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Singular limit of a two-phase flow problem in porous
medium as the air viscosity tends to zero∗

R. Eymard 1, M. Henry 2 and D. Hilhorst 3

Abstract

In this paper we consider a two-phase flow problem in porous media and study
its singular limit as the viscosity of the air tends to zero; more precisely, we prove
the convergence of subsequences to solutions of a generalized Richards model.

1 Introduction

Hydrologists have studied air-water flow in soils, mainly using the so-called Richards
approximation. At least two hypotheses are physically required for this model to be
applicable: the water pressure in the saturated region must be larger than the atmospheric
pressure and all the unsaturated regions must have a boundary connected to the surface.
However, in many situations, these hypotheses are not satisfied and a more general two-
phase flow model must be considered. This work explores the limit of this general model
as the viscosity of the air tends to zero, which is one of the hypotheses required in the
Richards model. To that purpose we prove the existence of a weak solution of the two-
phase flow problem and prove estimates which are uniform in the air viscosity. In this
paper, we assume that the air and water phases are incompressible and immiscible. The
geometric domain is supposed to be horizontal, homogeneous and isotropic. Our starting
point is the following two-phase flow model, which one can deduce from Darcy’s law

(T P)







ut − div(kw(u)∇(p)) = sw

(1 − u)t − div( 1
µka(u)∇(p+ pc(u))) = sa,
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where u and p are respectively the saturation and the pressure of the water phase, kw

and ka are respectively the relative permeabilities of the water and the air phase, µ is
the ratio between the viscosity of the air phase and that of the water phase, pc is the
capillary pressure, sw is an internal source term for the water phase and sa is an internal
source term for the air phase; these source terms are used to represent exchanges with the
outside. We suppose in particular that the physical functions kw, ka and pc only depend
on the saturation u of the water phase, and that kw(1) = ka(0) = 1. The aim of this
paper is the study of the limit of the two-phase flow problem as µ ↓ 0.

The classical Richards model as formulated by the engineers is given by

(R)

{

ut − div(kw(u)∇p) = sw

u = p−1
c (patm − p).

where the properties of capillary pressure pc = pc(u) are describes in hypothesis (H8)
below. For the existence and uniqueness of the solution of Richards model together with
suitable initial and boundary conditions as well as qualitative properties of the solution
and methods for numerical approximations we refer to [1], [6], [10], [11]. In this article,
we will show that the singular limit as µ ↓ 0 of the two phase flow problem (T P) has the
form

(FBP)

{

ut − div(kw(u)∇p) = sw

u = 1 or ∇(p + pc(u)) = 0 a.e. in Ω × (0, T ).

We remark that a solution of (R) with u > 0 satisfies (FBP).

This paper is organized as follows. In Section 2 we present a complete mathematical for-
mulation of the problem, and state the main mathematical results, which include a precise
formulation of the singular limit problem. We give a sequence of regularized problems
in Section 3, and prove the existence of a classical solution. In Section 4 we present a
priori estimates, which are uniform in an extra regularization parameter δ and in the air
viscosity µ. In Section 5, we let δ ↓ 0 and prove that the solution converges to a solution
of the two phase flow problem. We study its limiting behavior as the air viscosity µ tends
to zero in Section 6. Finally in Section 7 we propose a finite volume algorithm in a one
dimensional context and present a variety of numerical solutions.
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2 Mathematical formulation and main results

We consider the two-phase flow problem

(Sµ)



















































































ut = div
(

kw(u)∇p
)

+ fµ(c)s− fµ(u)s, in QT ,

(1 − u)t = div
(

1

µ
ka(u)∇(p+ pc(u))

)

+ (1 − fµ(c))s− (1 − fµ(u))s, in QT ,
∫

Ω
p(x, t)dx = 0, for t ∈ (0, T ),

∇p.n = 0, on ∂Ω × (0, T ),

∇(p+ pc(u)).n = 0, on ∂Ω × (0, T ),

u(x, 0) = u0(x), for x ∈ Ω,

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

where T is a positive constant, QT := Ω × (0, T ) and where we suppose that

(H1) Ω is a smooth bounded domain of IRN where the space dimension N is arbitrary,
(H2) um ∈ (0, 1),
(H3) c ∈ L∞(Ω × (0, T )) and um ≤ c ≤ 1,
(H4) u0 ∈ L∞(Ω) and um ≤ u0 ≤ 1,

(H5) s ∈ L2(Ω), s ≥ 0, s ∈ L2(Ω), s ≥ 0 and
∫

Ω
(s(x) − s(x))dx = 0,

(H6) kw ∈ C2([0, 1]), k′w ≥ 0, kw(0) = 0, kw(1) = 1 and kw(um) > 0,
(H7) ka ∈ C2([0, 1]), k′a ≤ 0, ka(1) = 0, ka(0) = 1 and ka(s) > 0 for all s ∈ [0, 1),
(H8) pc ∈ C0([0, 1]) ∪ C3([0, 1)), p′c < 0 and sups∈[0,1)(−ka(s)p

′
c(s)) < +∞,

(H9) µ ∈ (0, 1].

In this model, u and p are respectively the saturation and the pressure of the water
phase, kw and ka are respectively the mobilities of the water phase and the mobility of
the non-water phase and pc is the capillary pressure. We assume in particular that the
permeability functions kw, ka and the capillary pressure pc only depend on the saturation
u of the water phase. Here, we suppose that the flow of the water phase in the reservoir
is driven by an injection term fµ(c)s and an extraction term fµ(u)s where s and s are
given space dependent functions, c is the saturation of the injected fluid; if c = 1, only
water will be injected, if c = 0, only air will be injected, whereas a mixture of water and
air will be injected if 0 < c < 1. The function fµ is the fractional flow of the water phase,
namely

fµ(s) =
kw(s)

Mµ(s)
, with Mµ(s) = kw(s) +

1

µ
ka(s). (2.7)

In particular, we remark that

fµ(s) is non decreasing. (2.8)
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Next we introduce a set of notations, which will be useful in the sequel.

g(s) = −
∫ s

0
ka(τ)p

′
c(τ)dτ, (2.9)

ζ(s) =
∫ s

0

√

ka(τ)p
′
c(τ)dτ, (2.10)

Qµ(s) =
∫ s

0
fµ(τ)p′c(τ)dτ, (2.11)

and

Rµ(s) =
∫ s

0

ka(τ)

ka(τ) + µkw(τ)
p′c(τ)dτ, (2.12)

for all s ∈ [0, 1]. This implies in particular that

Rµ(s) + Qµ(s) = pc(s) − pc(0), for all s ∈ [0, 1]. (2.13)

Definition 2.1 The pair (uµ, pµ) is a weak solution of Problem (Sµ) if

uµ ∈ L∞(Ω × (0, T )), with 0 ≤ uµ ≤ 1 in QT ,

pµ ∈ L2(0, T ;H1(Ω)),
∫

Ω
pµ(x, t)dx = 0 for almost every t ∈ (0, T ),

g(uµ) ∈ L2(0, T ;H1(Ω)),

with

∫ T

0

∫

Ω
uµϕtdxdt =

∫ T

0

∫

Ω
kw(uµ)∇pµ.∇ϕdxdt−

∫ T

0

∫

Ω

(

fµ(c)s− fµ(uµ)s
)

ϕdxdt

−
∫

Ω
u0(x)ϕ(x, 0)dx, (2.14)

and

∫ T

0

∫

Ω

(

1 − uµ
)

ϕtdxdt =
∫ T

0

∫

Ω

1

µ
ka(u

µ)
(

∇pµ + ∇pc(u
µ)

)

.∇ϕdxdt

−
∫ T

0

∫

Ω

(

(1 − fµ(c))s− (1 − fµ(uµ))s
)

ϕdxdt−
∫

Ω

(

1 − u0(x)
)

ϕ(x, 0)dx, (2.15)

for all ϕ in C := {w ∈W 2,1
2 (QT ), w(., T ) = 0 in Ω}.

