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DYNAMICS OF THE ORTHOGLIDE PARALLEL ROBOT 

Damien CHABLAT1, Philippe WENGER2, Stefan STAICU3 

Articolul stabileşte relaţii matriceale pentru cinematica şi dinamica robotului 
paralel Orthoglide prevăzut cu trei acţionori prismatici concurenţi. Aceştia sunt 
aranjaţi în raport cu sistemul cartezian de coordonate astfel încât direcţiile lor să 
fie normale unele faţă de celelalte. Trei lanţuri cinematice identice, conectate la 
platforma mobilă, sunt localizate în trei plane perpendiculare unul pe celălalt. 
Cunoscând poziţia şi mişcarea de translaţie a platformei, se dezvoltă problema de 
cinematică inversă şi se determină poziţia, viteza şi acceleraţia fiecărui element al 
robotului. În continuare, principiul lucrului mecanic virtual este folosit în problema 
de dinamică inversă. Câteva ecuaţii matriceale oferă expresii recurente şi grafice 
pentru forţele active şi puterile mecanice ale celor trei acţionori. 

Recursive matrix relations for kinematics and dynamics of the Orthoglide 
parallel robot having three concurrent prismatic actuators are established in this 
paper. These are arranged according to the Cartesian coordinate system with fixed 
orientation, which means that the actuating directions are normal to each other. 
Three identical legs connecting to the moving platform are located on three planes 
being perpendicular to each other too. Knowing the position and the translation 
motion of the platform, we develop the inverse kinematics problem and determine 
the position, velocity and acceleration of each element of the robot. Further, the 
principle of virtual work is used in the inverse dynamic problem. Some matrix 
equations offer iterative expressions and graphs for the input forces and the powers 
of the three actuators.  

Keywords: Dynamics; Kinematics; Parallel robot; Virtual work  
 
List of symbols 

 

1, kka : orthogonal relative transformation matrix 

321 ,, uuu


: three orthogonal unit vectors 

 :      orientation angle of the slider about the guide-way  

1, kk : relative rotation angle of kT rigid body 

1, kk : relative angular velocity of kT  

0k :   absolute angular velocity of kT  
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1,
~

kk : skew symmetric matrix associated to the angular velocity 1, kk  

1, kk


:   relative angular acceleration of kT  

0
~

k :     absolute angular acceleration of kT  

1,
~

kk :  skew symmetric matrix associated to the angular acceleration 1, kk


 
A
kkr 1, 


:  relative position vector of the centre of kA joint  

A
kkv 1, 


: relative velocity of the centre kA   

A
kk 1,  : relative acceleration of the centre kA  

 km :   mass of kT rigid body 

kĴ :    symmetric matrix of tensor of inertia of kT about the link-frame kkkk zyxA  

21, JJ : two Jacobian matrices of the manipulator 
CBA fff 101010 ,, : forces of three actuators pointing about the CBA zCzBzA 111111 ,, axes  

 

1. Introduction 

Generally, the mechanism of a parallel robot has two platforms: one of them is 
attached to the fixed reference frame and the other one can have arbitrary motions 
in its workspace. Some movable legs, made up as serial robots, connect the 
moving platform to the fixed platform. Typically, a parallel mechanism is said to 
be symmetrical if it satisfies the following conditions: the number of legs is equal 
to the number of degrees of freedom of the moving platform, one actuator, which 
can be mounted at or near the fixed base, controls every limb and the location and 
the number of actuated joints in all the limbs are the same (Tsai [1]). 

For two decades, parallel manipulators attracted to the attention of more and 
more researches that consider them as valuable alternative design for robotic 
mechanisms [2], [3], [4]. As stated by a number of authors [1], conventional serial 
kinematical machines have already reached their dynamic performance limits, 
which are bounded by high stiffness of the machine components required to 
support sequential joints, links and actuators. 

The parallel robots are spatial mechanisms with supplementary characteristics, 
compared with the serial architecture manipulators such as: more rigid structure, 
important dynamic charge capacity, high orientation accuracy, stabile functioning 
as well as good control of velocity and acceleration limits. However, most 
existing parallel manipulators have limited and complicated workspace with 
singularities and highly non-isotropic input-output relations [5]. 

Research in the field of parallel manipulators began with the most known 
application in the flight simulator with six degrees of freedom, which is in fact the 
Stewart-Gough platform (Stewart [6]; Merlet [7]; Parenti-Castelli and Di Gregorio 
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[8]). The Star parallel manipulator (Hervé and Sparacino [9]) and the Delta 
parallel robot (Clavel [10]; Tsai and Stamper [11]; Staicu [12]) equipped with 
three motors, which have a parallel setting, train on the effectors in a three-
degrees-of-freedom general translation motion. 

