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Abstract

Random increasing-trees represent an interesting, useful class of strongheddent graphs
for which analytic-combinatorial tools can be succesgfapplied. We study in this paper a notion
called connectivity-profile and derive asymptotic estiesafor it; some interesting consequences
will also be given.

1 Introduction

A k-tree is a graph reducible tokaclique by successive removals of a vertex of dedreehose neigh-
bors form ak-clique. This class ok-trees has been widely studied in combinatorics (for enatizar
and characteristic properties, [29]), in graph algorithms (many NP-complete problems on gsagdn
be solved in polynomial time ok-trees P]), and in many other fields wheretrees were naturally en-
countered (se€’]). By construction, vertices in such structures are reiaalskclose, reflecting a highly
strong dependent graph structure, and they exhibit withunprise the scale-free property(], yet
somewhat unexpectedly many properties of randeimees can be dealt with by standard combinatorial,
asymptotic and probabilistic tools, thus providing an imigot model of synergistic balance between
mathematical tractability and the predictive power forgpial-world complex networks.

While the term %-trees” is not very informative and may indeed be misleadiingpme extent, they
stand out by their underlying tree structure, related tar ttecursive definition, which facilitates the
analysis of the properties and the exploration of the atrectindeed, fok = 1, k-trees are just trees,
and fork > 2 a bijection [L1] can be explicitly defined betweétrees and a non trivial simple family
of trees.

The process of generatingkatree begins with &-clique, which is itself &-tree; then the:-tree
grows by linking a new vertex to every vertex of an existiglique, and to these vertices only. The
same process continues; see Figufer an illustration. Such a simple process is reminiscersevkeral
other models proposed in the literature suctkd3AGs [13], random circuits §], preferential attach-
ment [, 7, 21], and many other models (see, for exampie,1[7, 25]). While the construction rule in
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each of these models is very similar, namely, linking a nemexeto i existing ones, the mechanism of
choosing the existing vertices differs from one case to another, resulting in déferent topology and
dynamics.

AN A

Figure 1:The first few steps of generating3dree and ad-tree. Obviously, these graphs show the high
connectivity ofc-trees.

Restricting to the procedure of choosing-alique each time a new vertex is added, there are several
variants ofk-trees proposed in the literature depending on the modakegls. Sé-trees can be either
labeled [], unlabeled ?7], increasing $7], planar [32], non-planar §], or plane pg], etc.

For example, the family of random Apollonian networks, egponding to planar 3-trees, has re-
cently been employed as a model for complex netwoiksf]. In these frameworks, since the exact
topology of the real networks is difficult or even impossilbedescribe, one is often led to the study
of models that present similarities to some observed ptiggesuch as the degree of a node and the
distance between two nodes of the real structures.

For the purpose of this paper, we distinguish between twoetsaaf random labeled non-plarke
trees; by non-plane we mean that we consider these graphgemshy a set of edges (and not by its
graphical representation):

— random simply-generatekttrees which correspond to a uniform probability distribution this
class ofk-trees, and

— random increasing:-trees where we consider the iterative generation process: attgae step,
all existing k-cliques are equally likely to be selected and the new vagedded with a label
which is greater than the existing ones.

The two models are in good analogy to the simply-generatedlyfeof trees of Meir and MoonZ44]
marked specially by the functional equatiftz) = z®(f(z)) for the underlying enumerating generat-
ing function, and the increasing family of trees of Bergeetml. [L0], characterized by the differential
equationf’(z) = ®(f(z)). Very different stochastic behaviors have been observethése families of
trees. While similar in structure to these trees, the aitahrbblems on randork-trees we are dealing
with here are however more involved because instead of arsequation (either functional, algebraic,
or differential), we now have a system of equations.