Our first result, which we prove in Section 3, is the following
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Theorem 2.2 Suppose that the hypotheses (H1) − (H9) are satisfied, then there exists a

weak solution (uµ, pµ) of Problem (Sµ).

Next we define the discontinuous function χ by

χ(s) :=

{

0 if s ∈ [0, 1)
1 if s = 1,

as well as the graph

H(s) :=

{

0 if s ∈ [0, 1)
[0, 1] if s = 1.

The main goal of this paper is to prove the following convergence result,

Theorem 2.3 Suppose that the hypotheses (H1) − (H9) are satisfied, then there exists a

subsequence ((uµn , pµn))n∈N of weak solutions of Problem (Sµn) and functions u, p, f̂ such

that
u ∈ L∞(QT ), 0 ≤ u ≤ 1 in QT ,

f̂ ∈ L∞(QT ), 0 ≤ f̂ ≤ 1 in QT ,

p ∈ L2(0, T ;H1(Ω)),

ka(u)∇pc(u) ∈ L2(Ω × (0, T )),

and
(uµn)n∈N tends to u strongly in L2(QT ),
(pµn)n∈N tends to p weakly in L2(0, T ;H1(Ω)),

as µn tends to zero and

∫ T

0

∫

Ω
uϕtdxdt =

∫ T

0

∫

Ω
kw(u)∇p.∇ϕdxdt−

∫ T

0

∫

Ω

(

χ(c)s− f̂ s
)

ϕdxdt

−
∫

Ω
u0(x)ϕ(x, 0)dx, (2.16)

for all ϕ ∈ C, where f̂(x, t) ∈ H(u(x, t)) for (x, t) ∈ QT . Moreover we also have that

∫ T

0

∫

Ω

[

ka(u)
]2[

∇p+ ∇pc(u)
]2

dxdt = 0 (2.17)

and ∫

Ω
p(x, t)dx = 0, for almost every t ∈ (0, T ). (2.18)
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Formally, u satisfies the following limit problem















ut = div
(

kw(u)∇p
)

+ χ(c)s̄− f̂ s, in QT ,

∇u.n = 0, on ∂Ω × (0, T ),
u(x, 0) = u0(x), for x ∈ Ω.

More precisely the following corollary holds

Corollary 2.4 Suppose that u < 1 in O = ∪t∈[τ,T ]Ωt, where τ > 0 and Ωt, for t ∈ [τ, T ],
are smooth subdomains of Ω and O is a smooth domain of Ω × [τ, T ] and that u = 1 in

QT \ O then

p(x, t) = −pc(u(x, t)) + constant(t), for all (x, t) ∈ O
and u satisfies































ut = −div
(

kw(u)∇pc(u)
)

+ χ(c)s̄, in O,
∂u
∂n

= 0, on ∂O ∩
(

∂Ω × (0, T )
)

,

u = 1, elsewhere on ∂O,
u(x, 0) = u0(x), for x ∈ Ω.

Finally we remark that another form of the limit problem involves a parabolic equation,
which is close to the standard Richards equation. Indeed if we set φ(s) := pc(0) − pc(s)
and denote by β the inverse function of φ, the function v := φ(u) is a weak solution of
the problem















β(v)t = div
(

kw(β(v))∇v
)

+ χ(c)s̄− f̂s, in QT ,

∇β(v).n = 0, on ∂Ω × (0, T ),
β(v)(x, 0) = u0(x), for x ∈ Ω,

with f̂ ∈ H(β(v)).
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3 Existence of a solution of an approximate problem

(Sµδ ) of Problem (Sµ)

Let δ be an arbitrary positive constant. In order to prove the existence of a solution of
Problem (Sµ) we introduce a sequence of regularized problems (Sµ

δ ), namely

(Sµ
δ )















































































































ut = div
(

kw(u)∇p
)

+ fµ(cδ)sδ

− fµ(u)
(

sδ +
∫

−
Ω
(sδ − sδ)dx

)

, in Ω × (0, T ),

(1 − u)t = div
(

1

µ
ka(u)∇(p+ pc(u))

)

+
(

1 − fµ(cδ)
)

sδ

−
(

1 − fµ(u)
)(

sδ +
∫

−
Ω
(sδ − sδ)dx

)

, in Ω × (0, T ),
∫

Ω
p(x, t)dx = 0, for t ∈ (0, T ),

∇p.n = 0, on ∂Ω × (0, T ),

∇(p+ pc(u)).n = 0, on ∂Ω × (0, T ),

u(x, 0) = uδ
0(x), for x ∈ Ω,

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

where uδ
0, cδ, sδ and sδ are smooth functions such that uδ

0 tends to u0 in L2(Ω) and cδ, sδ

and sδ tend respectively to c, s and s in L2(QT ), as δ ↓ 0. In particular we suppose that
there exists a positive constant C such that

sδ ≥ 0, sδ ≥ 0 and
∫

Ω
s2

δ +
∫

Ω
s2

δ ≤ C. (3.7)

Moreover we suppose that uδ
0, cδ satisfy

0 < um ≤ uδ
0 ≤ 1 − δ < 1 in Ω (3.8)

and

0 < um ≤ cδ ≤ 1 − δ < 1 in QT . (3.9)

Adding up (3.1) and (3.2) we deduce the equation

− div
(

Mµ(u)∇p+
1

µ
ka(u)∇(pc(u))

)

= sδ − sδ −
∫

−
Ω
(sδ − sδ)dx. (3.10)

We formulate below an equivalent form of Problem (Sµ
δ ). To that purpose we define the

global pressure, P, by

P := p+ Rµ(u) = p+
∫ u

0

ka(τ)

ka(τ) + µkw(τ)
p′c(τ)dτ,
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so that (3.10) gives

− div
(

Mµ(u)∇P
)

= sδ − sδ −
∫

−
Ω
(sδ − sδ)dx. (3.11)

We rewrite the equation (3.1) of Problem (Sµ
δ ) as

ut = ∆ψµ(u) + div
(

fµ(u)Mµ(u)∇P
)

+ fµ(cδ)sδ − fµ(u)
(

sδ +
∫

−
Ω
(sδ − sδ)dx

)

, (3.12)

where

ψµ(s) = −1

µ

∫ s

0

ka(τ)kw(τ)

Mµ(τ)
p′c(τ)dτ (3.13)

is continuous on [0, 1] and differentiable on [0, 1). Multiplying (3.11) by fµ(uµ
δ ) and adding

the result to (3.12) we deduce that

ut = ∆ψµ(u) +Mµ(u)∇fµ(u).∇P +
(

fµ(cδ) − fµ(u)
)

sδ.

