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Abstract

Age structured populations are studied in economics through overlap-
ping generations models. These models allow for a realistic character-
ization of life-cycle behaviors and display intertemporal equilibrium
that are not necessarily efficient. This article uses the latest develop-
ments in continuous time overlapping generations models to show the
influence of the vintage structure of the population on the volatility of
intertemporal prices. Permanent cycles can be found on the neighbor-
hood of steady-states while the transitional dynamics are generically
governed by short run fluctuations.
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1 Introduction

In a recent article, Boucekkine et al. (2004) convincingly argue that the

analysis of the relationship between demographic and economic trends should

∗Correspondence: LERNA, Université de Toulouse I, 21 allée de Brienne, 31000
Toulouse, France. E-mail: hippolyte.d-albis@univ-tlse1.fr
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be built on a rigorous modeling of the specific decisions of the various cohorts

that compose a population. Overlapping generations models, which feature

an explicit age structure of the population, are hence the natural tool for

studying the impact of demographic changes on individual decisions and

aggregate economic variables.

The first model with overlapping generations developed in literature (Al-

lais 1947, Samuelson, 1958 and Diamond, 1965) only involves two coexisting

generations at each point of time, meaning that the length of a period is

about thirty years. The comparison with real world data is therefore diffi-

cult and, moreover, the heterogeneity yield by a demographic structure is

implicitly eliminated. An alternative to this representation was proposed by

Blanchard (1985). His approach has been celebrated since it allows for more

than two periods within a life cycle and leads to simple analytics. However,

this tractability hinges on the assumption of a constant hazard death rate,

which is unable to capture the life cycle aspect of life. As a result, these two

frameworks have been extensively used in theoretical works but not in applied

ones. To measure the consequences of changes in the age structure of a popu-

lation, Auerbach and Kotlikoff (1987) propose a deterministic framework and

Rios-Rull (1996) a stochastic one, which include many generations. Recently,

these models have been notably successful when applied to the evaluation of

the impact of population aging on capital accumulation (Lau, 2009), public
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debt (Bullard and Russel, 1999), economic growth (Azoumahou et al., 2009),

and pension systems (Bloom et al., 2007, Heijdra and Romp, 2009). From

a theoretical point of view, recent contributions, such as those of Kehoe et

al. (1991) and Azariadis et al. (2004), have thus been aimed at developing a

fruitful analysis of large-square models and the setting out of specific condi-

tions on the dynamic properties of equilibrium paths. However, a limitation

with regard to the widespread application of such models springs from the

difficulties that emerge in the course of their analytical resolution.

In the present work, we survey the latest developments of overlapping

generations models with a realistic age structure of the population and in-

troduce a simple method that allows for solving these models. We propose

a complete resolution in a specific case that provides new results on the ex-

istence and the convergence properties of equilibrium paths. In models with

many overlapping generations, the dynamics of endogenous variables depend

on a finite number of their past and future realizations. This dependency is

what gives rise to the analytical difficulty of these models. In discrete-time

frameworks, the analysis of the dynamics requires the study of polynomials,

whose order increases with the number of generations, such an analysis is

not tractable in general. We believe that this difficulty may however be cir-

cumvented using the continuous-time framework initially developed by Cass

and Yaari (1967): it eases the mathematical resolution without affecting the
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qualitative analysis. However, in continuous-time frameworks, the dynam-

ics are characterized by a functional differential equation of mixed type, i.e.

the dynamics are affected by distributed delays and advances. In this work,

we propose an integrated treatment of such a structure in a pure exchange

economy, where preferences and endowments are stationary.

The basic framework of the model is presented in the first two sections.

In section 2, we propose a complete characterization of life cycle behavior

in continuous-time with uncertain lifetime. We derive the optimal profile of

consumption under a general utility function and discuss the implications of

the usual assumptions made on these functions. In section 3, we define the in-

tertemporal equilibrium of a pure exchange economy. We demonstrate how

demographic assumptions affect the dynamics of aggregate variables. The

equilibrium conditions on the asset markets are then presented, underlining

the role of monetary creation. Section 4 presents the results on the volatility

of intertemporal prices. In the case of a balanced equilibrium, where the

aggregate value of assets is zero, we show that there exist sets of parameters

such that certain solutions of the linearized functional differential equation

take on Hopf bifurcation values. Contrary to the initial intuitions of Aiyagari

(1989) and Simonovits (1999), permanent long run fluctuations may hence

appear as a solution of the price dynamics. We then concentrate on the

logarithmic preferences case, for which the functional differential equation
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happens to be linear. First of all, we demonstrate the existence of an in-

tertemporal equilibrium by studying the existence of a strictly positive and

bounded solution to the functional differential equation. This result points

out the importance of initial conditions: not all initial wealth distributions

among generations are compatible with the existence of an equilibrium. Some

distributions may indeed generate short run fluctuations whose magnitude is

so great that they would lead to negative prices. Finally, we propose numer-

ical computations of the equilibrium and evaluate the influence of the initial

distribution of assets.

2 Life cycle behavior

This section describes an individual’s optimal behavior along the life cycle.

Any variable related to an individual is indexed by both the calendar time

and his or her birth date. Time is denoted by t and satisfies t ≥ τ , where

τ ∈ R is the initial date of the economy. The birth date is denoted by

s ≥ τ − ω, where ω ∈ R∗+ is the upper bound of the individual’s lifespan.

