vertex a ∈ V (G); we write Φ(a) = x a , x a .

Then, for every black component B i of order k, let V (B i ) = {a h : 1 ≤ h ≤ k} and let (a h , a h+1 ) ∈ E B for 1 ≤ h < k; we construct the following sequence:

where × l represents l consecutive peg markers. The full comparative map M 1 is given by

For M 2 , we use a similar construction, but we need to take the reversed opposite of some subsequences to avoid creating undesired prestrips. For a white component W j having 4 vertices, say a, b, c and d with (a, b), (b, c), (c, d) ∈ E W , we create the following sequence:

If W j is of order three (resp. two), we remove the extra elements from J j , i.e.

Lemma 6

The set Ω of the prestrips of M 1 and M 2 with gap less than or

The consequence of this lemma is that M 1 and M 2 satisfy the three properties P1, P2 and P3 dened above. The reduction we have described is an L-reduction from 3-MIS to δ-gap-MSR: indeed, Φ transforms an independent set of size l into a feasible set of prestrips with gap δ of total size 2l, and Φ -1 does the reverse operation. So δ-gap-MSR, like 3-MIS, is APX-hard for δ ≥ 2.

Approximation Algorithms 4.1 1.8-approximation for 1-gap-MSR

In this section, we present an approximation algorithm for 1-gap-MSR. Our result is the following.

Theorem 7 There exists a factor-1.8 approximation algorithm for 1-gap-MSR. Proof. Our algorithm makes uses of an exact algorithm to solve Maximum Weight Independent Set (MWIS) on claw-free graphs. A claw is the 4-vertex graph (V, E) with V = {a, b, c, d} and E = {(a, b), (a, c), (a, d)}. A graph is said to be claw-free if none of its induced subgraphs is isomorphic to a claw. The variant of MWIS on claw-free graphs, Claw-Free-MWIS (which is known to be in P, [START_REF] Minty | On maximal independent sets of vertices in claw-free graphs[END_REF]), is stated as follows:

Problem: Claw-Free-MWIS Input: A claw-free graph G = (V, E), a weight function w : V → R + , k ∈ R + Question: Is there an independent set X of G such that x∈X w(x) ≥ k ? Our 1.8-approximation algorithm (given in Algorithm 1) works as follows. Given two comparative maps M 1 and M 2 , compute the set Ω of all prestrips with length 2 or 3 (and gap at most 1). Longer prestrips are ignored, since they can be split into smaller ones appearing in Ω. Select a subset V λ ⊆ Ω (according to some parameter λ: see the selection process described below), and create E λ , the set of all overlapping pairs of prestrips of V λ . The pair (V λ , E λ ) forms a graph which is claw-free (see Lemma 8). An independent set for this graph (computable in polynomial time) yields a feasible set of prestrips V λ Ind . The selection of V λ amongst Ω is done as follows: given a prestrip σ of M 1 and M 2 , take the values of idx(σ, M 2 ) -λ modulo 9. This is done by the arithmetic function π 9 , which takes the values of a list modulo 9: for example, if σ has indices (30, 32, 33) in M 2 , and λ = 5, then idx(σ, M 2 ) -λ = (25, 27, 28), and π 9 (idx(σ, M 2 ) -λ) = (7, 9, 1). If the result of π 9 (idx(σ, M 2 ) -λ) belongs to some list (the list T in Algorithm 1), add σ to V λ . We only need to test the 9 dierent values of λ to obtain 9 dierent feasible sets of prestrips.

Finally, Lemma 9 proves that there exists some λ for which the total size of the corresponding V λ Ind is at least 5/9 th of a maximum feasible set of prestrips of M 1 and M 2 . Thus, Algorithm 1 is a polynomial-time algorithm giving a 1.8approximation to 1-gap-MSR, and Theorem 7 is proved.

Algorithm 1 A factor-1.8 approximation algorithm for 1-gap-MSR Input: Two comparative maps M1, M2 without duplicates.

