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Abstract

Random increasingk-trees represent an interesting, useful class of strongly dependent graphs
for which analytic-combinatorial tools can be successfully applied. We study in this paper a notion
called connectivity-profile and derive asymptotic estimates for it; some interesting consequences
will also be given.

1 Introduction

A k-tree is a graph reducible to ak-clique by successive removals of a vertex of degreek whose neigh-
bors form ak-clique. This class ofk-trees has been widely studied in combinatorics (for enumeration
and characteristic properties [5, 29]), in graph algorithms (many NP-complete problems on graphs can
be solved in polynomial time onk-trees [2]), and in many other fields wherek-trees were naturally en-
countered (see [2]). By construction, vertices in such structures are remarkably close, reflecting a highly
strong dependent graph structure, and they exhibit with no surprise the scale-free property [20], yet
somewhat unexpectedly many properties of randomk-trees can be dealt with by standard combinatorial,
asymptotic and probabilistic tools, thus providing an important model of synergistic balance between
mathematical tractability and the predictive power for practical-world complex networks.

While the term “k-trees” is not very informative and may indeed be misleadingto some extent, they
stand out by their underlying tree structure, related to their recursive definition, which facilitates the
analysis of the properties and the exploration of the structure. Indeed, fork = 1, k-trees are just trees,
and fork ≥ 2 a bijection [11] can be explicitly defined betweenk-trees and a non trivial simple family
of trees.

The process of generating ak-tree begins with ak-clique, which is itself ak-tree; then thek-tree
grows by linking a new vertex to every vertex of an existingk-clique, and to these vertices only. The
same process continues; see Figure1 for an illustration. Such a simple process is reminiscent ofseveral
other models proposed in the literature such ask-DAGs [13], random circuits [3], preferential attach-
ment [4, 7, 21], and many other models (see, for example, [6, 17, 25]). While the construction rule in
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each of these models is very similar, namely, linking a new vertex tok existing ones, the mechanism of
choosing the existingk vertices differs from one case to another, resulting in verydifferent topology and
dynamics.

① ② ③ ④ ⑤

Figure 1:The first few steps of generating a3-tree and a4-tree. Obviously, these graphs show the high
connectivity ofk-trees.

Restricting to the procedure of choosing ak-clique each time a new vertex is added, there are several
variants ofk-trees proposed in the literature depending on the modelingneeds. Sok-trees can be either
labeled [5], unlabeled [22], increasing [32], planar [32], non-planar [5], or plane [26], etc.

For example, the family of random Apollonian networks, corresponding to planar 3-trees, has re-
cently been employed as a model for complex networks [1, 32]. In these frameworks, since the exact
topology of the real networks is difficult or even impossibleto describe, one is often led to the study
of models that present similarities to some observed properties such as the degree of a node and the
distance between two nodes of the real structures.

For the purpose of this paper, we distinguish between two models of random labeled non-planek-
trees; by non-plane we mean that we consider these graphs as given by a set of edges (and not by its
graphical representation):

– random simply-generatedk-trees, which correspond to a uniform probability distribution onthis
class ofk-trees, and

– random increasingk-trees, where we consider the iterative generation process: at each time step,
all existingk-cliques are equally likely to be selected and the new vertexis added with a label
which is greater than the existing ones.

The two models are in good analogy to the simply-generated family of trees of Meir and Moon [24]
marked specially by the functional equationf(z) = zΦ(f(z)) for the underlying enumerating generat-
ing function, and the increasing family of trees of Bergeronet al. [10], characterized by the differential
equationf ′(z) = Φ(f(z)). Very different stochastic behaviors have been observed for these families of
trees. While similar in structure to these trees, the analytic problems on randomk-trees we are dealing
with here are however more involved because instead of a scalar equation (either functional, algebraic,
or differential), we now have a system of equations.