2.1 Assumptions

The livespan is uncertain and bounded. The age at death, denoted by α, is

a random variable over the interval [0, ω]. Let us denote its density function,

conditional to be alive at age t− s by f (α, t− s) where t ∈ [s, s+ ω]. Let us

define the survival function, i.e. the probability at birth of reaching age α, as
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S (α) =
∫ ω

α
f (u, 0) du. Thus, f (α, t− s) = f (α, 0) /s (t− s) or, equivalently,

f (α, t− s) =
−S ′ (α)

S (t− s)
. (1)

Various survival functions have been proposed in the literature. As it will be

explained in section 3.2, a crucial assumption lies in the upper bound of the

lifespan. For instance, Boucekkine et al. (2002) propose a survival function

given by:

S (t− s) =

(

1 − e(t−s−ω)µ
)

(1 − e−ωµ)
, (2)

with µ > 0. However, many authors assume that ω → +∞. The Gompertz

law indeed implies the following function:

S (t− s) = e
1−(t−s)µ

µ , (3)

while Faruqee (2003) uses:

S (t− s) = e−µ(t−s)

(

e−κ + eκ

eκ−(t−s) + eα−κ

)λ

, (4)

where λ > 0 and κ > 0.

Preferences are assumed to be additively separable with respect to time

and to depend (provided that the individual is alive) on consumption only.

The utility derived from consumption at age t − s is denoted by u (c (s, t)),

where u (.) is increasing, concave and C3. Moreover, ∂ (u′ (x) /u′′ (x)) /∂x is

assumed to be bounded. Finally, c (s, t) is C1 ((τ − ω,∞) × (τ ,∞)). If the

individual is not alive, the utility is normalized to zero.

6



At time t, the utility of an individual living until age α ≥ t− s is:

v (α) =

∫ s+α

t

e−ρ(z−t)u (c (s, z)) dz, (5)

where ρ is the pure time discount rate. The individual is assumed to be

Fisherian, meaning that he or she is not altruistic towards his or her children.

The utility when dead is thus assumed to be a finite constant that is not

affected by the individual’s decisions and can be neglected1. The expected

utility is given by:

∫ ω

t−s

f (α, t− s)

∫ s+α

t

e−ρ(z−t)u (c (s, z)) dzdα. (6)

Integrating (6) by parts using (1) allows the expected utility to be rewritten

as follows:
∫ s+ω

t

S (z − s)

S (t− s)
e−ρ(z−t)u (c (s, z)) dz, (7)

provided that limz→s+ω S (z − s) v (z − s) < ∞. This latter condition re-

quires that the utility of living until the maximal age ω be bounded, which

is what is assumed. The expected utility, as expressed by (7), hence ap-

pears as a discounted integral of the instantaneous utility of consumption

over the individual’s maximal planning horizon. The discount rate here is

the sum of the pure time discount rate and the hazard death rate given by

−S ′ (z − s) /S (z − s). Since ω < +∞, there is no need for a lower bound on

1For the impact of parental altruism in Blanchard’s framework see d’Albis and Decreuse
(2009).
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ρ. Alternatively, in the limit case where ω → +∞, we shall assume that:

ρ > lim
z+∞

S ′ (z − s)

S (z − s)
. (8)

Finally, we note that the assumption of additively separable intertemporal

preferences implies that the expected utility (7) is linear with respect to the

survival probabilities. Bommier (2006) points out that the individual being

considered is consequently neutral with respect to the risk of death.

Let a (s, t) and e (s, t) ≥ 0 denote the real wealth and real endowment of

an individual of age t− s respectively. Prices at time t are denoted by p (t).

We assume that a (s, t) is C1 ((τ − ω,∞) × (τ ,∞)) , while p (t) is continuous

for all t ∈ (τ ,∞). A fair annuity market, as described by Yaari (1965), is

assumed to exist. An annuity is a particular actuarial note that makes an

insurance company the legatee in case of death. Annuities return the regular

risk-free interest rate, which is given here by the opposite of the inflation

rate, plus the hazard rate of death. They are therefore the most lucrative

asset if the individual’s wealth is positive; furthemore due to the uncertainty

on longevity, annuities are the only way to borrow. The selling of annuities

is then interpreted as a demand for pure life insurance contracts (Bernheim,

1991). Hence, the individual holds his or her entire wealth in the form of

annuities, and the flow budget constraint is given by:

∂a (s, t)

∂t
=

[

−
p′ (t)

p (t)
−
S ′ (t− s)

S (t− s)

]

a (s, t) + e (s, t) − c (s, t) . (9)
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Moreover, the following no-Ponzi game condition is imposed:

lim
t→s+ω

p (t)S (t− s) a (s, t) ≥ 0. (10)

The growth rate of the individual’s debt should be greater than the asset’s

rate of return. Provided that the nominal value of wealth is finite, the condi-

tion (10) reduces to an equality. In that case, forward integration of equation

(9) yields the intertemporal budget constraint at time t:

∫ s+ω

t

S (u− s)

S (t− s)

p (u)

p (t)
c (s, u) du = a (s, t) +

∫ s+ω

t

S (u− s)

S (t− s)

p (u)

p (t)
e (s, u) du.

(11)

At time t, the difference between the expected values of nominal consump-

tions and endowments should equal the nominal wealth.

2.2 Optimal behavior

The problem can be solved using standard techniques of the calculus of vari-

ations. Let us first define:

L

(

a (s, z) ,
∂a (s, z)

∂z
, z

)

=
S (z − s)

S (t− s)
e−ρ(z−t)u (c (s, z)) , (12)

where c (s, z) should be replaced using (9). The problem of the individual is

then described by the following:

max
a(.,.)

