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An elementary proof of an inequality of Maz'ya involving L 1 vector fields

We give a short elementary proof of the inequality

essentially established by Maz'ya [4].

Introduction

For any f ∈ L 1 (R n , R n ), we denote by u := (-∆) -1 f the Newtonian (logarithmic for n = 2) potential of f:

u(x) = R n Γ(x -y)f(y) dy,
where Γ is the fundamental solution of -∆:

Γ(x) :=      -1 2π ln |x| if n = 2 1 |S n-1 |(n -2) 1 |x| n-2 if n ≥ 3.
One of the main results in [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF] states that

||Du|| L n ′ (R n ) ≤ C (||f|| L 1 + ||div f|| W -2,n ′ ) ( 1 
)
where n ′ = n/(n -1).

In [START_REF] Maz'ya | Estimates for differential operators of vector analysis involving L 1norm[END_REF], Maz'ya established the following family of estimates related to (1)

Theorem 0 Let 1 ≤ q < n ′ and f ∈ L 1 (R n , R n ). Assume that R n f = 0. Let h := div f. i)] If q > 1 and ∇(-∆) -1 h ∈ L 1 , then ||Du|| L q (|x| n(q-1)-q dx) ≤ c ||f|| L 1 + ||∇(-∆) -1 h|| L 1 .
ii)] If q = 1 and (-∆) -1/2 h ∈ H 1 (where H 1 denotes the Hardy space), then

||Du|| L 1 (|x| -1 dx) ≤ c ||f|| L 1 + ||(-∆) -1/2 h|| H 1 .
These estimates partly solve Open Problem 1 in [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF].

The aim of this note is to unify the two statements of Theorem 0 and to present a proof both shorter and more elementary than the original one in [START_REF] Maz'ya | Estimates for differential operators of vector analysis involving L 1norm[END_REF]. Our result is

Theorem 1 Let 1 ≤ q < n ′ and f ∈ L 1 (R n , R n ). Let h := div f. If ∇(-∆) -1 h ∈ L 1 , then ||Du|| L q (|x| n(q-1)-q dx) ≤ c ||f|| L 1 + ||∇(-∆) -1 h|| L 1 . Remarks. i) In Theorem 0, it is required that R n f = 0. In fact, this equality is implied by the assumptions f ∈ L 1 and ∇(-∆) -1 h ∈ L 1 . ii) If (-∆) -1/2 h ∈ H, then ∇(-∆) -1 h ∈ L 1 ,
but the converse is false. Thus, when q = 1, Theorem 1 requires a weaker assumption than Theorem 0.

We start by proving i). The Fourier transform of ∂ j (-∆) -1 h is

F j (ξ) = - k ξ j ξ k |ξ| 2 f k (ξ) = - k ξ j ξ k |ξ| 2 f k (0) + o(1) as ξ → 0.
The continuity of F j at the origin implies f j (0) = 0, i. e., f j = 0.

We next briefly justify ii).

If g := (-∆) -1/2 h ∈ H 1 , then the Riesz transforms of g satisfy R j g ∈ L 1 , 1 ≤ j ≤ n, so that ∇(-∆) -1 h = ı(R 1 g, ..., R n g) ∈ L 1 . In order to see that the converse is false, pick a temperate distribution g such that R j g ∈ L 1 , 1 ≤ j ≤ n, but g ∈ L 1 .
Such a g exists, see [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF], 6.16, p. 184 and the references therein. If

f := -ı(R 1 g, . . . , R n g) ∈ L 1 , then (-∆) -1/2 div f = g ∈ L 1 , while ∇(-∆) -1 div f = -f ∈ L 1 . 2 Proof of Theorem 1 Let ρ 0 ∈ C ∞ c (R + ) be such that 0 ≤ ρ 0 ≤ 1 and ρ 0 (r) = 1 if r ≤ 1/4 0 if r ≥ 1/2 . We introduce ρ(y, x) = ρ 0 (|y|/|x|) for (y, x) ∈ R n × R n \ {0}. For 1 ≤ k ≤ n, we have ∂ x k u(x) = c n R n x k -y k |x -y| n f(y) dy = I 1 (x) + I 2 (x),
where

I 1 (x) = c n R n ρ(y, x) x k -y k |x -y| n f(y) dy , I 2 (x) = c n R n (1-ρ(y, x)) x k -y k |x -y| n f(y) dy.
We estimate ||I 2 || L q (|x| n(q-1)-q dx) using the following straightforward consequence of Hölder's inequality

x → f (y)g(x, y) dy

L q ≤ f L 1 sup y g(•, y) L q (dx) .
(
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We have

|I 2 (x)| ≤ c |y|≥|x|/4 |f(y)| dy |x -y| n-1 so that, by (2), ||I 2 || L q (|x| n(q-1)-q dx) ≤ c |f(y)| dy sup y =0 |x|≤4|y|
|x| n(q-1)-q |x -y| (n-1)q 1/q .