While the kinematics has been studied extensively during the last two decades, 
fewer papers can be focused on the dynamics of parallel robots. When good 
dynamic performance and precise positioning under high load are required, the 
dynamic model is important for their control. The analysis of parallel robots is 
usually implemented trough analytical methods in classical mechanics [13], in 
which projection and resolution of equations on the reference axes are written in a 
considerable number of cumbersome, scalar relations and the solutions are 
rendered by large scale computation together with time consuming computer 
codes. Geng [14] developed Lagrange’s equations of motion under some 
simplifying assumptions regarding the geometry and inertia distribution of the 
manipulator. Dasgupta and Mruthyunjaya [15] used the Newton-Euler approach to 
develop closed-form dynamic equations of Stewart platform, considering all 
dynamic and gravity effects as well as viscous friction at joints. However, to the 
best of our knowledge, these are no efficient dynamic modelling approach 
available for parallel manipulators. In recent years, several new kinematical 
structures have been proposed that possess higher isotropy [16], [17], [18], [19], 
[20]. 

The objective of this paper is to analyse the kinematics and dynamics of the 
Orthoglide parallel robot, which is well adapted to the applications of precision 
assembly machines. In design, the three actuators are arranged according to the 
Cartesian coordinate space, which means that the actuating directions are normal 
to each other and the joints connecting to the moving platform are located on three 
planes being perpendicular to each other too. Proposed by Wenger and Chablat 
[21], [22], the prototype of the manipulator has good kinetostatic performance and 
some technological advantages such as: symmetrical design, regular workspace 
shape properties with a bounded velocity amplification factor and low inertia 
effects. 

In the present paper we focus our attention on a recursive matrix method, 
which is adopted to derive the kinematics model and the inverse dynamics 
equations of the spatial Orthoglide parallel robot [23], which has three translation 
degrees of freedom (Fig. 1).  

2. Inverse kinematics 

The mechanism input of the manipulator is made up of three actuated 
orthogonal prismatic joints. The output body is connected to the prismatic joints 
through a set of three identical kinematical chains. 
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The architecture of one of the three parallel closed chains of the Orthoglide 
manipulator is formally described as RPRPa  mechanism, where RP, and aP  denote 

the prismatic, revolute and parallelogram joints, respectively. So, the topological 
structure consists in an active prismatic system, a passive revolute joint, an 
intermediate mechanism with four revolute links that connect four bars, which are 
parallel two by two, ending with a passive revolute link connected to the moving 
platform. Inside each chain, the parallelogram mechanism is used and oriented in 
a manner that the end-effector is restricted to translation movement only. The 
arrangement of the joints in the chains has been defined to eliminate any 
constraint singularity in the Cartesian workspace [22], [23], [24]. 
  

                            P
x

z
y

 
                                                       Fig. 1 Orthoglide parallel robot 
 

Let us locate a fixed reference frame )( 0000 TzyOx  at the intersection point of 

three axes of actuated prismatic joints, about which the three-degrees-of-freedom 
manipulator moves. It has three legs of known dimensions and masses. To 
simplify the graphical image of the kinematical scheme of the mechanism, in the 
follows we will represent the intermediate reference systems by only two axes, so 
as is used in most of books [1], [4], [5], [7]. The kz axis is represented, of course, 

for each component element kT . We mention that the relative rotation or relative 

translation with 1, kk  angle or 1, kk displacement of kT body most be always 

pointing about or along the direction kz . 

The first element of leg A  is one of the three sliders of the robot. It is a 
homogenous rod of length 121 lAA  and mass 1m , moving horizontally along the 

fixed AzA 11  axis with a displacement A
10 . The centre of the transmission 

rod 263 lAA  is denoted as 2A . This link is connected to the frame AAA zyxA 2222  

(called AT2 ) and it has a relative rotation with the angle A
21 , so that 
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AA
2121   and AA

2121   . It has the mass 2m and the central tensor of inertia 2Ĵ . 

Further one, two identical and parallel bars 43 AA and 76 AA with same length 3l  

rotate about the AT2 frame with the angle AA
6232   . They have also the same 

mass 3m and the same tensor of inertia 3Ĵ . The four-bar parallelogram is closed by 

an element AT4 , which is identical with AT2 . Its tensor of inertia is 4Ĵ . This element 

rotates with the relative angle AA
3243    (Fig. 2). 