∫ s+ω

t

L

(

a (s, z) ,
∂a (s, z)

∂z
, z

)

dz,

s.t.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

p′(z)
p(z)

− S′(z−s)
S(z−s)

]

a (s, z) + e (s, z) − ∂a(s,z)
∂z

≥ 0,

limt→s+ω p (t)S (t− s) a (s, t) ≥ 0,

a (s, t) given.

(13)
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Lemma 1. There exists a unique solution to problem (13). For all z ∈

[t, s+ ω], the optimal consumption profile is:

∂ĉ (s, z)

∂z
=
u′ (c (s, z))

u′′ (c (s, z))

[

p′ (z)

p (z)
+ ρ

]

, (14)

the intertemporal budget constraint is (11) and a (s, s+ ω) = 0.

Proof. The proof extends d’Albis (2007). Since L is a C2-function of
(

a, ∂a
∂z
, z
)

,

the necessary conditions for a C2-function a (s, z) to be a solution of program

(13) are the Euler equation (14) and the terminal condition:

−
S (ω)

S (t− s)
e−ρ(s+ω−t)u′ (c (s, s+ ω)) ≤ 0, (15)

which is satisfied since p (s+ ω)S (ω) a (s, s+ ω) ≥ 0. Given our assump-

tions on u (.), the right-hand side of (14) is Lipschitz with respect to c (s, z).

Hence, there exists a unique solution to (14), denoted by ĉ (s, z), which can

be written as follows:

ĉ (s, z) = ĉ (s, t)φ (z, t) (16)

where φ (z, t) is a function that satisfies φ (t, t) = 1. Substitute (16) into (11)

to derive the initial consumption (i.e. at age t− s):

ĉ (s, t) =
a (s, t) +

∫ s+ω

t

S(u−s)
S(t−s)

p(u)
p(t)

e (s, u) du
∫ s+ω

t

S(u−s)
S(t−s)

p(u)
p(t)

φ (u, t) du
. (17)

Consequently, there exists a unique consumption profile that satisfies the

necessary conditions. Substituting this profile into (11) computed at time z
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yields a unique wealth profile denoted by â (s, z) that satisfies:

â (s, z) =

[

a (s, t) +

∫ s+ω

t

S (u− s)

S (t− s)

p (u)

p (t)
e (s, u) du

]

φ (z, t) (18)

×

∫ s+ω

z

S(u−s)
S(z−s)

p(u)
p(z)

φ (u, z) du
∫ s+ω

t

S(u−s)
S(t−s)

p(u)
p(t)

φ (u, t) du
−

∫ s+ω

z

S (u− s)

S (z − s)

p (u)

p (z)
e (s, u) du.

We note that â (s, s+ ω) = 0. To conclude this proof, let us show that the

necessary conditions are sufficient, by proving that for all z ∈ [t, s+ ω] , the

function L
(

a, ∂a
∂z
, z
)

is concave with respect to
(

a, ∂a
∂z

)

. The Hessian matrix

is written as:

H =
S (z − s)

S (t− s)
e−ρ(z−t)u′′ (c (s, z))









[

−p′(t)
p(t)

− S′(t−s)
S(t−s)

]2 [

p′(t)
p(t)

+ S′(t−s)
S(t−s)

]

[

p′(t)
p(t)

+ S′(t−s)
S(t−s)

]

1









(19)

As a consequence, L is concave, and the unique solution of the Euler equation

is globally maximal. �

This approach can easily be extended to more sophisticated problems.

For instance, Boucekkine et al. (2002), d’Albis and Augeraud-Véron (2008),

and Hritoenko and Yatsenko (2008) analyze education and retirement issues

with individuals who choose the optimal length of their working lifetime.

2.3 Specific utility functions

It is common in the literature of continuous-time overlapping generations

models to assume a specific utility function in order to explicitly derive the
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optimal consumption and wealth profiles. In most articles, the utility func-

tion is a power function:

u (c) =

∣

∣

∣

∣

∣

∣

∣

c1−
1
σ −1

1− 1
σ

if σ ∈ (0, 1) ∪ (1,+∞) ,

ln c if σ = 1,

(20)

where σ denotes the elasticity of intertemporal substitution. In this case, the

Euler equation is written as:

∂ĉ (s, z)

∂z
= −σ

[

p′ (z)

p (z)
+ ρ

]

ĉ (s, z) . (21)

The function (16) is thus φ (z, t) = e−σρ(z−t) [p (z) /p (t)]−σ which, based on

the proof of Lemma 1, makes simple the derivation of the optimal consump-

tion profile:

ĉ (s, z) =

p(t)
p(z)

a (s, t) +
∫ s+ω

t

S(u−s)
S(t−s)

p(u)
p(z)

e (s, u)du

∫ s+ω

t

S(u−s)
S(t−s)

[

p(u)
p(z)

]1−σ

e−σρ(u−t)du
e−σρ(z−t). (22)

With power utility functions, the consumption growth rate, given by (21), is

independent of the hazard death rate. Due to the fair pricing of annuities, the

increase in the discount rate implied by the uncertain longevity is canceled

out by the increase in the annuities return (Davis, 1981). Consequently, the

optimal consumption profile, given by (22), is proportional to the sum of the

initial wealth and the human wealth in nominal terms.

