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Abstract

In a model of overlapping generations with a continuum of finitely-lived indi-
viduals, the aggregate price dynamics is characterized by a functional differ-
ential equation of mixed type. Delays and advances are exogenous when age
at retirement is mandatory; they become state-dependent when individuals
are allowed to choose their age at retirement. Using the Hopf bifurcation the-
orem, periodic solutions in the neighborhood of the monetary steady state
appearing with a mandatory retirement age vanish with a chosen age.
JEL Classification: C62, D91, E3, J26.



1 Introduction

We study the relationship between retirement age and macroeconomic fluc-

tuations and show that allowing individuals to choose their retirement age

reduces the volatility of aggregate prices. The proof hinges on the assumption

that the economy produces a single non storable good, and on the assumption

that the demographic structure is in overlapping generations (OLG) with a

continuum of finitely-lived individuals.

The economy has no capital and produces a non storable good using

a linear technology with respect to aggregate labor. We also restrict our-

selves to monetary equilibria, for which the real value of the aggregate asset

holdings remains positive forever. Under mandatory age at retirement, the

framework amounts to an exchange economy. Price fluctuations have only

nominal and distributional effects. They modify the real consumption at the

individual level but not at the aggregate level. When individuals choose their

age at retirement, the economy is of the ‘yeoman farmer’ type. Price fluctu-

ations influence the real aggregate output, and consequently the aggregate

consumption.

The second assumption concerns age structure. The OLG model can

generate cycles, a feature appealing to economists having business cycles in

mind, and linked to sunspot equilibria (Cass and Shell, 1983). However, the

first proofs of the existence of such cycles (Gale, 1973; Benhabib and Day,

1982; Grandmont, 1985) relied on an OLG model composed of only two gen-

erations. Reichlin (1986), Jullien (1988) and Benhabib and Laroque (1988),

who extended the proofs to production economies, made the same assump-
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tion. This is worrying because the cycles these models can generate have

periods greater than or equal to the individuals’ life-span. Moreover, Sims

(1986) conjectured that increasing the frequency of trade among generations

would allow individuals to smooth the strong revenue effects necessary for

the existence of cycles. The first existence theorem was extended to OLG

models with either many generations (Aiyagari, 1989; Reichlin, 1992; Swan-

son, 1998; Simonovits, 1999; Bhattacharya and Russell, 2003; d’Albis and

Augeraud-Véron, 2007) or, using the equivalence argument developed by

Balasko et al. (1980), with many commodities (Kehoe and Levine, 1984;

Kehoe et al. 1991; Ghiglino and Tvede, 1995). Ghiglino and Tvede (2004)

notably prove the existence in a model with many generations and many

commodities. However, none of these extensions includes labor supply deci-

sions as in Grandmont (1985). By introducing a choice of age at retirement,

we shall test the robustness of these results.

We use a continuous-time OLG model developed by Cass and Yaari

(1967), modified to allow for individual retirement decisions as in Boucekkine

et al. (2002, 2004). The inter-temporal equilibrium is the solution of a non-

linear functional differential equation of mixed type (MFDE). The dynamics

is indeed affected by discrete delays and advances. Delays are generated by

the vintage structure of the population; advances rely on individuals’ expec-

tations. Moreover, when retirement is endogenous, some delays and advances

are state-dependent. We characterize the monetary steady state and study

the existence of cycles in the neighborhood of the steady state. To prove

the existence, we follow Rustichini (1989) by looking for solutions of the lin-

earized MFDE which can have Hopf bifurcation values. We find that for
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certain sets of parameters, a cycle exists when retirement is exogenous; and

there is no cycle when retirement is endogenous. This means that the strong

revenue effects which still can yield cycles when the frequency of trade is

high, are less operative when individuals choose their age at retirement.

In section 2, we present an OLG model with continuous trading. In

section 3 we characterize the inter-temporal equilibrium. In section 4, we

study the linearized dynamics in the neighborhood of the monetary steady

state.

2 The Model

We describe the individual choices and the aggregation procedure. Time

t ≥ 0 is assumed to be continuous and to have a finite starting point.