The centre 5A of the interval between the two revolute joints connects the 

moving platform )( 55555
AAAA TzyxA . The platform of the robot may be a cube of 

masse 5m , central tensor of inertia GĴ and side dimension l , which rotate relatively 

by an angle A
54  with respect to the neighbouring body AT4 . Finally, another 

reference system GGG zyGx is located at the centreG of the cubic moving platform. 
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                                     Fig. 2 Kinematical scheme of first leg A of the mechanism 
 

Due to the special arrangement of the four-bar parallelograms and the three 
prismatic joints at points 111 ,, CBA , the mechanism has three translation degrees of 

freedom. This unique characteristic is useful in many applications, such as a 
zyx   positioning device.  

At the central configuration, we consider that all legs are initially extended at 
equal length and that the angles giving the orientation of the three sliders about 
their guide-ways are   CBA . 

In the followings, we apply the method of successive displacements to 
geometric analysis of closed-loop chains and we note that a joint variable is the 
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displacement required to move a link from the initial location to the actual 
position. If every link is connected to least two other links, the chain forms one or 
more independent closed-loops. The variable angles 1, kk of rotation about the 

joint axes kz are the parameters needed to bring the next link from a reference 

configuration to the next configuration. We call the matrix 
1, kka , for example, the 

orthogonal transformation 33  matrix of relative rotation with the angle A
kk 1,  of 

link A
kT around A

kz axis. 

In the study of the kinematics of robot manipulators, we are interested in 
deriving a matrix equation relating the location of an arbitrary kT body to the joint 

variables. When the change of coordinates is successively considered, the 
corresponding matrices are multiplied. 

So, starting from the reference origin O  and pursuing the three 
legs BA, ,C we obtains the following  transformation matrices [25] 

                                      
32622545443243

3323222121110

,,

,,

aaaaaaaa

aaaaaaaa








        

                                
32622545443243

3323222121510

,,

,,

bbabbabb

abbabbab








                                    (1)   

                                
32622545443243

3323222121610

,,

,,

ccaccacc

accaccac








 

where we denoted 

             


































 


001

010

100

,

001

010

100

21 aa , 





















010

001

100

3a  

             






















100

010

001

4a , ,

010

100

001

5
















a















 


100

001

010

6a  

       
















 





100

0cossin

0sincos

1,1,

1,1,

1,
A

kk
A

kk

A
kk

A
kk

kka 


 ,   .5,...,2,1
1

,10 


 kaa
k

j
jkjkk

    (2) 

The translation conditions for the platform are given by the following 
identities 

                                        Iccbbaa TTT  505050505050
 ,                                       (3) 

where 
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                 ,

001
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100

,

100
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5050
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





























  ba .

100

010

001

50



















c              (4) 

                           
From these relations, one obtains the following relations between angles 
                                         CCBBAA

215421542154 ,,   .                                       (5) 

The three concurrent displacements CBA
101010 ,,   of the actuators 111 ,, CBA are 

the joint variables that give the input vector 10


of the instantaneous position of the 

mechanism. But, the objective of the inverse geometric problem is to find the 

input vector 10


and the position of the robot with the given three absolute 

coordinates of the centerG  of the platform: Gx0 , Gy0 , Gz0 . 

Supposing, for example, that the known motion of the mass centerG of the 
platform is expressed by the following relations 
                                                  ][ 0000

GGGG zyxr 
  

                 ),
3

cos1(),
3

cos1(),
3

cos1( *
00

*
00

*
00 tzztyytxx GGGGGG 

                (6) 

the inputs CBA
101010 ,,   of the manipulators and the variables CCBBAA

322132213221 ,,,,,   

will be given by the following geometrical conditions 
G

k

GCTC
k,k

T
k

C

k

GBTB
kk

T
k

B

k

GATA
k,k

T
k

A rrcrcrrbrbrrarar 0

4

1
5501010

4

1
5501,010

4

1
5501010
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







, (7) 

where, for example, one denoted 
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1

0

0

,

0

1

0

,

0

0

1

3321 uuuu
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3
2

321121

310311010

2
,]cossin0[

)
2

cos(

u
l

rllr

ua
l

llr

ATA

TAA












                                    (8) 

                      ,
2

, 1
2

542343 u
l

rulr AA 
 TGA l

lr ]0
2

sin[ 15   . 

Actually, these equations means that there is the inverse geometric solution for 
the manipulator, given through following analytical relations 

      
3

0
32sin

l

z G
A  , 

A

G
A

l

y

323

0
21

cos
sin


  , )coscos1( 32213010

AAGA lx    

      
3

0
32sin

l

xG
B  , 

B

G
B

l

z
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0
21

cos
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
  , )coscos1( 32213010

BBGB ly                      (9) 
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3

0
32sin

l

yG
C  , 

C

G
C

l

x

323

0
21

cos
sin


  , )coscos1( 32213010

CCGC lz   . 