It is known that random trees in the family of increasing $raee often less skewed, less slanted in
shape, a typical description being the logarithmic ordettie distance of two randomly chosen nodes;
this is in sharp contrast to the square-root order for rantt@@s belonging to the simply-generated
family; see for examplello, 14, 19, 23, 24]. Such a contrast has inspired and stimulated much re-
cent research. Indeed, the majority of random trees in theature of discrete probability, analysis
of algorithms, and random combinatorial structures ateeelbg n-trees or,/n-trees,n being the tree
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Model . .
ode Simply-generated structures| Increasing structures

Properties
Combinatorial description] T, = Sel(Z x TF) T = Se(2U x TF)
Generating functior T.(z) = exp(2TF(2)) T'(2) = TF(2)
Expansion near singularity 7s(z) =7 — hy/1 — z/p+... | T(z) = (1 — kz)~V*
Mean distance of nodes O(yv/n) O(logn)
Degree distribution Power law with exp. tails Power law pP(]
Root-degree distribution] ~ Power law with exp. tails | Stable law (Theorerd)
Expected Profile Rayleigh limit law Gaussian limit law §)

Table 1:The contrast of some properties between random simplyrgieukk-trees and random increas-
ing k-trees. HereZ denotes a node an@™ means a marked node.

size. While the class of/n-trees have been extensively investigated by probabdistscombinatorial-
ists,log n-trees are comparatively less addressed, partly becausteofitbhem were encountered not in
probability or in combinatorics, but in the analysis of aitjums.

Tablel presents a comparison of the two models: the clagsesd 7, corresponding respectively
to simply-generated:-trees and increasing-trees. The results concerning simgldgrees are given
in [11, 17], and those concerning increasikgtrees are derived in this paper (except for the power
law distribution P0]). We start with the specification, described in terms ofrapms of the symbolic
method [L8]. A structure of7, is a set ofk structures of the same type, whose roots are attached
to a new node:7; = Se(Z x 7F), while a structure off is an increasing structure, in the sense
that the new nodes get labels that are smaller than those afrttterlying structure (this constraint is
reflected by the box-operatof) = SetZ” x 7*). The analytic difference immediately appears in
the enumerative generating functions that translate teeifspations: the simply-generated structures
are defined byl (z) = exp(zT¥(z)) and corresponding increasing structures satisfy therdiftel
equationT”’(z) = T*(z). These equations lead to a singular expansion of the sqoatraype in the
simply-generated model, and a singularity(in— kz)~'/* in the increasing model. Similar analytic
differences arise in the bivariate generating functionshafpe parameters.

The expected distance between two randomly chosen vetticks average path length is one of the
most important shape measures in modeling complex netvesriksindicates roughly how efficient the
information can be transmitted through the network. Foilmithe same/n-vs-log n pattern, it is of
ordery/n in the simply-generated model, ok » in the increasing model. Another equally important
parameter is the degree distribution of a random vertextinitising distribution is a power law with
exponential tails in the simply-generated model of the farr 2pd, in contrast to a power-law in the
increasing model of the formi—!—*/(k=1) 4 denoting the degre€(]. As regards the degree of the root,
its asymptotic distribution remains the same as that of @miex in the simply-generated model, but in
the increasing model, the root-degree distribution isedéht, with an asymptotic stable law (which is
Rayleigh in the casgé = 2); see Theorent.

Our main concern in this paper is the connectivity-profilecal that the profile of an usual tree is
the sequence of numbers, each enumerating the total nurihhedes with the same distance to the root.
For example, the tree=——= has the profild 1, 2,2, 1, 3}. Profiles represent one of the richest shape
measures and they convey much information regarding péatlg the silhouette. On random trees, they
have been extensively studied recently; sgép, 16, 19, 21, 23, 27]. Sincek-trees have many cycles for
k > 2, we call the profile of the transformed tree (see next sectimconnectivity-profilas it measures
to some extent the connectivity of the graph. Indeed thiseotivity-profile corresponds to the profile
of the “shortest-path tree” of rtree, as defined by Proskurowskid], which is nothing more than the
result of a Breadth First Search (BFS) on the graph. Moredmethe domain of complex networks,
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Figure 2:A 2-tree (left) and its corresponding increasing tree repraagion (right).

this kind of BFS trees is an important object; for examplégiscribes the results of the acer out e
measuring tool 30, 31] in the study of the topology of the Internet.

We will derive precise asymptotic approximations to theestpd connectivity-profile of random in-
creasingk-trees, the major tools used being based on the resolutiarsydtem of differential equations
of Cauchy-Euler type (seé]). In particular, the expected number of nodes at distahitem the root
follows asymptotically a Gaussian distribution, in costrto the Rayleigh limit distribution in the case
of simply-generated-trees. Also the limit distribution of the number of nodeghndistanced to the
root will be derived whenl is bounded. Note that wheh= 1, the number of nodes at distantéo the
root is nothing but the degree of the root.