2.1 Individual Behavior

Individuals live ω > 1 years. They derive utility from consumption and from

the duration of their retirement. Isoelastic preferences and no time discount

are assumed. The inter-temporal utility u (s) of an individual born at time

s ≥ 0 is given by:

u (s) =

∫ s+ω

s

c (s, t)1−
1

σ

1 − 1
σ

dt +
(ω − (z (s))α)

1− 1

η

1 − 1
η

, (1)

where c (s, t) ≥ 0 denotes the real consumption of an individual at time t born

at time s, and z (s) ∈ [0, ω] is age of retirement. σ > 0 stands for the elasticity

of inter-temporal substitution, η > 0 and α ∈ {0, 1}. α = 0 corresponds to

the exogenous retirement case, for which the age at retirement is mandatory

and normalized to 1. When α = 1, age at retirement is endogenous.
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The real wage e (s, t) is earned only by working individuals:

e (s, t) =

{

1 if t ∈ [s, s + (z (s))α] ,
0 otherwise.

(2)

Individuals have access to a competitive asset market yielding the interest

rate r (t) which is also the deflation rate. a (s, t) is the real wealth of an

individual at time t born at time s. The instantaneous budget constraint is:

∂a (s, t)

∂t
= r (t) a (s, t) + e (s, t) − c (s, t) . (3)

Individuals were born with no financial asset and die with no debt. Initial

and terminal conditions are a (s, s) = 0 and a (s, s + ω) ≥ 0. We assume

that a (s, t) and c (s, t) are piecewise C1
(

R
2
+

)

, that r (t) is continuous for

all t ∈ [s, s + ω] and that e (s, t) is L2
(

R
2
+

)

. Finally, it will be convenient

to define the relative price between time t and time 0, such that: R (t) =

exp
(

−
∫ t

0
r (u) du

)

.

The individual program is to maximize Eq. (1) subject to Eq. (3), under

the initial and terminal conditions. The separability of the objective allows us

to solve the program in two steps. First, a set of optimal consumption profiles

parameterized by (z (s))α is obtained; second, we compute the optimal age

at retirement.

Lemma 1 The optimal consumption profile satisfies:

c (s, t) =

∫ s+(z(s))α

s
R (v) dv

∫ s+ω

s
(R (v))(1−σ) dv

(R (t))−σ . (4)

Proof: standard. �
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Lemma 2 There exists an optimal age of retirement belonging to (0, ω) and

satisfying:

αR (s + (z (s))α)

(

∫ s+(z(s))α

s
R (v) dv

∫ s+ω

s
(R (v))1−σ dv

)−
1

σ

− α (ω − (z (s))α)
−

1

η = 0. (5)

The optimal age at retirement is unique if:

− r (s + (z (s))α) −
1

σ

R (s + (z (s))α)
∫ s+(z(s))α

s
R (v) dv

−
1

η
(ω − (z (s))α)

−1
< 0. (6)

Proof: Replacing Eq. (4) in Eq. (1) yields û (z (s)). z (s) = 0 is not a so-

lution because limz(s)→0 û (z (s)) = −∞ if σ ∈ (0, 1] and limz(s)→0 û′ (z (s)) =

+∞ if σ > 1. Moreover, z (s) = ω is not a solution because limz(s)→ω û (z (s)) =

−∞ if η ∈ (0, 1] and limz(s)→ω û′ (z (s)) = −∞ if η > 1. Hence, there

exists z (s) ∈ (0, ω) which is a solution. This optimal solution satisfies

dû (z (s)) /dz (s) = 0 or equivalently Eq. (5). Then, a sufficient condition

for a global maximum is that d2û (z (s)) /d (z (s))2 < 0 at the optimal point.