These properties crucially depend on the power utility function. Let us

suppose conversely that the utility is, for instance, described by an exponen-

tial function such that: u (c) = −e−αc/α with α > 0. The growth rate of
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consumption is then:

∂ĉ(s,z)
∂z

ĉ (s, z)
=

−α
[

p′(z)
p(z)

+ ρ
]

−α ln p(z)
p(t)

− αρ [z − t] + ĉ (s, t)
, (23)

where ĉ (s, t) is the consumption at the initial age t− s, such that:

ĉ (s, t) =
p (t) a (s, t) +

∫ s+ω

t

S(u−s)
S(t−s)

p (u) e (s, u) du
∫ s+ω

t

S(u−s)
S(t−s)

p (u) du

+
α
∫ s+ω

t

S(u−s)
S(t−s)

p (u)
[

ln p(u)
p(t)

+ ρ (u− t)
]

duz
∫ s+ω

t

S(u−s)
S(t−s)

p (u) du
. (24)

Consumption growth is no longer independent of the hazard death rate.

In the remaining sections of the paper, the utility function will be assumed

to satisfy (20). In this case, the optimal wealth profile is:

â (s, z) =

[

a (s, t) +

∫ s+ω

t

S (u− s)

S (t− s)

p (u)

p (t)
e (s, u) du

]

e−σρ(z−t)

[

p (z)

p (t)

]

−σ

(25)

×

∫ s+ω

z

S(u−s)
S(z−s)

[

p(u)
p(z)

]1−σ

e−σρ(u−z)du

∫ s+ω

t

S(u−s)
S(t−s)

[

p(u)
p(t)

]1−σ

e−σρ(u−t)du
−

∫ s+ω

z

S (u− s)

S (z − s)

p (u)

p (z)
e (s, u)du.

3 Intertemporal equilibrium

This section presents the dynamic system whose solution constitutes the in-

tertemporal equilibrium. Firstly, the behaviors of individuals are aggregated

and the production side of the economy is described. Conditions for the

existence of an intertemporal equilibrium are then presented.
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3.1 Demographic structure and aggregation

The demographic structure is based on Lotka’s (1939) stable population the-

ory. His theory demonstrates that the relative size of each cohort in the

population converges to a steady-state when the birth and death rates have

been constant over a sufficiently long period of time. We shall assume that

the demographic structure has reached its stationary distribution.

Each individual belongs to a large cohort of identical individuals. There-

fore, even though each individual’s lifespan is stochastic, there is no aggregate

uncertainty. The law of large numbers is supposed to apply, and thus, the

size of each cohort is decreasing at the hazard death rate. Let β > 0 be

the birth rate. The density of individuals of age (t− s) is βS (t− s) e−n(t−s),

where n is the demographic growth rate, which is the solution, for all t ≥ τ ,

of:
∫ t

t−ω

βS (t− s) e−n(t−s)ds = 1. (26)

The left-hand side of (26) is a positive, decreasing function of n, whose limits

are +∞ and 0 when n tends to −∞ and +∞ respectively. Hence, there

exists a unique real root whose sign depends on the difference between the

birth rate and the inverse of the life expectancy at birth. Strictly speaking,

n ≥ 0 if and only if β ≥ 1/
∫ ω

0
S (u) du. Such a population is often named

“Malthusian”.

The aggregate counterpart per capita of any individual variable x (s, t) is
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denoted by x (t) and satisfies:

x (t) =

∫ t

t−ω

βS (t− s) e−n(t−s)x (s, t) ds. (27)

Moreover, it is useful to define αx (t), the average age calculated cross-

sectionally, as:

αx (t) =

∫ t

t−ω
(t− s)S (t− s) e−n(t−s)x (s, t) ds
∫ t

t−ω
S (t− s) e−n(t−s)x (s, t) ds

. (28)

In the case where x (s, t) = 1, α1 (t) is the standard definition of the aver-

age age of the population. If x (s, t) = c (s, t) , αc (t) is the average age of

consumers weighted by their consumption.

3.2 Dynamics of aggregate consumption

In the case of a power utility function, the aggregate consumption, denoted

by c (t), satisfies (using (21)) the following differential equation:

c′ (t) = βĉ (t, t)−

[

n+ σ

(

p′ (z)

p (z)
+ ρ

)]

c (t)+

∫ t

t−ω

βS ′ (t− s) e−n(t−s)ĉ (s, t) ds,

(29)

where ĉ (t, t) is the optimal initial consumption of an individual born at time

t. Using (22), one can decompose the influence of prices on the dynamics

of the aggregate consumption, c′ (t). First, the expectations of prices over

the interval [t, t+ ω] are reflected through the consumption by newborns

ĉ (t, t). Second, past prices, and more precisely those defined over the interval

[t− ω, t] are reflected through the last term of the right-hand side of equation
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(29), which represents the aggregate consumption of individuals who died at

time t. Hence, prices which were relevant for these individuals also influence

the aggregate dynamics. The assumption concerning the upper bound of the

lifespan is important here, since the dynamics of the aggregate consumption

depend on prices over the interval [τ ,∞), if ω → +∞.