This yields a problem equivalent to (Sµ
δ ), namely

(S̃µ
δ )































































ut = ∆ψµ(u) +Mµ(u)∇fµ(u).∇P + [fµ(cδ) − fµ(u)]sδ, in Ω × (0, T ),

− div
(

Mµ(u)∇P
)

= sδ − sδ −
∫

−
Ω
(sδ − sδ)dx, in Ω × (0, T ),

∫

Ω
P(x, t)dx =

∫

Ω
Rµ(u(x, t))dx, for t ∈ (0, T ),

∇P.n = 0, on ∂Ω × (0, T ),

∇ψµ(u).n = 0, on ∂Ω × (0, T ),

u(x, 0) = uδ
0(x), for x ∈ Ω.

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

In order to prove the existence of a smooth solution of (Sµ
δ ), we introduce the set

K := {u ∈ C1+α, 1+α
2 (QT ), um ≤ u ≤ 1 − δ},

where α ∈ (0, 1), and we prove the following result

Lemma 3.1 Assume (H1) − (H9) then there exists (uµ
δ ,Pµ

δ ) solution of (S̃µ
δ ) such that

uµ
δ ∈ C2+α, 2+α

2 (QT ), um ≤ uµ
δ ≤ 1 − δ

and Pµ
δ , ∇Pµ

δ ∈ C1+α, 1+α
2 (QT ) and ∆Pµ

δ ∈ Cα, α
2 (QT ).
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Proof: Let T 1 be the map defined for all V ∈ K by T 1(V ) = W , where W is the unique
solution of the elliptic problem,

(Q1
V )























−div
(

Mµ(V )∇W
)

= sδ − sδ −
∫

−
Ω
(sδ − sδ)dx, in Ω × (0, T ),

∫

Ω
W (x, t)dx =

∫

Ω
Rµ(V (x, t))dx, for t ∈ (0, T ),

∇W.n = 0, on ∂Ω × (0, T ).

By standard theory of elliptic system (see [7] Theorem 3.2 p 137), we have that

|W |1+α, 1+α
2

QT
+ |∇W |1+α, 1+α

2

QT
≤ D1|V |

1+α, 1+α
2

QT
+D2. (3.20)

For W solution of (Q1
V ) we consider T 2 defined by T 2(W ) = V̂ , where V̂ is the solution

of the parabolic problem,

(Q2
W )















V̂t = ∆ψµ
ε (V̂ ) +Mµ(V̂ )∇fµ(V̂ ).∇W + [fµ(cδ) − fµ(V̂ )]sδ, in Ω × (0, T ),

∇ψµ
ε (V̂ ).n = 0, on ∂Ω × (0, T ),

V̂ (x, 0) = uδ
0(x), in Ω.

¿From the standard theory of parabolic equations, we have that

|V̂ |2+α, 2+α
2

QT
≤ D3

(

|W |1+α, 1+α
2

QT
+ |∇W |1+α, 1+α

2

QT

)

+D4. (3.21)

Moreover defining by L the parabolic operator arising in (Q2
W ), namely

L(V̂ )(x, t) := V̂t − ∆ψµ
ε (V̂ ) −Mµ(V̂ )∇fµ(V̂ ).∇W − [fµ(cδ) − fµ(V̂ )]sδ,

we remark that (2.8), the property (3.9) of cδ and the fact that, by (3.7), sδ is positive
imply that

L(um) ≤ 0 and L(1 − δ) ≥ 0. (3.22)

Setting T := T 2 ◦ T 1, the inequalities (3.22) ensure that T maps the convex set K into
itself. Moreover we deduce from (3.21) that T (K) is relatively compact in K.
Next, we check that T is continuous. Suppose that a sequence (Vm)m∈N converges to a

limit V ∈ K in C1+α, 1+α
2 (QT ), as m→ ∞. Since (Vm)m∈N is bounded in C1+α, 1+α

2 (QT ), it
follows from (3.20) that the sequence (Wm := T 1(Vm))m∈N , where Wm is the solution of

(Q1
Vm

), is bounded in C1+α, 1+α
2 (QT ), so that as m→ ∞, Wm converges to the unique solu-

tion W of Problem (Q1
V ) in C1+β, 1+β

2 (QT ) for all β ∈ (0, α). Moreover W ∈ C1+α, 1+α
2 (QT ).

Further it also follows from (3.20) that (∇Wm)m∈N is bounded in C1+α, 1+α
2 (QT ), so

that the solution V̂m = T 2(Wm) of Problem (Q2
Wm

) is bounded in C2+α, 2+α
2 (QT ). Since

V̂m = T 2(Wm) = T (Vm), (T (Vm))m∈N converges to the unique solution V̂ of Problem (Q2
W )

9



in C2+β, 2+β

2 (QT ) for all β ∈ (0, α), as m→ ∞, so that V̂ = T 2(W ) = T 2 ◦ T 1(V ). There-

fore we have just proved that (T 2 ◦ T 1(Vm))m∈N converges to T 2 ◦T 1(V ) in C2+β, 2+β

2 (QT )
for all β ∈ (0, α), as m→ ∞, which ensures the continuity of the map T . It follows from
the Schauder fixed point theorem that there exists a solution (uµ

δ ,Pµ
δ ) of (S̃µ

δ ) such that

uµ
δ ∈ K ∩ C2+α, 2+α

2 (QT ) and Pµ
δ , ∇Pµ

δ , ∈ C1+α, 1+α
2 (QT ), ∆Pµ

δ ∈ Cα, α
2 (QT ).

This concludes the proof of Lemma 3.1. Moreover we deduce from Lemma 3.1 the existence
of a solution of (Sµ

δ ), namely

Corollary 3.2 Assume the hypotheses (H1) − (H9) then there exists (uµ
δ , p

µ
δ ) solution of

(Sµ
δ ) such that uµ

δ ∈ C2+α, 2+α
2 (QT ),

um ≤ uµ
δ (x, t) ≤ 1 − δ (3.23)

and pµ
δ , ∇pµ

δ ∈ C1+α, 1+α
2 (QT ), ∆pµ

δ ∈ Cα, α
2 (QT ).