This condition is given by Eq. (6). �

The optimal age at retirement is given by a standard consumption-leisure

arbitrage. Eq. (4) shows that a longer retirement period implies a lower level

of consumption at each age and Eq. (5) shows that the optimum is obtained

when the marginal utility yielded by a supplementary unit of leisure equals

the marginal dis-utility yielded by the decrease in consumption. Optimal age

is necessarily an interior solution of the individual program but one should

not exclude multiple local maxima. If the condition given in Eq. (6) is not

satisfied, meaning that r (t) is negative, it may indeed exist multiple solutions

to Eq. (5). However, in section 4, we shall show that the optimal age of

retirement is unique in the neighborhood of the monetary steady state.
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2.2 Aggregation

The demographic structure is an OLG. Each cohort, whose size is normalized

to 1, is composed of identical individuals. There is no population growth and,

at each point of time, a new cohort enters the economy while the oldest one

leaves it. The population size is equal to ω.

There exists a single non storable good produced with a linear technology

with respect to aggregate labor. The total output P (t) equals the size of the

active population, which is solution of:

P (t) =

∫ t

t−ω

e (t − s) ds, (7)

where e (t − s) is defined in Eq. (2). The aggregate real consumption C (t)

is obtained by integrating over the individual consumptions from their birth

dates onward, c (s, t). Replacing Eq. (4) yields:

C (t) =

∫ t

t−ω

∫ s+(z(s))α

s
R (v) dv

∫ s+ω

s
(R (v))(1−σ) dv

(R (t))−σ ds. (8)

Similarly, the aggregate real wealth is denoted A (t). Money is available;

it is a non perishable and non consumable bond which can constitute the

counterpart of individual assets. A given quantity of money was distributed

at time t = 0 and there was no other emission since then.

3 The Monetary Equilibrium

We prove the existence of the monetary steady state and provide comparative

statics. An inter-temporal equilibrium is defined as:

Definition 1 An inter-temporal equilibrium with perfect foresight is

a function F (t) = (C (t) , A (t) , R (t) , P (t) , z (t)), F : R+ → R
4
+ × [0, ω],
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F (t) ∈ (C1 (R+))
3
× (L2 (R+))

2
such that (i) individuals maximize their

utility subject to budget constraints, (ii) the aggregate consumption equals

the output: C (t) = P (t), and (iii) the aggregate wealth is non negative:

A (t) ≥ 0.

The existence of money allows for a positive aggregate wealth at equilib-

rium. Consider the following particular equilibrium:

Definition 2 A monetary steady state is an inter-temporal equilibrium

with perfect foresight such that the aggregate wealth is a positive constant:

A > 0.

Lemma 3 There exists a unique monetary steady state characterized by the

quintuple (C, A, P, R, z) which satisfies: R = 1, A = (ω − zα) zα/2, P = C =

zα where zα is such that:

α

(

zα

ω

)

−
1

σ

= α (ω − zα)−
1

η . (9)

Proof: At equilibrium, the aggregate consumption equals the output, the

aggregate wealth is dA (t) /dt = r (t) A (t). This implies that r = 0, or

equivalently R = 1, is necessary to obtain a constant and positive aggregate

wealth. For r = 0, the condition in Eq. (6) is satisfied and there exists a

unique age of retirement which is constant. �

The interest rate equals the demographic growth rate at the monetary

steady state (Samuelson, 1958; Gale, 1973). By taking a stationary popula-

tion, we obtain constant steady state prices and constant individual consump-

tions over the life cycle. Lemma 3 states that money is always valuated. This

is a direct consequence of the introduction of retirement: in OLG economies,

money has indeed a value if and only if the average age of the consumer is
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strictly greater than the average age of the worker. Workers finance the pen-

sioners and the aggregate wealth is positive. Given our simple demographic

structure, these ages are easy to compute and worth ω/2 and zα/2 respec-

tively. With the statement of Lemma 2 such that zα ∈ (0, ω), we conclude

that the monetary steady state exists. In real terms, the value of money is

equal to the product of the output and the difference between the average

ages of consumption and production. At the limit zα → ω, money has no

value and the economy is autarkic.

The effect of age at retirement on aggregate wealth is ambiguous. Post-

poning retirement has a positive effect on wealth if and only if zα < ω/2.