In that follows, we determine, the velocities and the accelerations of the robot, 
supposing that the translation motion of the moving platform is known. 

The motions of the component elements of each leg (for example the leg A) 
are characterized by the following skew symmetric matrices [26] 
                                   )5,...,2(,~~~

31,1,0,11,0   kuaa A
kk

T
kk

A
kkk

A
k  ,                        (10) 

which are associated to the absolute angular velocities given by the recurrence 
relations 
                                   ., 1,1,31,0,11,0

A
kk

A
kk

A
kk

A
kkk

A
k ua    


                       (11) 

Following relations give the velocities A
kv 0


 of the joints kA  

                                    A
-kk,

A
k

A
-kkk

A
k rvav 10,11,01,0

~ 
   , 31010 uv AA   .                         (12) 

If the other two kinematical chains of the manipulator are pursued, analogous 
relations can be easily obtained. 

Equations (3) and (7) can be differentiated with respect to time to obtain the 
following matrix conditions of connectivity [27] 

            
,)3,2,1(,~~

0

0233032323232021331010

3505432021


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iruuuauluauauluauv

uauuau
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i
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i
ATTT

i
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i
A

TT
i
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i

A








        (13) 

where 321
~,~,~ uuu are skew-symmetric matrices associate to three orthogonal unit 

vectors 321 ,, uuu


.From these equations, relative velocities AAAv 322110 ,,  and AA
2154     

result as functions of the translation velocity of the platform. The relations (13) 
give the complete Jacobian matrix of the manipulator. This matrix is a 
fundamental element for the analysis of the robot workspace and the particular 
configurations of singularities where the manipulator becomes uncontrollable. 

Rearranging, above nine constraint equations (9) of the Orthoglide robot can 
immediately written as follows 

                                 2
3

2
1030

2
0

2
0 )( llxyz AGGG    

                                 2
3

2
1030

2
0

2
0 )( llyzx BGGG                                      (14) 

                                 2
3

2
1030

2
0

2
0 )( llzxy CGGG   , 

where the “zero” position ]000[0
0 Gr


corresponds to the joints variables 

]000[0
10


. The derivative with respect to time of conditions (14) leads to the 

matrix equation 

                                                     GrJJ 02101
  .                                                (15) 

Matrices 1J and 2J  are, respectively, the inverse and forward Jacobian of the 
manipulator and can be expressed as 
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                   }{ 3211 diagJ  , 
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
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with 
        AG lx 10301   ; BG ly 10302   ;  CG lz 10303   .                  (17)  

The three kinds of singularities of the three closed-loop kinematical chains can 
be determined through the analysis of two Jacobian matrices 1J and 2J . 

Let us assume that the robot has a first virtual motion determined by the linear 
velocities 0,1 1010  Bv

a
Av

a vv , 010 Cv
av . The characteristic virtual velocities are 

expressed as functions of the position of the mechanism by the general 
kinematical constraints equations (13). Other two sets of relations of connectivity 
can be obtained if one considers successively: 110 Bv

bv , 010 Cv
bv , 010 Av

bv  

and 110 Cv
cv , 010 Av

cv , 010 Bv
cv . 

As for the relative accelerations AAA
322110 ,,   and AA

2154    of the manipulator, 

the derivatives with respect to time of the relations (13) give other following 
conditions of connectivity [28] 
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The angular accelerations A
k0


and the accelerations A
k 0 of joints are given by 

some relations, obtained by deriving the relations (10), (11) and (12): 
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The relations (13), (18) represent the inverse kinematics model of the 
Orthoglide parallel robot. As application let us consider a manipulator, which has 
the following characteristics 
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A program which implements the suggested algorithm is developed in 
MATLAB to solve first the inverse kinematics of the Orthoglide parallel robot. 
For illustration, it is assumed that for a period of two second the platform starts at 
rest from a central configuration and is moving in a general translation. A 
numerical study of the robot kinematics is carried out by computation of the input 
displacements ,10

A ,10
B C

10 , for example, of three prismatic actuators (Fig. 3, 4, 5). 

  
               Fig. 3 Input displacement

A
10 of first actuator                      Fig. 4 Input displacement

B
10 of second actuator 

  
        Fig. 5 Input displacement

C
10 of third actuator                             Fig. 6 Input power

Ap10 of first actuator 

3. Inverse dynamics model 

In the context of the real-time control, neglecting the frictions forces and 
considering the gravitational effects, the relevant objective of the dynamics is to 
determine the input forces, which must be exerted by the actuators in order to 
produce a given trajectory of the effector. 