It is known that random trees in the family of increasing trees are often less skewed, less slanted in
shape, a typical description being the logarithmic order for the distance of two randomly chosen nodes;
this is in sharp contrast to the square-root order for randomtrees belonging to the simply-generated
family; see for example [10, 14, 19, 23, 24]. Such a contrast has inspired and stimulated much re-
cent research. Indeed, the majority of random trees in the literature of discrete probability, analysis
of algorithms, and random combinatorial structures are either log n-trees or

√
n-trees,n being the tree
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Properties
Model

Simply-generated structures Increasing structures

Combinatorial description Ts = Set(Z × T k
s ) T = Set(Z� × T k)

Generating function Ts(z) = exp(zT k
s (z)) T ′(z) = T k(z)

Expansion near singularity Ts(z) = τ − h
√

1 − z/ρ + . . . T (z) = (1 − kz)−1/k

Mean distance of nodes O(
√

n) O(log n)

Degree distribution Power law with exp. tails Power law [20]
Root-degree distribution Power law with exp. tails Stable law (Theorem7)

Expected Profile Rayleigh limit law Gaussian limit law (8)

Table 1:The contrast of some properties between random simply-generatedk-trees and random increas-
ing k-trees. HereZ denotes a node andZ� means a marked node.

size. While the class of
√

n-trees have been extensively investigated by probabilistsand combinatorial-
ists, log n-trees are comparatively less addressed, partly because most of them were encountered not in
probability or in combinatorics, but in the analysis of algorithms.

Table1 presents a comparison of the two models: the classesTs andT , corresponding respectively
to simply-generatedk-trees and increasingk-trees. The results concerning simplek-trees are given
in [11, 12], and those concerning increasingk-trees are derived in this paper (except for the power
law distribution [20]). We start with the specification, described in terms of operators of the symbolic
method [18]. A structure ofTs is a set ofk structures of the same type, whose roots are attached
to a new node:Ts = Set(Z × T k

s ), while a structure ofT is an increasing structure, in the sense
that the new nodes get labels that are smaller than those of the underlying structure (this constraint is
reflected by the box-operator)T = Set(Z� × T k). The analytic difference immediately appears in
the enumerative generating functions that translate the specifications: the simply-generated structures
are defined byTs(z) = exp(zT k

s (z)) and corresponding increasing structures satisfy the differential
equationT ′(z) = T k(z). These equations lead to a singular expansion of the square-root type in the
simply-generated model, and a singularity in(1 − kz)−1/k in the increasing model. Similar analytic
differences arise in the bivariate generating functions ofshape parameters.

The expected distance between two randomly chosen verticesor the average path length is one of the
most important shape measures in modeling complex networksas it indicates roughly how efficient the
information can be transmitted through the network. Following the same

√
n-vs-log n pattern, it is of

order
√

n in the simply-generated model, butlog n in the increasing model. Another equally important
parameter is the degree distribution of a random vertex: itslimiting distribution is a power law with
exponential tails in the simply-generated model of the formd−3/2ρd

k, in contrast to a power-law in the
increasing model of the formd−1−k/(k−1), d denoting the degree [20]. As regards the degree of the root,
its asymptotic distribution remains the same as that of any vertex in the simply-generated model, but in
the increasing model, the root-degree distribution is different, with an asymptotic stable law (which is
Rayleigh in the casek = 2); see Theorem7.

Our main concern in this paper is the connectivity-profile. Recall that the profile of an usual tree is
the sequence of numbers, each enumerating the total number of nodes with the same distance to the root.
For example, the tree has the profile{1, 2, 2, 1, 3}. Profiles represent one of the richest shape
measures and they convey much information regarding particularly the silhouette. On random trees, they
have been extensively studied recently; see [8, 15, 16, 19, 21, 23, 27]. Sincek-trees have many cycles for
k ≥ 2, we call the profile of the transformed tree (see next section) the connectivity-profileas it measures
to some extent the connectivity of the graph. Indeed this connectivity-profile corresponds to the profile
of the “shortest-path tree” of ak-tree, as defined by Proskurowski [28], which is nothing more than the
result of a Breadth First Search (BFS) on the graph. Moreover, in the domain of complex networks,
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Figure 2:A 2-tree (left) and its corresponding increasing tree representation (right).

this kind of BFS trees is an important object; for example, itdescribes the results of thetraceroute
measuring tool [30, 31] in the study of the topology of the Internet.