Increasing z increases, on the one hand, the aggregate output and the indi-

vidual savings while, on the other hand, it increases the average age of the

worker which reduces the incentive to save. Another intuition is obtained

by computing the age at which each individual begins to dissave. Simple

algebra shows that this age is always equal to the age at retirement. Hence,

an increase of the age at retirement increases the aggregate wealth if the age

at which the dissaving begins belongs to the first half of life.

When age at retirement is exogenous, the monetary steady state is simply

characterized by the relative size of the active population. With Lemma 3,

aggregate wealth increases with life span ω: it increases the duration of

retirement and consequently creates an additional incentive for individual

saving. The elasticity of inter-temporal substitution has no influence on the

steady state because the population is stationary; this is no longer true when

the age at retirement is endogenous. The following proposition provides some

comparative statics for the yeoman farmer economy:
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Proposition 1 When the age at retirement is endogenous,

(i) an increase of longevity increases the age at retirement and aggregate

wealth. Moreover, there exists ω̄ > 1 such that z ≥ 1 ⇔ ω ≥ ω̄.

(ii) an increase of the elasticity of inter-temporal substitution reduces the

age at retirement and has an ambiguous effect on the aggregate wealth. More-

over, if ω < 2, there exists σ̄ > 0 such that z ≥ 1 ⇔ σ ≤ σ̄; if ω ≥ 2, z > 1.

Proof: For α = 1, use Eq. (9) as an implicit equation. For part (i),

dz/dω ∈ (0, 1) and dA/dω > 0. Finally, ω̄ is computed explicitly by replacing

z = 1 in the implicit equation. For part (ii), because ω − z < 1 is always

true, one has dz/dσ < 0. Hence, the sign of dA/dσ is the opposite of the one

of dA/dz if and only if z > ω/2. Finally, with the implicit equation, z → ω

when σ → 0 and, replacing z = 1 compute σ̄ to conclude that σ̄ is positive

only if ω < 2. �

The intuition for Proposition 1 is that because of the consumption/leisure

arbitrage, an increase in longevity increases both the age and the duration

of retirement; hence, dz/dω ∈ (0, 1). The magnitude of the latter derivative

depends on the parameter η characterizing the curvature of the utility func-

tion with respect to leisure. A lower η means a utility more concave and a

higher dz/dω. At the limit η → 0, one obtains an age at retirement that

goes to its lower bound: ω − 1, and dz/dω → 1. The effect of longevity on

aggregate wealth is ambiguous because it increases both the average age of

the consumer and the average age of the worker. However, as dz/dω ∈ (0, 1),

the final effect is always positive. Chang (1991) and Kalemli-Ozcan and Weil

(2004) pointed out the importance of the assumption of certainty on indi-
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vidual life span. In case of uncertain life span, an increase in longevity can

reduce the age at retirement.

The effect of an increase of the elasticity of inter-temporal substitution

on retirement is negative. Indeed, at the monetary steady state where the

interest rate is zero, the elasticity does not influence the individual consump-

tion growth rate. It only modifies the arbitrage between consumption and

leisure in favor of the second one, which ultimately means less human wealth

and less consumption. The effect of the elasticity on aggregate wealth is the

opposite of the effect of the age at retirement on wealth.

4 Monetary Cycles

In the linearized dynamics in the neighborhood of the monetary steady state

given by Lemma 3, we analyze exogenous and endogenous retirement and

look for particular long-run fluctuations.

Definition 3 A monetary cycle is a periodic solution of the inter-

temporal equilibrium in the vicinity of the monetary steady state.

4.1 Exogenous Retirement

When the age at retirement is mandatory, replacing (2) in (7) yields the size

of the active population: P (t) = 1 for all t. The inter-temporal equilibrium

is characterized by the functional differential equation:

(R (t))σ =

∫ t

t−ω

∫ s+1

s
R (v) dv

∫ s+ω

s
(R (v))(1−σ) dv

ds. (10)

The dynamics of R (t) depends on the entire set of observations of R in the

interval [t − ω, t + ω]. Past observations, bringing delays in the dynamics,
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are generated by the vintage structure of human capital as in Boucekkine, de

la Croix and Licandro (2002), while future observations, yielding advances

in the dynamics, come from perfect foresight. Eq. (10) is non linear for any

σ 6= 1, meaning that revenue and substitution effects do not counterbalance

each other.