4 A priori Estimates

In view of (2.8) and (3.23) we deduce the following bounds

0 = fµ(0) ≤ fµ(uµ
δ (x, t)) ≤ 1 = fµ(1), (4.1)

0 = fµ(0) ≤ fµ(cδ(x, t)) ≤ 1 = fµ(1), (4.2)

0 < kw(um) ≤ kw(uµ
δ (x, t)) ≤ kw(1) = 1, (4.3)

0 = ka(1) ≤ ka(u
µ
δ (x, t)) ≤ ka(0) = 1, (4.4)

0 < kw(um) ≤Mµ(uµ
δ ), (4.5)

pc(1) ≤ pc(u
µ
δ (x, t)) ≤ pc(0), (4.6)

pc(1) − pc(0) ≤ Rµ(uµ
δ (x, t)) ≤ 0, (4.7)

pc(1) − pc(0) ≤ Qµ(uµ
δ (x, t)) ≤ 0, (4.8)

for all (x, t) ∈ Ω × (0, T ). Next we state some essential a priori estimates.

Lemma 4.1 Let (uµ
δ , p

µ
δ ) be a solution of Problem (Sµ

δ ). There exists a positive constant

C, which only depends on Ω, kw, ka and T such that

∫ T

0

∫

Ω
ka(u

µ
δ )|∇pµ

δ + ∇pc(u
µ
δ )|2dxdt ≤ Cµ, (4.9)

∫ T

0

∫

Ω
|∇pµ

δ |2dxdt ≤ C, (4.10)
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and

0 ≤ −
∫ T

0

∫

Ω
∇g(uµ

δ ).∇pc(u
µ
δ )dxdt ≤ C, (4.11)

∫ T

0

∫

Ω
|∇ζ(uµ

δ )|2dxdt ≤ C, (4.12)

∫ T

0

∫

Ω
|∇g(uµ

δ )|2dxdt ≤ C. (4.13)

Proof: We first prove (4.9). Multiplying (3.11) by P = pµ
δ + Rµ(uµ

δ ) and integrating the
result on QT = Ω × (0, T ) we obtain

∫

QT

Mµ(uµ
δ )|∇(pµ

δ + Rµ(uµ
δ ))|2 ≤ 1

h

∫

QT

(sδ − sδ)
2 + h

∫

QT

(pµ
δ + Rµ(uµ

δ ))
2, (4.14)

for all h > 0. Moreover we have by Poincaré-Wirtinger inequality that

∫

QT

(pµ
δ + Rµ(uµ

δ ))
2 ≤ C1

[
∫

QT

|∇(pµ
δ + Rµ(uµ

δ ))|2 +
(

∫

QT

pµ
δ + Rµ(uµ

δ )
)2]

.

Using (3.3) and (4.7), it follows that
∫

QT

(pµ
δ + Rµ(uµ

δ ))
2 ≤ C1

∫

QT

|∇(pµ
δ + Rµ(uµ

δ ))|2 + C2,

which we substitute into (4.14) with h =
kw(um)

2C1
to deduce, also in view of (3.7) and

(4.5), that
∫

QT

|∇(pµ
δ + Rµ(uµ

δ ))|2 ≤ C3 and
∫

QT

|pµ
δ + Rµ(uµ

δ )|2 ≤ C3. (4.15)

Furthermore multiplying (3.1) by pµ
δ and (3.2) by pµ

δ + pc(u
µ
δ ), adding up both results and

integrating on QT we obtain

−
∫

QT

(uµ
δ )tpc(u

µ
δ ) +

∫

QT

kw(uµ
δ )|∇pµ

δ |2 +
1

µ
ka(u

µ
δ )|∇pµ

δ + ∇pc(u
µ
δ )|2 = I, (4.16)

where

I :=
∫

QT

[

fµ(cδ)sδ − fµ(uµ
δ )

(

sδ +
∫

−
Ω
(sδ − sδ)

)]

pµ
δ dxdt

+
∫

QT

[

(1 − fµ(cδ))sδ −
(

1 − fµ(uµ
δ )

)(

sδ +
∫

−
Ω
(sδ − sδ)

)]

(pµ
δ + pc(u

µ
δ ))dxdt.

We check below that first term on the left-hand-side of (4.16) and I are bounded. Denoting
by Pc a primitive of pc we have that

∫

QT

pc(u
µ
δ )(u

µ
δ )t =

∫

Ω

∫ T

0

∂

∂t
[Pc(u

µ
δ )].

11



Since Pc is continuous and uµ
δ is bounded this gives

∣

∣

∣

∣

∫

QT

pc(u
µ
δ )(u

µ
δ )tdxdt

∣

∣

∣

∣

≤ C4. (4.17)

Moreover we have using (3.3) and (2.13) that

I =
∫

QT

(

pµ
δ + Rµ(uµ

δ )
)

(sδ − sδ)dxdt (4.18)

−
∫

QT

Rµ(uµ
δ )

[

fµ(cδ)sδ − fµ(uµ
δ )sδ +

(

1 − fµ(uµ
δ )

)(
∫

−
Ω
(sδ − sδ)

)]

dxdt

+
∫

QT

[

(1 − fµ(cδ))sδ −
(

1 − fµ(uµ
δ )

)(

sδ +
∫

−
Ω
(sδ − sδ)

)][

Qµ(uµ
δ ) + pc(0)

]

dxdt.

In view of (H5), (3.7), (4.1), (4.2), (4.7) and (4.8) we obtain

I ≤ C5

∫

QT

|pµ
δ + Rµ(uµ

δ )|2 + C6.

This together with (4.15) yields I ≤ C5C3 + C6. Substituting this into (4.16) and also
using (4.17) we obtain that

∫

QT

kw(uµ
δ )|∇pµ

δ |2 +
1

µ
ka(u

µ
δ )|∇pµ

δ + ∇pc(u
µ
δ )|2dxdt ≤ C7, (4.19)

which implies (4.9). In view of (4.3), we also deduce from (4.19) the estimate (4.10).
Next we prove (4.11). By the definition (2.9) of g, we obtain from (3.10) that

− div
(

Mµ(uµ
δ )∇pµ

δ

)

+
1

µ
∆g(uµ

δ ) = sδ − sδ −
∫

−
Ω
(sδ − sδ)dx. (4.20)

Multiplying (4.20) by fµ(uµ
δ ) and subtracting the result from (3.1) we deduce that

(uµ
δ )t =

1

µ
fµ(uµ

δ )∆g(u
µ
δ )+div

(

kw(uµ
δ )∇pµ

δ

)

−fµ(uµ
δ )div

(

Mµ(uµ
δ )∇(pµ)

)

+sδ[f
µ(cδ)−fµ(uµ

δ )].