We will derive precise asymptotic approximations to the expected connectivity-profile of random in-
creasingk-trees, the major tools used being based on the resolution ofa system of differential equations
of Cauchy-Euler type (see [9]). In particular, the expected number of nodes at distanced from the root
follows asymptotically a Gaussian distribution, in contrast to the Rayleigh limit distribution in the case
of simply-generatedk-trees. Also the limit distribution of the number of nodes with distanced to the
root will be derived whend is bounded. Note that whend = 1, the number of nodes at distance1 to the
root is nothing but the degree of the root.

This paper is organized as follows. We first present the definition and combinatorial specifica-
tion of random increasingk-trees in Section2, together with the enumerative generating functions, on
which our analytic tools will be based. We then present two asymptotic approximations to the expected
connectivity-profile in Section3, one ford = o(log n) and the other ford → ∞ andd = O(log n). In-
teresting consequences of our results will also be given. The limit distribution of the connectivity-profile
in the range whend = O(1) is then given in Section4.

2 Random increasingk-trees and generating functions

Sincek-trees are graphs full of cycles and cliques, the key step in our analytic-combinatorial approach is
to introduce a bijection betweenk-trees and a suitably defined class of trees (bona fidetrees!) for which
generating functions can be derived. This approach was successfully applied to simply-generated family
of k-trees in [11], which leads to a system of algebraic equations. The bijection argument used there
can be adaptedmutatis mutandishere for increasingk-trees, which then yields a system of differential
equations through the bijection with a class of increasing trees [10].

Increasing k-trees and the bijection. Recall that ak-clique is a set ofk mutually adjacent vertices.

Definition 1 An increasingk-tree is defined recursively as follows. Ak-clique in which each vertex gets
a distinct label from{1, . . . , k} is an increasingk-tree ofk vertices. An increasingk-tree withn > k
vertices is constructed from an increasingk-tree withn − 1 vertices by adding a vertex labeledn and
by connecting it by an edge to each of thek vertices in an existingk-clique.

By random increasingk trees, we assume that all existingk-cliques are equally likely each time a
new vertex is being added. One sees immediately that the number Tn of increasingk-trees ofn + k
nodes is given byTn =

∏

0≤i<n(ik + 1).
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Note that if we allow any permutation on all labels, we obtainthe class of simply-generatedk-trees
where monotonicity of labels along paths fails in general.

Combinatorially, simply-generatedk-trees are in bijection [11] with the family of trees specified by
Ks = Zk × Ts, whereTs = Set(Z × T k

s ). Given a rootedk-treeG of n vertices, we can transformG
into a treeT , with the root node labeled{1, . . . , k}, by the following procedure. First, associate a white
node to eachk-clique ofG and a black node to each(k + 1)-clique ofG. Then add a link between each
black node and all white nodes associated to thek-cliques it contains. Each black node is labeled with
the only vertex not appearing in one of the black nodes above it or in the root. The last step in order
to complete the bijection is to order thek vertices of the root and propagate this order to thek sons of
each black node. This constructs a tree from ak-tree (see Figure2); conversely, we can obtain thek-tree
through a simple traversal of the tree.

Such a bijection translates directly to increasingk-trees by restricting the class of corresponding
trees to those respecting a monotonicity constraint on the labels, namely, on any path from the root
to a leaf the labels are in increasing order. This yields the combinatorial specification of the class of
increasing treesT = Set(Z� × T k). An increasingk-tree is just a tree inT together with the sequence
{1, . . . , k} corresponding to the labels of the root-clique1. A tree inK is thus completely determined by
its T component, givingKn+k ≡ Tn. For example figure2 shows a2-tree with19 vertices and its tree
representation with17 black nodes. In the rest of this paper we will thus focus on classT .