Following Rustichini (1989), the proof of the existence of periodic solu-

tions uses the Hopf bifurcation theorem. We consider the local dynamics

around R = 1: it is the one of x (t) defined such that R (t) = 1 + εx (t).

Property 1 The characteristic function H (λ) of x (t) satisfies:

H (λ) =

∫ 0

−ω

(
∫ s+1

s

eλvdv

)

ds − ωσ −
(1 − σ)

ω

∫ 0

−ω

(
∫ s+ω

s

eλvdv

)

ds. (11)

Proof: Replace R (t) = 1 + εx (t) in Eq. (10) and Taylor expand in the

neighborhood of ε = 0. H (λ) is obtained by the change of variable x (t) = eλt

and some algebra. �

The characteristic function H (λ) has an infinity of complex roots with

negative real parts and an infinity of complex roots with positive real parts.

This implies that the linearized dynamics is initially characterized by os-

cillations that eventually disappear. These fluctuations are of few interest

because we study the dynamics in the neighborhood of the steady state.

The following lemma focuses on permanent fluctuations yielded by the pure

imaginary roots of H (λ).

Lemma 4 There exist (ω, σ) such that H (λ) has pure imaginary roots which

are Hopf bifurcation values.

Proof: 1) we assume λ = iq and prove that there exists a least one q > 0

such that H(iq) = 0. We define (ω0, σ0 (ω0)) the pair of parameters for which
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such a root exists. 2) We use σ as a bifurcation parameter and show that

there exists a neighborhood of σ0 such that d Re (H (λ)) /dσ is not equal to

zero while d Im (H (λ)) /dσ = 0.

1) Replace λ = iq in Eq. (11) to obtain H (iq) = Re (H (iq))+i Im (H (iq))

with:

Re (H (iq)) = −

(

cos (q) − 1 − cos (q (ω − 1)) + cos (qω)

q2

)

−ωσ +
2 (1 − σ)

ω

(

cos (qω) − 1

q2

)

, (12)

Im (H (iq)) = −

(

sin (q) + sin (q (ω − 1)) − sin (qω)

q2

)

. (13)

(i) We show that there exist, for any σ, some (ω0, q (ω0)) such that Im (H (iq (ω0))) =

0. (ii) it shows that Re (H (iq (ω0))) = 0 is compatible with some σ > 0.

(i) Eq. (13) is also:

Im (H (iq)) = −
4 sin

(

q(ω−1)
2

)

sin
(

q

2

)

sin
(

qω

2

)

q2ω
. (14)

Roots of Im (H (iq)) are then q = 2kπ, q = 2kπ/ω and q = 2kπ/ (ω − 1) for

k ∈ Z. Eq. Re (H (iq)) = 0 is rewritten as:

σ =
−4 sin2

(

qω

2

)

+ 2ω
[

sin2
(

qω

2

)

+ sin2
(

q

2

)]

− ω + ω cos (q (ω − 1))

−4 sin2
(

qω

2

)

+ (ωq)2 . (15)

Consider the roots q = 2kπ/ (ω − 1) for k ∈ Z, replace them in Eq. (15) and

rearrange to obtain:

σ =
(ω − 1)
(qω)2

4 sin2( q

2
)
− 1

. (16)

With ω > 1, conclude that the RHS of Eq. (16) is positive. For any

(ω, 2kπ/ (ω − 1)) , k ∈ Z, Im (H (iq)) = 0 is satisfied and there exists a

σ > 0 such that Re (H (iq)) = 0. Notice that Re (H (iq)) 6= 0 for q = 2kπ.
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2) Let λ = p + iq. Using Eq. (11), one has:

d Re (H (λ))

dσ
= −ω +

cos (qω)

ω

∫ 0

−ω

(
∫ s+ω

s

epvdv

)

ds. (17)

Compute Eq. (17) for p = 0, it is not zero because q 6= 2kπ/ω. �

The following lemma indicates the space of parameters giving rise to a

cycle.

Lemma 5 There exists a monetary cycle of period q only if σ < q/ω.