The quantity

|x|≤4|y|
|x| n(q-1)-q |x -y| (n-1)q dx is finite and does not depend on y = 0 (since it depends only on the norm of y and is homogeneous of degree 0). This implies that ||I 2 || L q (|x| n(q-1)-q dx) ≤ c |f(y)| dy.

In order to estimate ||I 1 || L q (|x| n(q-1)-q dx) , we note that for |y| ≤ |x|/2 we have

x k -y k |x -y| n - x k |x| n ≤ c |y| |x| n .
Thus

|I 1 (x)| ≤ c 1 |x| n |y|≤|x|/2 |f(y)||y| dy + J(x)
where

J(x) := 1 |x| n-1 R n ρ(y, x)f(y) dy .
Using (2), we obtain

||I 1 || L q (|x| n(q-1)-q dx) ≤ c |f(y)||y| dy sup y =0 |x|≥2|y| dx |x| n+q 1/q +c||J|| L q (|x| n(q-1)-q dx) ≤ c||f|| L 1 + c||J|| L q (|x| n(q-1)-q dx) .
It then remains to estimate ||J|| L q (|x| n(q-1)-q dx) .

To start with, we asume, in addition to the hypotheses of Theorem 1, that f ∈ C ∞ . Then we have

0 = R n div (y 1 ρ(y, x)f(y)) dy = R n ρ(y, x)f 1 (y) + y 1 |y||x| ρ ′ 0 |y| |x| i y i f i (y) + y 1 ρ(y, x)div f(y) dy. Thus R n ρ(y, x)f 1 (y) dy ≤ c |y|≤|x|/2 |y| |x| |f(y)| dy + R n y 1 ρ(y, x) div f(y) dy . (3) 
We claim that, with h = div f, we have Then div k = ∆(y 1 ρ(y, x)), div l = 0 and

(k + l) i =                      y 1 ∂ ∂y 1 ρ(y, x) -y 2 ∂ ∂y 2 ρ(y, x) if i = 1,
y 1 ∂ ∂y 2 ρ(y, x) + y 2 ∂ ∂y 1 ρ(y, x) if i = 2, y 1 ∂ ∂y i ρ(y, x) if i ≥ 3. Thus |k + l| ≤ c |y| |x| 1 |y|≤|x|/2 .
Therefore,

R n y 1 ρ(y, x) div f(y) dy = - R n div (k + l)(-∆) -1 (div f) = R n (k + l)∇(-∆) -1 (div f).
By taking the absolute values in the above identity, we find that (4) holds under the additional assumption that f is smooth. The general case follows by noting that (-∆) -1 div and ∇(-∆) -1 div commute with convolution of vector fields with a scalar mollifier. Applying (4) to f * ρ ε , where ρ is a compactly supported mollifier, and letting ε → 0, we find that (4) holds for all f. The same is true with f instead of f 1 on the left hand side. Using again (2), it follows that ||J|| L q (|x| n(q-1)-q dx) ≤ c ||f|| L 1 + ||∇(-∆) -1 h|| L 1 .

(
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This completes the proof of Theorem 1.

R n y 1

 1 ρ(y, x) div f(y) dy ≤ c |y|≤|x|/2 |y| |x| |∇(-∆) -1 h(y)| dy. (4) Indeed, let k := ∇(y 1 ρ(y, x)) and l := -∂ ∂y 2 (y 2 ρ(y, x)), ∂ ∂y 1 (y 2 ρ(y, x)), 0, . . . , 0 .

Now, ( 3 )

 3 and (4) imply that R n ρ(y, x)f 1 (y) dy ≤ c |y|≤|x|/2 |y| |x| |f(y)| + |∇(-∆) -1 h(y)| dy.