Generating functions. Following the bijection, we see that the complicated dependence structure of
k-trees is now completely described by the class of increasing trees specified byT = Set(Z� × T k).
For example, letT (z) :=

∑

n≥0 Tnzn/n! denote the exponential generating function of the numberTn

of increasingk-trees ofn + k vertices. Then the specification translates into the equation

T (z) = exp

(
∫ z

0
T k(x) dx

)

,

or, equivalently,T ′(z) = T k+1(z) with T (0) = 1, which is solved to be

T (z) = (1 − kz)−1/k,

we then check thatTn =
∏

0≤i<n(ik + 1).
If we mark the number of neighbors of the root-node inT by u, we obtain

T (z, u) = exp

(

u

∫ z

0
T (x)T k−1(x, u) dx

)

,

where the coefficientsn![uℓzn]T (z, u) denote the number of increasingk-trees of sizen + k with root
degree equal tok+ℓ−1. Taking derivative with respect toz on both sides and then solving the equation,
we get the closed-form expression

T (z, u) =
(

1 − u(1 − (1 − kz)1−1/k)
)−1/(k−1)

. (1)

Sincek-trees can be transformed into ordinary increasing trees, the profiles of the transformed trees
can be naturally defined, although they do not correspond to simple parameters onk-trees. While the
study of profiles may then seem artificial, the results do provide more insight on the structure of random
k-trees. Roughly, we expect that all vertices onk-trees are close, one at most of logarithmic order away
from the other. The fine results we derive provide in particular an upper bound for that.

Let Xn;d,j denote the number of nodes at distanced from j vertices of the root-clique in a random
k-tree ofn + k vertices. LetTd,j(z, u) =

∑

n≥0 TnE(uXn;d,j)zn/n! denote the corresponding bivariate
generating function.

1We callroot-cliquethe clique composed by thek vertices(1, . . . , k). The increasing nature of thek-trees guarantees that
these vertices always form a clique. We callroot-vertexthe vertex with label1.
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Theorem 1 The generating functionsTd,j ’s satisfy the differential equations

∂

∂z
Td,j(z, u) = uδd,1T j

d,j−1(z, u)T k−j+1
d,j (z, u), (2)

with the initial conditionsTd,j(0, u) = 1 for 1 ≤ j ≤ k, whereδa,b denotes the Kronecker function,
T0,k(z, u) = T (z) andTd,0(z, u) = Td−1,k(z, u).

Proof.The theorem follows from

Td,j(z, u) = exp

(

uδd,1

∫ z

0
T j

d,j−1(x, u)T k−j
d,j (x, u) dx

)

,

with Td,j(z, 1) = T (z). �

For operational convenience, we normalize allz by z/k and writeT̃ (z) := T (z/k) = (1 − z)−1/k.
Similarly, we defineT̃d,j(z, u) := Td,j(z/k, u) and have, by (2),

∂

∂z
T̃d,j(z, u) =

uδd,1

k
T̃ j

d,j−1(z, u)T̃ k−j+1
d,j (z, u), (3)

with T̃d,j(1, z) = T̃ (z), T̃0,k(z, u) = T̃ (z) andT̃d,0(z, u) = T̃d−1,k(z, u).