(4.21)
Moreover using the definition (2.7) of fµ and Mµ we note that

div
(

Mµ(uµ
δ )f

µ(uµ
δ )∇pµ

δ

)

= div
(

kw(uµ
δ )∇pµ

δ

)

= Mµ(uµ
δ )∇(fµ(uµ

δ )).∇pµ
δ + fµ(uµ

δ )div
(

Mµ(uµ
δ )∇(pµ)

)

,

which we substitute into (4.21) to obtain

(uµ
δ )t −

1

µ
fµ(uµ

δ )∆g(u
µ
δ ) −Mµ(uµ

δ )∇(fµ(uµ
δ )).∇pµ

δ = sδ[f
µ(cδ) − fµ(uµ

δ )]. (4.22)
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We set
Dµ(a) := pc(a)f

µ(a) −Qµ(a), (4.23)

for all a ∈ [0, 1], so that by the definition (2.11) of Qµ we have ∇Dµ(uµ
δ ) = pc(u

µ
δ )∇(fµ(uµ

δ )).
Substituting this into (4.22), which we have multiplied by pc(u

µ
δ ), we deduce that

pc(u
µ
δ )(u

µ
δ )t −

1

µ
fµ(uµ

δ )pc(u
µ
δ )∆g(u

µ
δ )−Mµ(uµ

δ )∇Dµ(uµ
δ ).∇pµ

δ = pc(u
µ
δ )sδ[f

µ(cδ)− fµ(uµ
δ )].

(4.24)
Multiplying (4.20) by Dµ(uµ

δ ), adding the result to (4.24) and also using the fact that

div
(

Mµ(uµ
δ )D

µ(uµ
δ )∇pµ

δ

)

= Mµ(uµ
δ )∇Dµ(uµ

δ ).∇pµ
δ +Dµ(uµ

δ )div
(

Mµ(uµ
δ )∇pµ

δ

)

,

we deduce that

pc(u
µ
δ )(u

µ
δ )t − 1

µ

(

fµ(uµ
δ )pc(u

µ
δ ) −Dµ(uµ

δ )
)

∆g(uµ
δ ) − div

(

Mµ(uµ
δ )D

µ(uµ
δ )∇pµ

δ

)

= pc(u
µ
δ )sδ

[

fµ(cδ) − fµ(uµ
δ )

]

+Dµ(uµ
δ )

(

sδ − sδ −
∫

−
Ω
(sδ − sδ)

)

. (4.25)

Integrating (4.25) on QT and using the fact that the definition (4.23) of Dµ implies

pc(u
µ
δ )f

µ(uµ
δ ) −Dµ(uµ

δ ) = Qµ(uµ
δ ),

we obtain
∫

QT

pc(u
µ
δ )(u

µ
δ )tdxdt−

1

µ

∫

QT

Qµ(uµ
δ )∆g(u

µ
δ )dxdt = J, (4.26)

where

J :=
∫

QT

pc(u
µ
δ )sδ[f

µ(cδ) − fµ(uµ
δ )]dxdt

+
∫

QT

(

pc(u
µ
δ )f

µ(uµ
δ ) −Qµ(uµ

δ )
)(

sδ − sδ −
∫

−
Ω
(sδ − sδ)

)

dxdt.

It follows from (4.1), (4.2), (4.6), (4.8) and (3.7) that |J | ≤ C8. Substituting this into
(4.26) and also using (4.17) we obtain that

0 ≤ −1

µ

∫

QT

∇Qµ(uµ
δ ).∇(g(uµ

δ ))dxdt ≤ C9. (4.27)

Furthermore we remark that
1

µ
fµ(uµ

δ ) ≥
kw(um)

2
,
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which together with (4.27) and the fact that ∇Qµ(uµ
δ ) = fµ(uµ

δ )∇pc(u
µ
δ ) yields

0 ≤ −
∫

QT

∇pc(u
µ
δ )∇(g(uµ

δ ))dxdt ≤ C10. (4.28)

By the definition (2.10) of ζ , we have −∇pc(u
µ
δ )∇g(uµ

δ ) = |∇ζ(uµ
δ )|2. This together with

(4.28) implies (4.11) and (4.12), which in view of (4.4) gives (4.13). This completes the
proof of Lemma 4.1.

In what follows we give estimates of differences of space translates of pµ
δ and g(uµ

δ ). We
set for r ∈ IR+ sufficiently small:

Ωr = {x ∈ Ω, B(x, 2r) ⊂ Ω}.

Lemma 4.2 Let (uµ
δ , p

µ
δ ) be a solution of Problem (Sµ

δ ); there exists a positive constant

C such that
∫ T

0

∫

Ωr

∣

∣

∣

∣

pµ
δ (x+ ξ, t) − pµ

δ (x, t)
∣

∣

∣

∣

2

(x, t)dxdt ≤ Cξ2 (4.29)

and
∫ T

0

∫

Ωr

∣

∣

∣

∣

g(uµ
δ )(x+ ξ, t) − g(uµ

δ )(x, t)

∣

∣

∣

∣

2

dxdt ≤ Cξ2, (4.30)

where ξ ∈ IRN and |ξ| ≤ 2r.

Proof: The inequalities (4.29) and (4.30) follow from (4.10) and (4.13) respectively.

Next we estimate differences of time translates of g(uµ
δ ).

Lemma 4.3 Let (uµ
δ , p

µ
δ ) be a solution of Problem (Sµ

δ ) then there exists a positive con-

stant C such that

∫ T−τ

0

∫

Ω
[g(uµ

δ )(x, t+ τ) − g(uµ
δ )(x, t)]

2dxdt ≤ Cτ, (4.31)

for all τ ∈ (0, T ).

Proof: We set

A(t) :=
∫

Ω
[g(uµ

δ )(x, t+ τ) − g(uµ
δ )(x, t)]

2dx.

Since g is a non decreasing Lipschitz continuous function with the Lipschitz constant Cg

we have that

A(t) ≤ Cg

∫

Ω
[g(uµ

δ (x, t+ τ)) − g(uµ
δ (x, t))][u

µ
δ (x, t+ τ) − uµ

δ (x, t)]dx
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≤ Cg

∫

Ω
[g(uµ

δ (x, t+ τ)) − g(uµ
δ (x, t))]

[
∫ t+τ

t
(uµ

δ )t(x, θ)dθ
]

dx

≤ Cg

∫

Ω

∫ t+τ

t

[

g(uµ
δ (x, t+ τ)) − g(uµ

δ (x, t))
]

[

div(kw(uµ
δ )∇pµ

δ ) + fµ(cδ)sδ − fµ(uµ
δ )

(

sδ +
∫

−
Ω
(sδ(y) − sδ(y))dy

)]

(x, θ)dθdx,

where we have used (3.1). Integrating by parts this gives

A(t) ≤ Cg

{
∫ t+τ

t

∫

Ω

∣

∣

∣

∣

kw(uµ
δ )(x, θ)∇pµ

δ (x, θ)∇g(uµ
δ )(x, t+ τ)

∣

∣

∣

∣

dxdθ

+
∫ t+τ

t

∫

Ω

∣

∣

∣

∣

kw(uµ
δ )(x, θ)∇pµ

δ (x, θ)∇g(uµ
δ )(x, t)

∣

∣

∣

∣

dxdθ

+
∣

∣

∣

∣

∫

Ω

[

g(uµ
δ )(x, t+ τ) − g(uµ

δ )(x, t)
]

K(x, t, τ)dx
∣

∣

∣

∣

}

, (4.32)

where

K(x, t, τ) :=
∫ t+τ

t

(

fµ(cδ(x, θ))sδ(x) − fµ(uδ(x, θ))
[

sδ(x) +
∫

−
Ω
(sδ(y) − sδ(y))dy

])

dθ.