There are three methods, which can provide the same results concerning these 
actuating forces. The first one is using the Newton-Euler classic procedure [13], 
[15], [19], [29], the second one applies the Lagrange’s equations and multipliers 
formalism [14], [30] and the third one is based on the principle of virtual work 
[1], [5], [25], [26]. In the inverse dynamic problem, in the present paper one 
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applies the principle of virtual work in order to establish some recursive matrix 
relations for the forces and the powers of the three active systems. 

Three input spatial concurrent forces jf10 and three powers jijj fvp 101010   

),,( CBAj   required in a given motion of the moving platform will easily be 
computed using a recursive procedure. Some independent pneumatic or hydraulic 
systems that generate three input forces 31010 uff jj 

 , which are oriented along the 

axes AzA 11 , BzB 11 , CzC 11 , control the motion of the three sliders of the robot. 
Now, the parallel mechanism can artificially be transformed in a set of three 

open serial chains ),,( CBAjC j   subject to the constraints. This is possible by 

cutting successively the joints 555 ,, CBA for the moving platform and 777 ,, CBA  

for the four-bar parallelograms and taking their effects into account by 
introducing the corresponding constraint conditions. The first and more 
complicated open tree system includes the acting link and could comprise the 
moving platform. 

The force of inertia of an arbitrary rigid body A
kT , for example 
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and the resulting moment of the forces of inertia 
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are determined with respect to the centre of its fist joint kA . On the other hand, the 

wrench of two vectors A
kf 


and A
km evaluates the influence of the action of the 

external and internal forces applied to the same element A
kT or of its weight gm A
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, 

for example: 
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Finally, two recursive relations generate the vectors 
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where one denoted 
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Considering three independent virtual motions of the robot, all virtual 
displacements and virtual velocities should be compatible with the virtual motions 
imposed by all kinematical constraints and joints at a given instant in time. By 
intermediate of the complete Jacobian matrix expressed by the conditions of 
connectivity (13), the absolute virtual velocities v

k
v
kv 00 , 


associated with all 

moving links are related to a set of independent relative virtual velocities 

31,1, uv
kk

v
kk


   . 
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Knowing the position and kinematics state of each link as well as the external 
forces acting on the robot, in that follow one apply the principle of virtual work 
for an inverse dynamic problem. The fundamental principle of the virtual work 
states that a mechanism is under dynamic equilibrium if and only if the total 
virtual work developed by all external, internal and inertia forces vanish during 
any general virtual displacement, which is compatible with the constraints 
imposed on the mechanism. Assuming that frictional forces at the joints are 
negligible, the virtual work produced by the forces of constraint at the joints is 
zero. 

 
       Fig. 7 Input power

Bp10 of second actuator                                 Fig. 8 Input power
Cp10 of third actuator 

Applying the fundamental equations of the parallel robots dynamics 
established [31], following compact matrix relation results for the input force of 
first actuator 
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The relations (23), (25) represent the inverse dynamics model of the Orthoglide 
parallel robot. 
      Based on the algorithm derived from the above recursive relations, a computer 
program solve the inverse dynamics modelling of the robot, using the MATLAB 
software. 

 Assuming that the weights gmA
k


 of compounding rigid bodies constitute the 

external forces acting on the robot during its evolution, a numerical computation 
in the dynamics is developed, based on the determination of the three active 
powers AAA fvp 101010  , BBB fvp 101010  , CCC fvp 101010  . The time-history evolution of the 

input powers Ap10 (fig. 6), Bp10 (fig. 7), Cp10 (fig. 8) required by the actuators are 

plotted for a period of two second of platform’s motion. 
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4. Conclusions 

In the inverse kinematics analysis some exact relations that give in real-time 
the position, velocity and acceleration of each element of the parallel robot have 
been established in present paper. The dynamics model takes into consideration 
the masses and forces of inertia introduced by all component elements of the 
robot. 

The new approach based on the principle of virtual work can eliminate all 
forces of internal joints and establishes a direct determination of the time-history 
evolution of forces and powers required by the actuators. The recursive matrix 
relations (25) represent the explicit equations of the dynamics simulation and can 
easily be transformed in a model for the automatic command of the Orthoglide 
parallel robot. Also, the method described above is quit available in forward and 
inverse mechanics of all serial or parallel mechanisms, the platform of which 
behaves in translation, rotation evolution or general 6-DOF motion. 
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