Proof: We prove the lemma for ω < 2, which is the realistic case for a age

at retirement equal to 1. The proof for ω ≥ 2 is similar and available upon

request. We shall show that σ − q/ω < 0 when σ is defined by Eq. (16) and

q = 2kπ/ (ω − 1). First, σ − q/ω < φ (k, ω) with

φ (k, ω) =
(ω − 1)

(

ωkπ
(ω−1)

)2

− 1
−

2kπ

ω (ω − 1)
. (18)

It is sufficient to show that φ (k, ω) < 0. Because ∂φ (k, ω) /∂k < 0, we have

to prove that φ (1, ω) < 0. Then, ∂φ (1, ω) /∂ω > 0 for ω > 1 and that

φ (1, 2) ≃ −3. �

Sufficiently strong revenue effects are necessary to obtain monetary cycles.

The magnitude of these effects depends on the periodicity of the price cycle

or, equivalently, of the inflation rate cycle, with respect to the individual life-

span: to obtain a cycle with a lower periodicity, a stronger revenue effect is

necessary. We obtain this result with a discount rate equal to zero although

cycles are more likely to occur when individuals discount the future.
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4.2 Endogenous Retirement

To identify the inter-temporal equilibrium, we characterize the active popu-

lation size and how cohorts leave the labor market, and we define the “last

in, last out” property.

Definition 4 For all t ≥ 0, let s0 be the greatest s ∈ [t − ω, t] such that

s0 + z (s0) = t. Cohorts satisfy the “last in, last out” property if and only if

for all s < s0, s + z (s) ≥ t.

According to definition 4, when there is “last in, last out”, cohorts leave

the labor market in the same order they have entered it; hence P (t) =

z (t − P (t)). Otherwise, it can exist a date t0 such that there is no cohort

leaving the labor market and a date t1 such that different cohorts leave it

simultaneously. In such situations, the analytical characterization of the

inter-temporal equilibrium would be complicate. However, the next lemma

excludes such situations in the neighborhood of the steady state.

Lemma 6 In the neighborhood of the monetary steady state, the “last in,

last out” property holds.

Proof: The optimal age at retirement, defined as the z (.) solution of

Eq. (5), is continuously differentiable with respect to s. Indeed, as R (.) ∈

C1 (R+), then z (s) is C1 (R+). Consequently, there is “last in, last out” if

and only if 1 + dz (s) /ds > 0. In the neighborhood of the monetary steady

state this condition is satisfied because dz (s) /ds = 0. �

It is now possible to characterize the inter-temporal equilibrium in the

neighborhood of the monetary steady state. It is the solution of the following

system of non linear functional differential equations with state-dependent
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delays and advances:










P (t) (R (t))σ =
∫ t

t−ω
(R (s + z (s)))σ (ω − z (s))

σ

η ds,
∫ t+z(t)

t
R (v) dv = (R (t + z (t)))σ (ω − z (t))

σ

η

∫ t+ω

t
(R (v))1−σ dv,

P (t) = z (t − P (t)) .

(19)

The first equation of System (19) is the equilibrium condition in the good

market which was modified by replacing the optimal condition on individual

retirement (the second equation). The dynamics of R is governed by dis-

tributed delays and advances while the dynamics of z depends on the future

observations of R only. The third equation characterizes the population size

when there is “last in, last out”. The main difference between system (19)

and Eq. (10) consists of the presence of state-dependent delays and advances.

Consider the local dynamics around the steady state defined by Eq. (9).

After Cooke and Huang (1996), it is the one of (x (t) , y (t) , h (t)) defined

such that:






R (t) = 1 + εx (t) ,
z (t) = z + εy (t) ,
P (t) = z + εh (t) ,

(20)

where z satisfies
(

z
ω

)

−
1

σ − (ω − z)−
1

η = 0. State-dependent delays and ad-

vances vanish in the linearized system and it is possible to apply Rusti-

chini (1989).