(4.33)
Next we estimate the right hand side of (4.32). Using (4.3) we have that

∫ t+τ

t

∫

Ω

∣

∣

∣

∣

kw(uµ
δ )(x, θ)∇pµ

δ (x, θ)∇g(uµ
δ )(x, t+ τ)

∣

∣

∣

∣

dxdθ

≤ 1

2

(
∫ t+τ

t

∫

Ω
|∇pµ

δ (x, θ)|2dxdθ +
∫ t+τ

t

∫

Ω
|∇g(uµ

δ )(x, t+ τ)|2dxdθ
)

≤ 1

2

(
∫ t+τ

t

∫

Ω
|∇pµ

δ (x, θ)|2dxdθ + τ
∫

Ω
|∇g(uµ

δ )(x, t+ τ)|2dx
)

. (4.34)

Similarly we have that

∫ t+τ

t

∫

Ω

∣

∣

∣

∣

kw(uµ
δ )(x, θ)∇pµ

δ (x, θ)∇g(uµ
δ )(x, t)

∣

∣

∣

∣

dxdθ

≤ 1

2

(
∫ t+τ

t

∫

Ω
|∇pµ

δ (x, θ)|2dxdθ + τ
∫

Ω
|∇g(uµ

δ )(x, t)|2dx
)

. (4.35)

Moreover using (4.1) and (4.2) we obtain from the definition (4.33) of K that

|K(x, t, τ)| ≤
∫ t+τ

t

[

|sδ| + |sδ| +
∫

−
Ω
|sδ − sδ|dx

]

dθ ≤
[

|sδ| + |sδ| +
∫

−
Ω
|sδ − sδ|dx

]

τ.

This together with (3.7) and the fact that the function g(uµ
δ ) is bounded uniformly on µ

and δ yields
∣

∣

∣

∣

∫

Ω

[

g(uµ
δ )(x, t+ τ) − g(uµ

δ )(x, t)
]

K(x, t, τ)
∣

∣

∣

∣

dx ≤ C̃τ. (4.36)
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Substituting (4.34), (4.35) and (4.36) into (4.32) we deduce that

A(t) ≤ Cg

(
∫ t+τ

t

∫

Ω
|∇pµ

δ (x, θ)|2dxdθ +
τ

2

∫

Ω
|∇g(uµ

δ )(x, t+ τ)|2dx

+
τ

2

∫

Ω
|∇g(uµ

δ )(x, t)|2dx+ C̃τ
)

,

which we integrate on [0, T − τ ] to obtain

∫ T−τ

0
A(t)dt ≤ Cg

(
∫ T−τ

0

∫ t+τ

t

∫

Ω
|∇pµ

δ (x, θ)|2dxdθdt+ τ
∫ T

0

∫

Ω
|∇g(uµ

δ )|2dxdt+ C̃τT
)

≤ Cg

(

τ
∫ T

0

∫

Ω
|∇pµ

δ (x, θ)|2dxdθ + τ
∫ T

0

∫

Ω
|∇g(uµ

δ )|2dxdt+ C̃τT
)

.

In view of (4.10) and (4.13) we deduce (4.31), which completes the proof of Lemma 4.3.

5 Convergence as δ ↓ 0.

Letting δ tend to 0, we deduce from the estimates given in Lemmas 4.1 and 4.2 the
existence of a weak solution of Problem (Sµ). More precisely, we have the following
result,

Lemma 5.1 There exists a weak solution (uµ, pµ) of Problem (Sµ), which satisfies

∫ T

0

∫

Ω

[

ka(u
µ)

]2[

∇pµ + ∇pc(u
µ)

]2

dxdt ≤ Cµ, (5.1)

∫ T

0

∫

Ω
|∇pµ|2dxdt ≤ C, (5.2)

∫ T

0

∫

Ω
|∇g(uµ)|2dxdt ≤ C, (5.3)

∫ T

0

∫

Ωr

[g(uµ)(x+ ξ, t) − g(uµ)(x, t)]2dxdt ≤ Cξ2, (5.4)

where ξ ∈ IRN and |ξ| ≤ 2r. Moreover the following estimate of differences of time

translates holds

∫ T−τ

0

∫

Ω
[g(uµ)(x, t+ τ) − g(uµ)(x, t)]2dxdt ≤ Cτ, (5.5)

for all τ ∈ (0, T ).
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Proof: We deduce from (4.10), (4.30) and (4.31) that there exist functions ĝµ and pµ and
a subsequence ((uµ

δn
, pµ

δn
))n∈N of weak solutions of Problem (Sµ

δn
) such that

(g(uµ
δn

))n∈N tends to ĝµ strongly in L2(QT ), (5.6)

(pµ
δn

)n∈N tends to pµ weakly in L2(0, T ;H1(Ω)),

as δn tends to zero. Thus for a subsequence, which we denote again by δn, we have that

(g(uµ
δn

))n∈N tends to ĝµ for almost (x, t) ∈ QT . (5.7)

Using the fact that g is bijective we deduce that

(uµ
δn

)n∈N tends to uµ := g−1(ĝµ) strongly in L2(QT ) and almost everywhere in QT ,
(5.8)

as δn tends to zero. Moreover we have in view of (4.13) and (5.6) that ∇g(uµ
δn

) tends to
∇g(uµ) weakly in L2(QT ) as δn ↓ 0, so that by the definition (2.9) of g

ka(u
µ
δn

)∇pc(u
µ
δn

) tends to ka(u
µ)∇pc(u

µ) weakly in L2(QT ) as δn ↓ 0. (5.9)

Letting δn tend to 0 in (3.23) we deduce that

um ≤ uµ(x, t) ≤ 1. (5.10)

Moreover we deduce from (3.3) that
∫

Ω
pµ(x, t)dx = 0, for almost every t ∈ (0, T ). (5.11)

Multiplying (3.1) by ϕ ∈ C, integrating by parts and letting δn tend to 0 we obtain

∫ T

0

∫

Ω
uµϕtdxdt =

∫ T

0

∫

Ω
kw(uµ)∇pµ.∇ϕdxdt−

∫ T

0

∫

Ω

(

fµ(c)s− fµ(uµ)s
)

ϕdxdt

−
∫

Ω
u0(x)ϕ(x, 0)dx, (5.12)

where we have used that uδ
0 tends to u0 in L2(Ω) and that cδ, sδ and sδ tend respectively

to c, s and s in L2(QT ) as δ ↓ 0. Similarly, multiplying (3.2) by ϕ ∈ C, integrating by
parts and letting δn tend to 0 we deduce that