This paper is organized as follows. We first present the disimiand combinatorial specifica-
tion of random increasing-trees in Sectior2, together with the enumerative generating functions, on
which our analytic tools will be based. We then present twargsotic approximations to the expected
connectivity-profile in SectioB, one ford = o(logn) and the other fotl — oo andd = O(logn). In-
teresting consequences of our results will also be given.lifiit distribution of the connectivity-profile
in the range whed = O(1) is then given in SectioA.

2 Random increasingk-trees and generating functions

Sincek-trees are graphs full of cycles and cliques, the key stepiimoalytic-combinatorial approach is
to introduce a bijection betwedntrees and a suitably defined class of trdam@ fidetrees!) for which
generating functions can be derived. This approach wagssfidly applied to simply-generated family
of k-trees in [L1], which leads to a system of algebraic equations. The Ibjeargument used there
can be adapterhutatis mutandisere for increasing-trees, which then yields a system of differential
equations through the bijection with a class of increasiags [L0)].

Increasing k-trees and the bijection. Recall that &-clique is a set ok mutually adjacent vertices.

Definition 1 An increasingk-tree is defined recursively as follows kAclique in which each vertex gets
a distinct label from{1, ..., k} is an increasing:-tree ofk vertices. An increasing-tree withn > k
vertices is constructed from an increasihgree withn — 1 vertices by adding a vertex labeledand
by connecting it by an edge to each of theertices in an existing-clique.

By random increasing: trees we assume that all existingcliques are equally likely each time a
new vertex is being added. One sees immediately that the endfbof increasingk-trees ofn + k
nodes is given by, = [[o<;,, (ik +1).
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Note that if we allow any permutation on all labels, we obthi@ class of simply-generatédtrees
where monotonicity of labels along paths fails in general.

Combinatorially, simply-generatédtrees are in bijectionl[1] with the family of trees specified by
Ks = ZF x T,, whereT, = Se{Z x 7}). Given a rooted:-tree G of n vertices, we can transford
into a treeT’, with the root node labelefll, . .., k}, by the following procedure. First, associate a white
node to eacli-clique of G and a black node to eac¢h + 1)-clique of G. Then add a link between each
black node and all white nodes associated tokttodiques it contains. Each black node is labeled with
the only vertex not appearing in one of the black nodes aliowein the root. The last step in order
to complete the bijection is to order tlhevertices of the root and propagate this order toklsons of
each black node. This constructs a tree frokateee (see Figurg); conversely, we can obtain ttetree
through a simple traversal of the tree.

Such a bijection translates directly to increasirees by restricting the class of corresponding
trees to those respecting a monotonicity constraint onahbel$, namely, on any path from the root
to a leaf the labels are in increasing order. This yields tmakinatorial specification of the class of
increasing tree§” = Se( 2" x T%). An increasing:-tree is just a tree ifil together with the sequence
{1,...,k} corresponding to the labels of the root-cliqué tree inK is thus completely determined by
its 7 component, givingC,,.» = 7,,. For example figur@ shows &-tree with19 vertices and its tree
representation with7 black nodes. In the rest of this paper we will thus focus ossIa

Generating functions. Following the bijection, we see that the complicated depend structure of
k-trees is now completely described by the class of incrgasees specified by = Se(ZD x TF).
For example, leT'(z) := )", ., 7,2"/n! denote the exponential generating function of the nuriher
of increasingk-trees ofn + k vertices. Then the specification translates into the eopiati

T(z) = exp < /O ) T" () dm> ,

or, equivalentlyI”(z) = T*+1(z) with T(0) = 1, which is solved to be
T(z) = (1—k2)~ V¥,

we then check thaf, = [],-,.,,(ik + 1).
If we mark the number of neighbors of the root-nod€ iy , we obtain

T(z,u) = exp <u /0 T(z)T* (2, u) dx) ,

where the coefficients![u‘2"]T(z,u) denote the number of increasiketrees of sizex + k with root
degree equal th+ ¢ — 1. Taking derivative with respect toon both sides and then solving the equation,
we get the closed-form expression

(1)

Sincek-trees can be transformed into ordinary increasing tréespitofiles of the transformed trees
can be naturally defined, although they do not corresponihtple parameters oh-trees. While the
study of profiles may then seem artificial, the results do idewmore insight on the structure of random
k-trees. Roughly, we expect that all verticeskotrees are close, one at most of logarithmic order away
from the other. The fine results we derive provide in paréicain upper bound for that.