}; Ω ← set of all prestrips of M 1 and M 2 of length 2 or 3, with gap at most 1;

Ind ←Maximum Weight Independent Set of (V λ , E λ ) with weight w;

end for return max{||V λ Ind || : 1 ≤ λ ≤ 9};

Lemma 8 For each λ, the graph

provides a solution of total size at least 5||O||/9.

Reduction to Maximum Weight Independent Set

In this section we consider the variants of Maximum Weight Independent Set on two classes of graphs: interval graphs and 2-interval graphs.

An interval graph is a graph G = (V, E), where every vertex in V is seen as an interval I of R, and such that (I, J) ∈ E i (1) I and J are distinct intervals from V , and (2)

, where every vertex in V is seen as a pair of disjoint intervals (I 1 , I 2 ) of R (also called a 2-interval), and such that ((I 1 , I 2 ), (J 1 , J 2 )) ∈ E i (1) (I 1 , I 2 ) and (J 1 , J 2 ) are distinct 2-intervals from V , and (2)

The problem Interval-MWIS is known to be polynomial [START_REF] Golumbic | Algorithmic Graph Theory and Perfect Graphs[END_REF]. On the other hand, 2-Interval-MWIS is APX-hard, and we know a 4-approximation for it [START_REF] Bar-Yehuda | Scheduling split intervals[END_REF].

Theorem 10 There exists a factor-4 approximation algorithm for δ-gap-MSR for all δ ≥ 2, and for δ-gap-MSR-DU for all δ ≥ 0.

Proof. In this proof, we describe a reduction from δ-gap-MSR to 2-Interval-MWIS. Given a pair of comparative maps and a maximal gap δ, we construct a set of 2-intervals in the following way. First, compute the set Ω of all prestrips of M 1 and M 2 having gap at most δ. Then, to each prestrip σ ∈ Ω, assign the following 2-interval (where l is |M 1 | + 1):

with the weight:

We denote G δ (M 1 , M 2 ) the weighted 2-interval graph with vertex set {I σ : σ ∈ Ω} and weight w. It has the following property: Property 11 The set {I σ : σ ∈ S} is an independent set of G δ (M 1 , M 2 ) with weight W i S is a feasible subset of Ω with total size W .

The 4-approximation algorithm for δ-gap-MSR and δ-gap-MSR-DU is the following (adapted from the 4-approximation algorithm for MSR and MSR-DU [START_REF] Chen | On recovering syntenic blocks from comparative maps[END_REF]):

Property 11 tells us that the total size of S is the weight of X, and that δ-gap-MSR-DU(M 1 , M 2 ) and 2-Interval-MWIS(G δ (M 1 , M 2 )) have the same optimal values: so S is indeed a 4-approximation of the optimal solution of δ-gap-MSR-DU(M 1 , M 2 ). We have proved Theorem 10.

Theorem 12 There exists an exact polynomial-time algorithm for 0-gap-MSR.

Proof. We consider the case where M 1 has no duplicates and the maximum gap is 0 (we only consider strips instead of prestrips): this is the case for instances of 0-gap-MSR.

We use the same reduction as for Theorem 10, with the dierence that now, G 0 (M 1 , M 2 ) is in fact an interval graph. It can be seen by considering intervals I σ = [min(idx(σ, M 1 )), max(idx(σ, M 1 ))].

We no longer need to consider the interval coming from M 2 for the following reason. If two strips overlap in M 2 , since they have gap zero, they must have a common marker m appearing in M 2 . But since m can appear only once in M 1 , they also overlap in M 1 . Thus I σ and I τ intersect i I σ and I τ intersect: G 0 (M 1 , M 2 ) can thus be seen as an interval graph. Hence, we can adapt the previous algorithm to obtain an optimal solution, and complete the proof of Theorem 12:

1. Compute the weighted interval graph G δ (M 1 , M 2 ). 2. Compute X, an optimal solution to Interval-MWIS(G δ (M 1 , M 2 )). 3. Deduce a maximal feasible set of prestrips S = {σ : I σ ∈ X}.