∫ T

0

∫

Ω

(

1 − uµ
)

ϕtdxdt =
1

µ

∫ T

0

∫

Ω

(

ka(u
µ)∇pµ + ∇g(uµ)

)

.∇ϕdxdt

−
∫ T

0

∫

Ω

(

(1 − fµ(c))s− (1 − fµ(uµ))s
)

ϕdxdt−
∫

Ω

(

1 − u0(x)
)

ϕ(x, 0)dx, (5.13)

which since ∇g(uµ) = ka(u
µ)∇pc(u

µ) coincides with (2.15). Next we prove (5.1). We first
check that

ka(u
µ
δn

)∇pµ
δn

tends to ka(u
µ)∇pµ weakly in L2(QT ), (5.14)
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as δn tends to 0. Let ϕ ∈ L2(QT ), we have that

∣

∣

∣

∣

∫

QT

(

ka(u
µ
δn

)∇pµ
δn
− ka(u

µ)∇pµ
)

ϕ dxdt
∣

∣

∣

∣

≤ |I1
δn
| + |I2

δn
|, (5.15)

where

I1
δn

:=
∫

QT

(

ka(u
µ
δn

) − ka(u
µ)

)

∇pµ
δn
ϕ dxdt

and

I2
δn

=
∫

QT

ka(u
µ)ϕ

(

∇pµ
δn

−∇pµ
)

dxdt.

Using the fact that ∇pµ
δn

converges to ∇pµ weakly in L2(QT ) as δn ↓ 0, we deduce, since
ka(u

µ)ϕ ∈ L2(QT ), that
|I2

δn
| tends to 0 as δn ↓ 0. (5.16)

Moreover we have by (4.10) that

|I1
δn
| ≤

(
∫

QT

∣

∣

∣

∣

ka(u
µ
δn

) − ka(u
µ)

∣

∣

∣

∣

2

ϕ2dxdt
)1/2( ∫

QT

|∇pµ
δn
|2dxdt

)1/2

≤ C
(

∫

QT

∣

∣

∣

∣

ka(u
µ
δn

) − ka(u
µ)

∣

∣

∣

∣

2

ϕ2dxdt
)1/2

.

Since

∣

∣

∣

∣

ka(u
µ
δn

) − ka(u
µ)

∣

∣

∣

∣

2

ϕ2 ≤ 4ϕ2 and since ka(u
µ
δn

) tends to ka(u
µ) almost everywhere,

we deduce from the Dominated Convergence Theorem that I1
δn

tends to 0 as δn ↓ 0. This
with (5.16) implies (5.14), which with (5.9) gives that

ka(u
µ
δn

)
[

∇pµ
δn

+ ∇pc(u
µ
δn

)
]

tends to ka(u
µ)

[

∇pµ + ∇pc(u
µ)

]

weakly in L2(QT ). (5.17)

The functional v 7→
∫

QT

v2dxdt is convex and lower semi continuous from L2(QT ) to R

therefore it is also weakly l.s.c. (see [2] Corollary III.8) and thus we deduce from (4.4),
(4.9) and (5.17) that

∫

QT

[

ka(u
µ)

]2[

∇pµ + ∇pc(u
µ)

]2

dxdt ≤ lim infδn↓0

∫

QT

[

ka(u
µ
δn

)
]2[

∇pµ
δn

+ ∇pc(u
µ
δn

)
]2

dxdt

≤ lim infδn↓0

∫

QT

ka(u
µ
δn

)
[

∇pµ
δn

+ ∇pc(u
µ
δn

)
]2

dxdt

≤ Cµ,

which coincides with (5.1). Finally, we deduce respectively from (4.10), (4.13), (4.30) and
(4.31) the estimates (5.2), (5.3), (5.4) and (5.5). This concludes the proof of Lemma 5.1.
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6 Convergence as µ ↓ 0.

The goal of this section is to prove Theorem 2.3. We first deduce from the estimates
(5.2), (5.4) and (5.5) that there exists a couple of functions (u, p) and a subsequence
((uµn, pµn))n∈N such that

(uµn)n∈N tends to u strongly in L2(QT ) and almost everywhere in QT ,
(pµn)n∈N tends to p weakly in L2(0, T ;H1(Ω)),

as µn tends to zero. Moreover since

0 ≤ fµn(uµn) ≤ 1,

there exists a function f̂ ∈ L2(QT ) with 0 ≤ f̂ ≤ 1 and a subsequence (fµnm (uµnm ))nm∈N

of (fµn(uµn))n∈N such that (fµnm (uµnm ))nm∈N tends to f̂ weakly in L2(QT ) as µnm
tends

to zero. Moreover we deduce respectively from (5.10) and (5.11) that 0 ≤ u ≤ 1 and that
∫

Ω
p(x, t)dx = 0, for almost every t ∈ (0, T ),

which gives (2.18). As it is done in Section 6 in the proof of (5.1), one can first check that

ka(u
µnm )(∇pµnm + ∇pc(u

µnm )) tends to ka(u)(∇p+ ∇pc(u)) weakly in L2(QT ),

as µnm
↓ 0 and then deduce from (5.1) the estimate (2.17). Furthermore letting µnm

tends
to zero into (5.12) we obtain, since limµnm↓0 f

µnm (s) = χ(s) for all s ∈ [0, 1], that

∫ T

0

∫

Ω
uϕtdxdt =

∫ T

0

∫

Ω
kw(u)∇p.∇ϕdxdt−

∫ T

0

∫

Ω

(

χ(c)s− f̂s
)

ϕdxdt

−
∫

Ω
u0(x)ϕ(x, 0)dx,

which coincides with (2.16) and concludes the proof of Theorem 2.3.

7 Numerical simulations

7.1 The saturation equation and the numerical algorithm

In this section we present numerical simulations in one space dimension. To that purpose
we apply the finite volume method, which we present below. To begin with, we rewrite the
equations (2.1) and (2.2) in the case that Ω = (0, 1); this gives for (x, t) ∈ (0, 1) × (0, T )

uµ
t = ∂x

(

kw(uµ)∂xp
µ
)

+ fµ(c)s− fµ(uµ)s, (7.1)

(1 − uµ)t = ∂x

(

1

µ
ka(u

µ)∂x(p
µ + pc(u

µ))
)

+ (1 − fµ(c))s− (1 − fµ(uµ))s. (7.2)
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Adding up both equations and using the boundary conditions (2.4) and (2.5) we obtain

∂xp
µ = − ka(u

µ)

ka(u
µ) + µkw(uµ)

∂x(pc(u
µ)). (7.3)

Substituting (7.3) into (7.1) yields

uµ
t = −∂x

[

fµ(uµ)
ka(u

µ)

µ
∂x(pc(u

µ))
]

+ fµ(c)s− fµ(uµ)s. (7.4)