Let X,,.q; denote the number of nodes at distaddeom ;j vertices of the root-clique in a random
k-tree ofn + k vertices. Letly j(z,u) = 3, <o TnE(u®m4i)2" /n! denote the corresponding bivariate
generating function. B

T(z,u) = (1 —u(l—(1- kz)lfl/k))_l/(k_l) .

We callroot-cliquethe clique composed by thievertices(1, .. ., k). The increasing nature of thietrees guarantees that
these vertices always form a clique. We cabt-vertexthe vertex with label.



Theorem 1 The generating functiong; ;'s satisfy the differential equations

0 5 j k—j+1
%Td,j('z’u) =u d’lTijfl('z’u)Td,j] (Zau), (2)

with the initial conditionsTy ;(0,u) = 1 for 1 < j < k, whereJ,; denotes the Kronecker function,
Tox(z,u) =T (2z) andTyo(z, u) = Tg—1,k(2, u).

Proof. The theorem follows from

Td,j(z’ u) = exp (u(sd’l / Tc{j—l(x’ u)TcllC;J(x> u) dI) )
0 2 2
with Ty ;(z,1) = T'(2). O
For operational convenience, we normalizezally z/k and writeT'(z) := T(z/k) = (1 — 2)~V/*,
Similarly, we definely ;(z,u) := Ty j(z/k,u) and have, byJ),

o - uddr _ . o
o Taglen) = ST ) T ), ®

with Td,j(l, z) = T(z), T07k(z,u) = T(z) andj’cw(z,u) = Td,l,k(z,u).

3 Expected connectivity-profile

We consider the expected connectivity-profileX,. ;) in this section. Observe first that

k" [2"] Ma,;(2)
E(Xna,5) = T—n]’
whereMy ;(2) := 0T, j(z,u)/(0u)|u=1. It follows from (3) that

Mall,j(z) = ﬁ ((k —j+ )My j(2) + iMgj-1(2) + 5d,1T(2)> - 4)

This is a standard differential equation of Cauchy-Eulgetywhose solution is given by (seg)
(1 — z)~th—i+1
k

- )k oz ) - -
Mgj(z) = /0 (1 —z)~UD/* (]‘Md,jfl(w) + 5d,1T(90)> dz,

sinceM, ;(0) = 0. Then, starting from\Z, . = 0, we get

i 1 1 1 _ TH) = T(2)
M1,1(Z)—k_1(1_2_(1_2)1/k>_ k—1 '

Then by induction, we get

J 1 a1 _1
h—Dd—1)! 1-2

So we expect, by singularity analysis, that

Mg ;(2) ~ (1<j<kd>1l;z~1).

j (lognd*1 _
B(Xts) ~ T/ - e

for largen and fixedd, k and1 < j < k. We can indeed prove that the same asymptotic estimate holds
in a larger range.



Theorem 2 The expected connectivity-profi X,,.q ;) satisfies forl < d = o(logn)

- d—1
B(Xtg) ~ D1 /1) - Bt 1 ©

uniformly ind, and ford — oo, d = O(log n),

T(1/k)hj1(p)p~dnti(P)=1/k
L(A1(p)v/2m(pX] (p) + p° X (p)) log n

wherep = p,, 4 > 0 solves the equatiop)\} (p) = d/logn, A1 (w) being the largest zero (in real part)
of the equatior] [, ., (0 — ¢/k) — klw/k* = 0 and satisfies\; (1) = (k + 1)/k.

E(Xn;dJ) ~ (6)

An explicit expression for thé; ;'s is given as follows. Lek(w), ..., \;(w) denote the zeros of the
equation] [, <, (0 — €/k) — klw/kF = 0. Then forl <j <k

Jlw(w —1)
(kA () = 1) (Lrcscr g ) i psizozin (s (w) = 5)
The theorem cannot be proved by the above inductive arguamehour method of proof consists of

the following steps. First, the bivariate generating fiows. 7 (z, w) == >, J\Z/dd(z)wd satisfy the
linear system

hji(w) =

()

0 koj+l - i
(1-og - ")t =+ 55 a<ish.