At equilibrium, the dynamics induced by (29) are characterized by a

mixed-type delay-differential equation: discrete advances and lags influence

the dynamics. As pointed out by Boucekkine et al. (2002) and (2004), lags

appear as resulting from the demographic structure. Conversely, d’Albis and

Augeraud-Véron (2004) argue that advances are yielded by the assumption

of perfect forecasting. This can be demonstrated by supposing logarithmic

utility and endowments distributed at birth only: e (s, t) = e (t) if s = t, and

zero otherwise. Then, using (22), the initial consumption of individuals born

at time t does not depend on expectations and can be written as:

ĉ (t, t) =
e (t)

∫ t+ω

t
S (u− s) e−ρ(u−t)du

. (30)

Differentiating (30) with respect to time yields an ordinary differential equa-

tion. As a consequence, equation (29) is a delay-differential equation: the

absence of expectations on future prices at the individual level leads to ag-

gregate dynamics that are only governed by the vintage structure of the

population. Let us note that by combining various assumptions and no-

tably a linear utility, Boucekkine et al. (2002) also obtain a delay-differential
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equation for the aggregate dynamics they consider.

The representation using a mixed-type delay-differential equation is al-

most generic in continuous-time overlapping generations models and there

are few cases for which it does not hold true. One such case is the cele-

brated model by Blanchard (1985) which reduces to a system of ordinary

differential equations2. One of the key assumptions is that the random age

at death follows a Poisson process. This is convenient because it implies that

all individuals have the same life expectancy regardless of their age. Then,

equation (29) may be rewritten as:

c′ (t) = βc (t, t) −

[

n+ σ

(

p′ (z)

p (z)
+ ρ

)

− µ

]

c (t) , (31)

where µ is the Poisson parameter featuring the hazard death rate.

Moreover, if the endowment grows at a constant rate over the life span,

using (22), the initial consumption of individual born at time t is given by:

ĉ (t, t) =
e (t, t)

∫

∞

t
e(γ−µ)(u−t)p (u) du

∫

∞

t
e−(µ+σρ)(u−t)p1−σ (u) du

p−σ (t) , (32)

where γ is the endowment growth rate. Differentiating (32) with respect

to time gives an ordinary differential equation. The reader may wish to

refer to De la Croix and Licandro (1999) who point out the importance of

the endowment distribution over the life cycle with regard to the aggregate

dynamics.

2See also Buiter (1988) and Weil (1989).
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Combining a constant hazard death rate and a constant endowment

growth rate drastically reduces the degree of heterogeneity in the economy:

all individuals have indeed the same propensity to consume. Moreover, with

these assumptions, models are unable to capture the life cycle features of

asset accumulation (see d’Albis, 2007).

To conclude the setup of the model, it is necessary to establish the initial

conditions that are derived from the distribution of initial individual wealth.

We assume that:

a (s, τ) are given for all s ∈ [τ − ω, τ ] ,

a (s, s) = 0 for all s > τ.
(33)

There are consequently two classes of individuals, depending on whether

they belong to cohorts born before or after the initial date of the economy

τ . In the former case, the wealth at age τ − s, namely a (s, τ), is given. In

the latter case, the wealth at birth is assumed to be zero, since there is no

intergenerational altruism. The dynamics of the aggregate consumption are

then piecewise: for all t ∈ [τ , τ + ω], they depend on prices over [τ , t+ ω]

and on the initial distribution of wealth, while for all t ≥ τ +ω, they depend

on prices over [t− ω, t+ ω].

3.3 Equilibrium

We now consider the computation of equilibrium prices. We extend the

pioneering works of Samuelson (1958) and Gale (1973) to a continuous-time
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framework. There is one goods market on which is traded non-storable goods

whose aggregate endowment is given and whose distribution among cohorts

is stationary. On the asset market, consumption loans are available at a risk-

free interest rate that equals the opposite of the inflation rate. Annuities are

also proposed to ensure the individual against the uncertainty on longevity.

Moreover, there may exist a durable but intrinsically worthless asset, called

money for convenience, which can be distributed by a “Central Bank” to

individuals. Money returns as much as consumption loans and can also be

covered by annuities.

Let m (s, t) ≥ 0 denote the quantity of money distributed at time t to

the individual born at time s. The real endowment in terms of non-storable

goods received by the same individual is consequently e (s, t)−m (s, t) /p (t) ,

and the aggregate real endowment, denoted by Y , is:

Y =

∫ t

t−ω

βe−n(t−s)S (t− s)

[

e (s, t) −
m (s, t)

p (t)

]

ds. (34)

Thus, the equilibrium condition on the goods market at time t ≥ τ is given

by:

c (t) = Y. (35)

On the asset market, the aggregate assets should be equal to the total amount

of money (evaluated in real terms) distributed since the initial date of the

economy. Indeed, by definition, the aggregate value of consumption loans is

zero. Thus, the equilibrium condition on the asset market at time t ≥ τ is
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given by:

a (t) =
β

p (t)

∫ t

τ

e−n(t−u)

∫ u

u−ω

e−n(u−s)s (u− s)m (s, u) dsdu

+
βe−n(t−τ)

p (t)

∫ τ

τ−ω

e−n(τ−s)s (τ − s)m (s, τ) ds. (36)

Monetary policy is thus important. For instance, the Central Bank may want

to set the growth rate of the quantity of money to a constant, γ. This policy

can notably be achieved by assuming that the distribution is such that for all

s ≥ τ , m (s, u) = m (u) > 0 and m′ (u) = γm (u). The equilibrium condition

(36) can then be expressed as:

a (t) =
e−n(t−τ )

p (t)

[

e(n+γ)(t−τ) − 1

(n+ γ)
+ 1

]

m (τ ) . (37)

Alternatively, we may wish for the money to be distributed at the initial date

only. In which case, we may write:

a (t) =
e−n(t−τ )

p (t)

∫ τ

τ−ω

βe−n(τ−s)s (τ − s)m (s, τ) ds. (38)

In the particular case in which the population growth is equal to the opposite

of the inflation rate, the right-hand side of the above equality is a constant

(see d’Albis and Augeraud-Véron, 2008). Such a constant is nevertheless

indeterminated since p (0) is unknown.