3 Expected connectivity-profile

We consider the expected connectivity-profileE(Xn;d,j) in this section. Observe first that

E(Xn;d,j) =
kn[zn]M̃d,j(z)

Tn
,

whereM̃d,j(z) := ∂T̃d,j(z, u)/(∂u)|u=1. It follows from (3) that

M̃ ′
d,j(z) =

1

k(1 − z)

(

(k − j + 1)M̃d,j(z) + jM̃d,j−1(z) + δd,1T̃ (z)
)

. (4)

This is a standard differential equation of Cauchy-Euler type whose solution is given by (see [9])

M̃d,j(z) =
(1 − z)−(k−j+1)/k

k

∫ z

0
(1 − x)−(j−1)/k

(

jM̃d,j−1(x) + δd,1T̃ (x)
)

dx,

sinceM̃d,j(0) = 0. Then, starting fromM̃0,k = 0, we get

M̃1,1(z) =
1

k − 1

(

1

1 − z
− 1

(1 − z)1/k

)

=
T̃ k(z) − T̃ (z)

k − 1
.

Then by induction, we get

M̃d,j(z) ∼ j

(k − 1)(d − 1)!
· 1

1 − z
logd−1 1

1 − z
(1 ≤ j ≤ k; d ≥ 1; z ∼ 1).

So we expect, by singularity analysis, that

E(Xn;d,j) ∼ Γ(1/k)
j

k − 1
· (log n)d−1

(d − 1)!
n1−1/k,

for largen and fixedd, k and1 ≤ j ≤ k. We can indeed prove that the same asymptotic estimate holds
in a larger range.
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Theorem 2 The expected connectivity-profileE(Xn;d,j) satisfies for1 ≤ d = o(log n)

E(Xn;d,j) ∼ Γ(1/k)
j

k − 1
· (log n)d−1

(d − 1)!
n1−1/k, (5)

uniformly ind, and ford → ∞, d = O(log n),

E(Xn;d,j) ∼
Γ(1/k)hj,1(ρ)ρ−dnλ1(ρ)−1/k

Γ(λ1(ρ))
√

2π(ρλ′
1(ρ) + ρ2λ′′

1(ρ)) log n
(6)

whereρ = ρn,d > 0 solves the equationρλ′
1(ρ) = d/ log n, λ1(w) being the largest zero (in real part)

of the equation
∏

1≤ℓ≤k(θ − ℓ/k) − k!w/kk = 0 and satisfiesλ1(1) = (k + 1)/k.

An explicit expression for thehj,1’s is given as follows. Letλ1(w), . . . , λk(w) denote the zeros of the
equation

∏

1≤ℓ≤k(θ − ℓ/k) − k!w/kk = 0. Then for1 ≤ j ≤ k

hj,1(w) =
j!w(w − 1)

(kλ1(w) − 1)
(

∑

1≤s≤k
1

kλ1(w)−s

)

∏

k−j+1≤s≤k+1(kλ1(w) − s)
. (7)

The theorem cannot be proved by the above inductive argumentand our method of proof consists of
the following steps. First, the bivariate generating functionsMj(z,w) :=

∑

d≥1 M̃d,j(z)wd satisfy the
linear system

(

(1 − z)
d
dz

− k − j + 1

k

)

Mj =
j

k
Mj−1 +

wT̃

k
(1 ≤ j ≤ k).

Second, this system is solved and has the solutions

Mj(z,w) =
∑

1≤j≤k

hj,m(w)(1 − z)−λm(w) − w − (w − 1)δk,j

k
T̃ (z),

where thehj,m have the same expression ashj,1 but with all λ1(w) in (7) replaced byλm(w). While
the form of the solution is well anticipated, the hard part isthe calculations of the coefficient-functions
hj,m. Third, by singularity analysis and a delicate study of the zeros, we then conclude, by saddle-point
method, the estimates given in the theorem.

Corollary 3 The expected degree of the rootE(Xn,1,j) satisfies

E(Xn,1,j) ∼ Γ(1/k)
j

k − 1
n1−1/k (1 ≤ j ≤ k).

This estimate also follows easily from (1).
Let Hk :=

∑

1≤ℓ≤k 1/ℓ denote the harmonic numbers andH
(2)
k :=

∑

1≤ℓ≤k 1/ℓ2.