Second, this system is solved and has the solutions

w — (w— 1)

2 T(2),

Mi(zw) = Y hjm(w)(1 —2z) M)~

1<j<k

where theh; ., have the same expression/as but with all A\ (w) in (7) replaced by\,,(w). While
the form of the solution is well anticipated, the hard pathis calculations of the coefficient-functions
hj.m- Third, by singularity analysis and a delicate study of tees, we then conclude, by saddle-point
method, the estimates given in the theorem.

Corollary 3 The expected degree of the rd@&(tX,, ; ;) satisfies
E(Xn,l,j) ~ P(l/k)ﬁ nl_l/k (1 S] < k)

This estimate also follows easily frorh)(

Let Hy := ),y 1/¢ denote the harmonic numbers aHé” =1k 1/
Corollary 4 The expected number of nodes at distatice Lﬁ logn + xo+/log nJ from the root,
wheres = Hlf)/(kH}j), satisfies, uniformly fox = o((log n)/9),

)
ne:c/2

V2ro2logn

E(Xnzd,5) ~ 8



This Gaussian approximation justifies the last item cowadjng to increasing trees in Talle
Note that\; (1) = (k+ 1)/k anda = d/logn ~ 1/(kHy). In this casep = 1 and

1

pXi(p) —,

Zlgéﬁk )\1(p)*£

which implies that\; (p) — 1/k — alog p ~ 1.

Corollary 5 Let 77,4 ; = maxq X,.q; denote the height of a random increasihgree ofn + k
vertices. Then o
E(,) < aylogn — ————loglogn + O(1),
2(M(ot) = 1)

wherea, > 0 is the solution of the system of equations

1 1
R
o<V Tk

1 k
v T Z log<zv—1> =0.

1<e<k

Table2 gives the numerical values of, for small values of. For largek, one can show that, ~

k 2 3 4 ) 6
o4 || 1.085480 | 0.656285 | 0.465190 | 0.358501 | 0.290847
k 7 8 9 10 20
o4 || 0.244288 | 0.210365 | 0.184587 | 0.164356 | 0.077875

Table 2:Approximate numerical values of, .

1/(klog2) and A (a4) ~ 2.
Corollary 5 justifies that the mean distance of randéntrees are of logarithmic order in size, as
stated in Tabld.

Corollary 6 The width’,.4 ; :== max,; X,,.4 ; is bounded below by
n
Viegn

We may conclude briefly from all these results thmthe transformed increasing trees of random
increasingk-trees, almost all nodes are located in the levels with- ﬁ logn + O(y/logn), each

with n/+/log n nodes.

E(#7) = E(max Xy.q) > maxE(Xp,q) =

4 Limiting distributions

With the availability of the bivariate generating functio?), we can proceed further and derive the limit
distribution of X,,.4 ; in the range wheré = O(1). The case wheri — oo is much more involved; we
content ourselves in this extended abstract with the s&ieof the result for bounded

Theorem 7 The random variables(,,., ;, when normalized by their mean orders, converge in distribu
tion to
ni=1/k(logn)d=1/(d — 1)! ek

9)



where

1 Cd,j,m u™
E(e™") =T($) Y mIT(m(1 —Jl/k) +1/k)

m>0

1 0+
_ (%) /( )GTT_l/dej <T—1+1/ku) dr,

2m J_oo

andCy;(u) :== 14 3,5 cajmu™/m! satisfies the system of differential equations
(k = DuCy;(u) + Cqj(u) = Caj(u) 7 Cy i1 (u) (1<y5<k), (10)

with Cgq 9 = C4_1- Here the symboff?;“) denotes any Hankel contour starting froapo on the real
axis, encircling the origin once counter-clockwise, antlireing to —oo.

We indeed prove the convergence of all moments, which isgéothan weak convergence; also the
limit law is uniguely determined by its moment sequence.
So far only in special cases do we have explicit solutiondgs: C; 1 (u) = (1 +u)~/*~1 and

el/(1+u) .
) if k=2;
Craw =9 " it k=3
14+ul/2 arctan(ul/2)’ e

Note that the resultd) whend = 0 can also be derived directly by the explicit expressibh (n
particular, wherk = 2, the limit law is Rayleigh.
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