Moreover we deduce from (7.3) and the definition (2.12) of Rµ that ∂xp
µ = −∂x(Rµ(uµ)),

so that in view of (2.3) we have

pµ(x, t) = −Rµ(uµ)(x, t) +
∫ 1

0
Rµ(uµ)(y, t)dy. (7.5)

In the sequel, we compare numerically the solution uµ of (7.4) with the solution u of the
limit equation in the case that u < 1, namely

ut = −∂x

(

kw(u)∂xpc(u)
)

+ χ(c)s̄. (7.6)

We discretize the time evolution equation (7.4) together with the initial condition and
the homogeneous Neumann boundary condition. The time explicit finite volume scheme
is defined by the following equations in which K > 0 and J > 0 denote respectively the
time and the space step.
(i) The discrete initial condition is given for i ∈ {0, ..., [1/J ]} by

[Uµ]0i = uµ(iJ , 0). (7.7)

(ii) For i ∈ {0, ..., [1/J ]} and for n ∈ {0, ..., [T/K]} the discrete equation is given by

1

K

(

[Uµ]n+1
i − [Uµ]ni

)

= [F µ]ni+1 − [F µ]ni + fµ(Cn
i )S

n
i − fµ([Uµ]ni )Sn

i , (7.8)

where

[F µ]ni = − 1

J

(

pc([U
µ]ni+1) − pc([U

µ]ni

)

kw([Uµ]ni+1)ka([U
µ]ni )

µkw([Uµ]ni+1) + ka([U
µ]ni )

.

(iii) For n ∈ {0, ..., [T/K]} the discrete Neumann condition is defined by

[F µ]n0 = 0 and [F µ]n[1/J ] = 0. (7.9)

The numerical scheme (7.7)-(7.9) allows to build an approximate solution, uJ ,K : [0, 1] ×
[0, T ] → IR for all i ∈ {0, ..., [1/J ]} and all n ∈ {0, ..., [T/K]}, which is given by

uJ ,K(x, t) = un
i , for all x ∈ (iJ , (i+ 1)J ] and for all t ∈ (nK, (n+ 1)K]. (7.10)
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In order to also compute the pressures, we propose the following discrete equation corre-
sponding to (7.5)

[P µ]ni = −R([Uµ]ni ) + JΣ
[1/J ]
j=1 R([Uµ]nj ). (7.11)

Finally, setting pµ
g (x, t) = pµ(x, t) + pc(u

µ)(x, t) we deduce that

([P µ
g ])n

i = −R([Uµ]ni + pc([U
µ]ni ) + JΣ

[1/J ]
j=1 R([Uµ]nj ), (7.12)

for all i ∈ {0, ..., [1/J ]} and all n ∈ {0, ..., [T/K]}. Similarly we propose a finite volume
scheme corresponding to the equation (7.6), namely

1

K

(

Un+1
i − Un

i

)

= F n
i+1 − F n

i + χ(Cn
i )S

n
i , (7.13)

where

F n
i = − 1

J

(

pc(U
n
i+1) − pc(U

n
i

)

kw(Un
i+1),

for all (i, n) ∈ {0, ..., [1/J ]} × {0, ..., [T/K]}.

7.2 Numerical tests

For the numerical computation we take µ = 10−8, pc(z) = 0, 1
√

1 − z, ka(z) = (1 − z)2,
kw(z) =

√
z and s(z) = δ0(z), s(z) = δ1(z), where δa is the Dirac function at the point a.

Furthermore uµ is given by the line with crosses, pµ
g is given by the lines with diam and

the limit function u corresponds to the continuous line.

First test case: The case that c = 0, 7 and u0 = 1 on [0, 1]. We obtain at t = 0, 01 the
following pictures

1.0

0.7

0.5

0.50.40.3 0.8 0.9

-0.5

0.0

0.6 1.00.20.10.0

1.5

-1.0

Figure 1 : t=0,01
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We note that, for µ small, the functions u and uµ are very close. Here we only start
with water and inject a mixture of water and air. The air immediately invades the whole
domain. Figure 1 illustrates the result which we proved in this paper, namely that uµ

tends to the solution u of the limit equation (7.6) as µ tends to 0 and moreover that the
pressure pµ

a is constant. This is indeed the case since u < 1.

Second test case: The case that c = 0, 7 and u0(x) =

{

0, 1 on [0, 1/3]
0, 7 on (1/3, 1]

. We obtain

the following pictures for t = 0, 01 and for t = 0, 1 respectively
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0.3

0.2

0.1

0.0
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Figure 2 : t=0,01
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0.2

0.1

0.0
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Figure 3 : t=0,1
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The injection of a mixture of water and air (c = 0.7) takes place in a region of low water
saturation. We first remark that both functions uµ and u evolve very slowly. Here again
we have that u(x, t) < 1 for all (x, t) ∈ (0, 1) × (0, T ) and we remark that the graphs of
the two functions uµ and u nearly coincide.

Third test case: The case that c = 1 and u0(x) =

{

0, 1 on [0, 1/3]
0, 7 on (1/3, 1]

. We obtain the

following pictures for t = 0, 01 and for t = 0, 1 respectively
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Figure 4 : t=0,01
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Figure 5 : t=0,1

Here only water is injected; note that the saturation uµ evolves rather fast.
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[3] Z. Chen, Degenerate two-phase incompressible flow. I. Existence, uniqueness and
regularity of a weak solution, J. Differential Equations, 171 (2), (2001), pp. 203-
232.

[4] C.J. Van Duijn and L.A. Peletier, Nonstationary filtration in partially satured porous
media,Arch. Rat. Mech. Anal., 78 (2), (1982), pp. 173-198.

[5] R. Eymard, M. Gutnic and D. Hilhorst, The finit volume method for an elliptic-
parabolic equation, Acta Mathematica Universitatis Comenianae, 67, (1998), pp.
181-195.

[6] J. Hulshof and N. Wolanski, Monotone flows in n-dimensional partially saturated
porous media: Lipschitz-continuity of the interface, Arch. Rat. Mech. Anal., 102
(4), (1988), pp. 287-305.

[7] O.A. Ladyhenskaya, N.N. Ural’ceva, Linear and Quasilinear Elliptic Equations,
American Mathematical Society, (1964).

[8] O.A. Ladyhenskaya, V.A. Solonnikov, N.N. Ural’ceva, Linear and Quasilinear Equa-

tions of Parabolic Type, American Mathematical Society, (1968).

[9] F. Otto, L1-concentration and uniqueness for quasilinear elliptic-parabolic equations,
J. Diff. Eq., 131, (1996), pp. 20-38.

[10] I.S. Pop, Error estimates for a time discretization method for the Richard’s equation,
Computational Geosciences, 6 (2), (2002), pp. 141-160.

[11] F.A. Radu, I.S. Pop, P. Knabner, Order of convergence estimates for an Euler im-
plicit, mixed finite element discretization of Richards’ equation, SIAM Journal on

Numerical Analysis, 42 (4), (2004), pp. 1452-1478.

24