Corollary 4 The expected number of nodes at distanced =
⌊

1
kHk

log n + xσ
√

log n
⌋

from the root,

whereσ =

√

H
(2)
k /(kH3

k ), satisfies, uniformly forx = o((log n)1/6),

E(Xn;d,j) ∼
ne−x2/2

√

2πσ2 log n
. (8)
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This Gaussian approximation justifies the last item corresponding to increasing trees in Table1.
Note thatλ1(1) = (k + 1)/k andα = d/ log n ∼ 1/(kHk). In this case,ρ = 1 and

ρλ′
1(ρ) =

1
∑

1≤ℓ≤k
1

λ1(ρ)− ℓ
k

,

which implies thatλ1(ρ) − 1/k − α log ρ ∼ 1.

Corollary 5 Let Hn;d,j := maxd Xn;d,j denote the height of a random increasingk-tree of n + k
vertices. Then

E(Hn) ≤ α+ log n − α+

2(λ1(α+) − 1
k )

log log n + O(1),

whereα+ > 0 is the solution of the system of equations


















1

α+
=

∑

1≤ℓ≤k

1

v − ℓ
k

,

v − 1

k
− α+

∑

1≤ℓ≤k

log

(

k

ℓ
v − 1

)

= 0.

Table2 gives the numerical values ofα+ for small values ofk. For largek, one can show thatα+ ∼

k 2 3 4 5 6

α+ 1.085480 0.656285 0.465190 0.358501 0.290847

k 7 8 9 10 20

α+ 0.244288 0.210365 0.184587 0.164356 0.077875

Table 2:Approximate numerical values ofα+.

1/(k log 2) andλ1(α+) ∼ 2.
Corollary 5 justifies that the mean distance of randomk-trees are of logarithmic order in size, as

stated in Table1.

Corollary 6 The widthWn;d,j := maxd Xn;d,j is bounded below by

E(Wn) = E(max
d

Xn,d) ≥ max
d

E(Xn,d) ≍
n√
log n

.

We may conclude briefly from all these results thatin the transformed increasing trees of random
increasingk-trees, almost all nodes are located in the levels withd = 1

kHk
log n + O(

√
log n), each

with n/
√

log n nodes.

4 Limiting distributions

With the availability of the bivariate generating functions (2), we can proceed further and derive the limit
distribution ofXn;d,j in the range whered = O(1). The case whend → ∞ is much more involved; we
content ourselves in this extended abstract with the statement of the result for boundedd.

Theorem 7 The random variablesXn;d,j , when normalized by their mean orders, converge in distribu-
tion to

Xn;d,j

n1−1/k(log n)d−1/(d − 1)!

d→ Ξd,j, (9)

8



where

E(eΞd,ju) = Γ( 1
k )

∑

m≥0

cd,j,m

m!Γ(m(1 − 1/k) + 1/k)
um

=
Γ( 1

k )

2πi

∫ (0+)

−∞

eτ τ−1/kCd,j

(

τ−1+1/ku
)

dτ,

andCd,j(u) := 1 +
∑

m≥1 cd,j,mum/m! satisfies the system of differential equations

(k − 1)uC ′
d,j(u) + Cd,j(u) = Cd,j(u)k+1−jCd,j−1(u)j (1 ≤ j ≤ k), (10)

with Cd,0 = Cd−1,k. Here the symbol
∫ (0+)
−∞

denotes any Hankel contour starting from−∞ on the real
axis, encircling the origin once counter-clockwise, and returning to−∞.

We indeed prove the convergence of all moments, which is stronger than weak convergence; also the
limit law is uniquely determined by its moment sequence.

So far only in special cases do we have explicit solution forC1,j : C1,1(u) = (1 + u)−1/(k−1) and

C1,2(u) =

{

e1/(1+u)

1+u , if k = 2;
1

1+u1/2 arctan(u1/2)
, if k = 3.

Note that the result (9) whend = 0 can also be derived directly by the explicit expression (1). In
particular, whenk = 2, the limit law is Rayleigh.
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