The dynamics of the aggregate assets at equilibrium can be equivalently

obtained by differentiating the demand or the supply side with respect to

time. Thus, differentiating the left-hand side of (36) and using the individ-
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ual’s flow budget constraint (9), the initial conditions (33), and the equilib-

rium condition on the goods market (35), we obtain:

a′ (t) = −

[

p′ (t)

p (t)
+ n

]

a (t) +

∫ t

t−ω

βe−n(t−s)S (t− s)
m (s, t)

p (t)
ds (39)

for all t ≥ τ . In the case where money is distributed at the initial date

only, the second term of the left-hand side of (39) equals zero for all t > τ

and the aggregate assets per capita reach a steady-state under one of only

two conditions: either when p′ (t) /p (t) = −n and the aggregate assets may

be a positive constant, or when p′ (t) /p (t) > −n and the aggregate assets

converge to zero.

Let us refer to the definition of an equilibrium path and that of a partic-

ular solution of it, namely the stationary one.

Definition 1. An equilibrium with perfect foresight is a function F (t) =

(c (t) , a (t) , p (t)), F : [τ ,+∞) → R3
+, C1 (R+) ∩ L1 (R+) , such that (i)

individuals maximize their utility subject to the budget constraint, (ii) the

aggregate consumption equals the aggregate endowment (i.e. c (t) = Y ), and

(iii) the aggregate assets are non-negative (i.e. a (t) ≥ 0). The equilibrium

is said to be monetary if a (t) > 0 and balanced if a (t) = 0.

Definition 2. A stationary solution is an equilibrium such that p′ (t) /p (t)

is constant.

Among stationary solutions, the Golden Rule path, such that p′ (t) /p (t) =
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−n, has been extensively studied. Since the work of Samuelson (1958), it is

customary to name this solution the “biological interest rate”. The proper-

ties of this solution in continuous-time were initially studied by Arthur and

McNicoll (1978) and Lee (1980), while recent advances have been proposed

by Bommier and Lee (2003) and Brito and Dilão (2006).

4 Dynamics of prices

In this section, the dynamics of intertemporal prices are studied. The local

dynamics in the vicinity of an existing steady-state are first analyzed in a

nonlinear model. Then, the global dynamics of a linear model are considered.

Some additional assumptions are made. Considering the individual, it

is assumed that instantaneous utility is represented by a power function as

in (20). Moreover, the endowment over the life cycle satisfies a uniform

distribution. Let α and β be such that 0 ≤ α < β ≤ ω, then let us assume

that:

e (s, t) =











R ω
0 e−nudu

R β
α

e−nudu
if α < t− s < β,

0 otherwise.

(40)

The aggregate endowment per capita is thus normalized to 1. Finally, the

lifespan is deterministic:

S (t− s) =







1 if t ∈ [s, s+ ω) ,

0 if t = s+ ω,
and thus

∫ 0

−ω

ensds =
1

β
. (41)

Using this last assumption, the optimal consumption profiles can be derived
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from (22) and satisfy:

ĉ (s, t) =















p(τ)a(s,τ)+
R s+ω
τ

p(u)e(s,u)du
R s+ω

τ
p1−σ(u)e−σρ(u−τ)du

e−σρ(t−τ)p−σ (t) if s ∈ [τ − ω, τ) ,

R s+ω
s

p(u)e(s,u)du
R s+ω

s
p1−σ(u)e−σρ(u−s)du

e−σρ(t−s)p−σ (t) if s ≥ τ .

(42)

Concerning the asset market, it is assumed that there is no money in the

economy. The equilibrium conditions on the goods and asset markets on the

goods and asset markets are expressed as:

∫ t

t−ω

βe−n(t−s)ĉ (s, t) ds = 1, (43)

∫ t

t−ω

βe−n(t−s)â (s, t) ds = 0, (44)

for all t ≥ τ . These assumptions do not qualitatively affect the results that

will be obtained since the dynamics of the aggregate consumption are nev-

ertheless given by a mixed-type delay-differential equation.

4.1 Long run fluctuations

First of all, we consider the price fluctuations in the vicinity of a steady-

state The initial trajectory can thus be ignored since only the dynamics for

t ≥ τ + ω are relevant. Replacing (40) and (42) for s ≥ τ in (43) gives the

condition on the goods market for t ≥ τ + ω:

∫ t

t−ω

e−(n+σρ)(t−s)
∫ s+β

s+α

p(u)
p(t)

du

∫ β

α
e−nudu

∫ s+ω

s

[

p(u)
p(t)

]1−σ

e−σρ(u−s)du
ds = 1. (45)

According to Definition 2, a stationary solution is a real root, denoted by r,

that solves η (r) = 1, where η (.) is obtained by replacing p′ (t) /p (t) = −r
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for all t in (45). We obtain:

η (r) =

∫ β

α
e−rudu

∫ ω

0
e−[n+σ(ρ−r)]udu

∫ β

α
e−nudu

∫ ω

0
e−[(1−σ)r+σρ]udu

. (46)

Let us now characterize the existence of a stationary solution. Firstly,

we note that the biological interest rate (i.e. r = n) always appears as a

candidate since η (n) = 1. However, the condition on the asset market (44)

must also be satisfied. Hence, the following result may be established.