Property 2 The characteristic function of the linearized system is de-

noted Q (λ) and satisfies:

Q (λ) = 2ω +
σzω

η (ω − z)
+

(ω − z) ηω

σz
−

(

1 +
σz

(ω − z) ηω

∫ 0

−ω

eλ(s+z)ds

)

∗

(

(ω − z) ηω

σz
+

ω

zσ

∫ z

0

eλ(v−z)dv −
(1 − σ)

σ

∫ ω

0

eλ(v−z)dv

)

. (21)

Proof: Replace system (20) in system (19) and Taylor expand in the

neighborhood of ε = 0. This yields h (t) = y (t − z) and a system of two
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equations. Write the Jacobian matrix J and then Q (λ) = detJ. Some

algebra yields Eq. (21). �

As in the previous case, only pure imaginary roots are considered.

Lemma 7 Q (λ) has no pure imaginary roots.

Proof: The proof shows that |Q (iq)| > 0. Using Eq. (21), one has:

|Q (iq)| =

∣

∣

∣

∣

2ω +
σzω

η (ω − z)
+

(ω − z) ηω

σz
−

∣

∣

∣

∣

(

1 +
σz

(ω − z) ηω

∫ 0

−ω

eiq(s+z)ds

)

∗

(

(ω − z) ηω

σz
+

ω

zσ

∫ z

0

eiq(v−z)dv −
(1 − σ)

σ

∫ ω

0

eiq(v−z)dv

)
∣

∣

∣

∣

∣

∣

∣

∣

.(22)

Consequently, |Q (iq)| ≥ |φ (σ)| where:

φ (σ) = 2ω +
σzω

η (ω − z)
+

(ω − z) ηω

σz

−
ω

σ

(

1 +
σz

(ω − z) η

)(

(ω − z) η

z
+ (1 + ε) + |1 − σ|

)

. (23)

with ε > 0. Showing that φ (σ) < 0 for all σ > 0 is then sufficient to conclude.

One indeed has: φ′ (σ) > 0 while φ (1) < 0 and limσ→+∞ φ (σ) < 0. �

The main result of this section is presented in:

Proposition 2 When the age at retirement is optimally chosen by individ-

uals, the occurrence of monetary cycles is ruled out.

Proof: Given lemmas 4 and 7, the proof is immediate. �

We now turn to the general comment of this section. In the exogenous

retirement case, we have shown that increasing the frequency of trade in gen-

erations is not sufficient to smooth the strong revenue effects which can yield

cycles in OLG models. Conversely, introducing a simple leisure choice mod-

elled as a retirement decision was proved to be necessary for the occurrence
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of monetary cycles. The intuition is that for mandatory age at retirement,

an anticipation of high prices, corresponding to a low interest rate, increases

the individual savings when the elasticity of inter-temporal substitution is

small. This increases the aggregate wealth and increases the prices. But

if individuals are allowed to choose their age at retirement, an anticipation

of high prices is an incitation to retire later because high prices imply high

nominal wages. This lowers the incitation to save and the final effect on

aggregate wealth is lower than in the mandatory retirement case.

Proposition 2 should extend to more general economies. First, allowing

for endogenous entrance into the labor market, with a schooling decision as

in de la Croix and Licandro (1999), would produce the same result: cycles

would be more likely with a mandatory age for the end of education than

with an optimally chosen one. In production economies, some non linearities

are added, and then endogenous cycles are possible even with endogenous

labor supply. This was notably shown by Whitesell (1986) and Matsuyama

(2005). However, in a two-period framework, Cazzavillan and Pintus (2004)

and Nourry and Venditti (2006) proved that cycles occur less frequently when

individuals consume during their youth.

5 Conclusion

We analyzed the existence of long-run fluctuations in OLG economies. We

showed that when individuals choose their age at retirement, certain periodic

solutions of the inter-temporal equilibrium dynamics vanish. The study of

the existence and uniqueness of the inter-temporal equilibrium remains to

be done. For linear MFDE, the existence problem was studied by d’Albis
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and Augeraud-Véron (2004) while the indeterminacy issue was analyzed by

Demichelis and Polemarchakis (2007). However, the problem is heightened

with state-dependent delays because of the characterization of the initial

conditions.
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