Lemma 2. The biological interest rate is a stationary solution if and only if

the average age of consumers equals the average age of endowment earners.

Proof. The proof is based on the fact that aggregate assets per capita, namely

a (t), should be equal to zero. For any stationary solution p′ (t) /p (t) = −r,

constant aggregate assets per capita should satisfy:

a (t) [r − n] + 1 − η (r) = 0 (47)

Then, aggregate assets are equal to zero if and only if: limr=n
η(r)−1
r−n

= 0, or

equivalently, by applying l’Hôpital’s rule, if and only if: η′ (r)|r=n = 0. Using

(46), we obtain the following condition:

∫ ω

0
ue−[(1−σ)n+σρ]udu

∫ ω

0
e−[(1−σ)n+σρ]udu

=

∫ β

α
ue−nudu

∫ β

α
e−nudu

. (48)

Let us note that σ [n− ρ] is the growth rate of individual consumption when

p′ (t) /p (t) = −r and conclude using (28). �
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Lemma 2 implies that when there is no money in the economy, the biological

interest rate has little chance of being a valid equilibrium. The exception

is nongeneric and is named the “coincidental equilibrium” in literature, for

which the monetary and balanced equilibria are the same. Nevertheless, the

interpretation given in Lemma 2 in terms of average ages is meaningful. By

forbidding positive aggregate assets, the difference between the average ages

of the consumer and the endowment earner should be zero. If the difference

is positive, the “average worker may transfer endowments to the “average

consumer”, in which case the aggregate assets would have to be positive,

which is not allowed. In the latter case, money has a positive value in the

long run (see d’Albis and Augeraud-Véron, 2008).

Since p′ (t) /p (t) = −n does not constitute a valid steady-state, we are

now looking for other steady-states. We now refer to the work d’Albis and

Augeraud-Véron (2007).

Lemma 3. Besides the biological interest rate, there exists (n, ρ, σ, α, β, ω)

such that there is no steady-state. If α = 0 and β = ω, there always ex-

ists a steady-state, namely p′ (t) /p (t) = −ρ, such that the equilibrium is

characterized by the absence of trade on the asset market.

Proof. Firstly, we assume that ρ = n = 0. We demonstrate that there is no

r 6= 0 such that η (r) = 1 if α = 0 and β ∈ (0, 1 − σ]. We define ψ (r; β) such
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that:

ψ (β) =

∫ 1

0
eσrzdz

β

∫ β

0
e−rzdz

∫ 1

0
e−(1−σ)rzdz

. (49)

We observe that ψ (r; 1 − σ) > 1 ⇔ r > 0 and ∂ψ (r; β) /∂β > 0 ⇔ r < 0.

The existence of at least one steady-state is simple. Let us concentrate on a

particular case that satisfies α = 0 and β = ω. Using (46) and (48), we may

immediately conclude that r = ρ is a valid steady-state. �

The no-trade steady-state is an equilibrium such that there are no consump-

tion loans sold on the market, and consequently no trading among genera-

tions: individuals consume their instantaneous endowments throughout their

life. This is a particular solution, which is easily obtained. In general, how-

ever, when there are more than two generations, and obviously when one

considers a continuum, the stationary solution of a balanced equilibrium

does involve intergenerational trading3.

Let us now refer to the study of long run fluctuations. To prove their

existence, we demonstrate that some solutions of the linearized counterpart

of equation (45), which characterizes the local motion of our economy, have

Hopf bifurcation values. This proof follows Rustichini (1989b) and Benhabib

and Rustichini (1991) who have also proposed economic models whose dy-

namics are described by nonlinear functional equations that may generate

Hopf bifurcations. Their models are, however, quite different and describe

3See Kim (1983), Aiyagari (1988) and Ghiglino and Tvede (1995).
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the behavior of an infinitely-lived representative agent.

Lemma 4. There exists (n, ρ, σ, α, β, ω) such that the characteristic function

associated with the linearized dynamics has pure imaginary roots that have

Hopf bifurcation values.

Proof. Assuming that ω > 1, ρ = n = 0, α = 0 and β = 1, we prove that

a Hopf bifurcation exists if (ω − 1)−1 /∈ N. For these parameters, equation

(45) may be simplified to:

∫ t

t−ω

∫ s+ω

s

p(u)
p(t)

du

∫ s+ω

s

[

p(u)
p(t)

]1−σ

du
ds = ω. (50)

The local dynamics in the vicinity of steady-state r∗ correspond to x (t)

defined such that r(t) = r∗ + ǫx(t). We replace p(u)
p(t)

= e−
R u

t
[r∗+ǫx(j)]dj in (50)

and carry out a Taylor expansion in the vicinity of ǫ = 0. Given Lemma 3,

we know that r∗ = 0. Let us use the definition of X(t) =
∫ t

0
x (u) du that

can be rearranged to obtain:

X(t) =
1

ω2

∫ t

t−ω

∫ s+ω

s

X(z)dzds. (51)

Let ∆ (λ, σ) = 0 be the characteristic function, obtained by the following

change of variable: X(t) = eλt in (51):

∆ (λ, σ) = ω2 −

∫ ω

0

∫ ω

0

eλ(u−s)duds. (52)

We then refer to Hupkes et al. (2008) who prove the existence of an infinite

sequence of pairs (σk, qk), with σk > 0 and qk > 0, such that:

27



i) σk → 0 and qk → ∞ as k → ∞.

ii) The characteristic function ∆ (z, σ) = 0 has two simple roots z = ±iqk.

iii) For all k ∈ N and m ∈ Z − {±1} , the inequality ∆ (Im qk, σ) 6= 0.

iv) Re
∆σk

(iqk,σk)

∆1(iqk,σk)
6= 0. �

In order to investigate the role of the initial conditions, we now consider

the global dynamics of the model.

4.2 Global dynamics

In order to analyze the global dynamics of the model, we confine our attention

to a linear version of the integral equation being considered. As in Demichelis

and Polemarchakis (2007) and Edmond (2008), this can be done by supposing

logarithmic preferences (i.e. σ = 1). Furthermore, to avoid the proofs being

too lengthy, we moreover assume that endowments are uniformly distributed

among generations: α = 0 and β = ω.

In what follows, we begin by defining the piecewise functional differential

equations that characterize the equilibrium prices for t ≥ τ . Next, we proceed

in two steps: first of all, we analyze the dynamic behavior for t ≥ ω+τ . Then,

we study the existence of a solution using the dynamics over [τ , τ + ω], as

carried out by d’Albis and Augeraud-Véron (2004).
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Property 1. For σ = 1, α = 0 and β = ω, the dynamics are given by:

p (t) = f (t) +

∫ t

0

p (v) δ1 (t, v) dv (53)

+

∫ ω

t

p (v) δ2 (t, v) dv +

∫ t+ω

t

p (ν) δ3 (v − t) dv,

for τ < t < τ + ω and:

p (t) =
β

∫ ω

0
e−ρzdz

[
∫ t

t−ω

p (z)ϕ1 (t− z) dz +

∫ t+ω

t

p (z)ϕ2 (t− z + ω) dz

]

,

(54)

for t > τ + ω, with:

f (t) =

∫ τ

t−ω

βe−(n+ρ)(t−s) a (s, τ)
(

∫ s+ω

τ
e−ρ(ν−s)dv

)ds, (55)

δ1 (t, ν) = β





∫ 0

t−ω

e−(n+ρ)(t−s)

(

∫ s+ω

0
e−ρ(ν−s)dv

)ds+

(

∫ v

0
e−(n+ρ)(t−s)ds
∫ ω

0
e−ρzdz

)



 ,(56)

δ2 (t, ν) = β

∫ 0

z−ω

e−(n+ρ)(t−s)

(

∫ s+ω

0
e−ρ(ν−s)dv

)ds, (57)

δ3 (v) = β

∫ ω−v

0
e−(n+ρ)sds

∫ ω

0
e−ρzdz

, (58)

ϕ1 (u) =
e−(n+ρ)u − e−(n+ρ)ω

n+ ρ
and ϕ2 (u) =

1 − e−(n+ρ)u

n+ ρ
. (59)

Proof. Refer to the Appendix. �

The system defined in Property 1 includes, via the variable f (t), the initial

distribution of wealth among generations that constitutes the initial condition

of the system. The price dynamics, given by (53), are characterized by an

algebraic functional equation with advance. When all the individuals who
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were alive at the initial date are dead, a second equation then characterizes

the dynamics for an infinite future. The price dynamics, which are then given

by (54), are characterized by an algebraic functional equation of mixed type,

where both delays and advances have an influence. It is easy to check that

the two equations are the same at t = τ + ω. According to Edmond (2008),

we may rewrite (54) as follows:

p (t) =

∫

∞

0

p (z) k (t, z) dt, (60)

where the computation of the integral kernel k (t, z) is given in the Appendix.

In the following Lemma, we analyze the roots of the characteristic equa-

tion. Due to the delays and the advances, this equation is transcendental.

The number of roots is thus infinite.

Lemma 5. The characteristic equation associated with the system of equa-

tions (53) and (54) has: 1) two real roots −ρ and −n; 2) no complex roots

with real parts that belong to the closed interval: [min {−ρ,−n} ,max {−ρ,−n}],

except −ρ and −n; 3) an infinity of complex roots with real parts greater than

max {−ρ,−n}; 4) an infinity of complex roots with real parts smaller than

min {−ρ,−n}.

Proof. The characteristic equation is given by:

∆ (λ) =

∫ ω

0

e−ρzdz

∫ ω

0

e−nzdz −

∫ ω

0

e−(n+ρ)s

∫ ω

0

eλ(z−s)dzds. (61)

Result 1 is immediate. Result 2 is obtained by contradiction: assume that
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a root that satisfies λ = p + iq, where p ∈ [−min {ρ, n} ,−max {ρ, n}] , and

q 6= 0, exists. Let g (λ) =
∫ ω

0
e−(n+ρ)s

∫ ω

0
eλ(z−s)dzds. Then,

|g (p+ iq) | < |

∫ ω

0

e−(n+ρ)s

∫ ω

0

ep(z−s)dzds| = g (q) , (62)

as q 6= 0, while the convexity of g implies that g (q) ≤
∫ ω

0
e−ρzdz

∫ ω

0
e−nzdz,

for all p ∈ [−min {ρ, n} ,−max {ρ, n}], which implies that the considered

root does not exist. Results 3 and 4 can be derived using the geometrical

method proposed by Bellman and Cooke (1963, p. 410). �

The existence of solutions of mixed-type functional equations is not easy

to establish. For instance, Rustichini (1989a) has proposed some simple

counterexamples for which functional equations of mixed type may fail to

have a solution. More generally, Burke (1996) proved that the existence of an

equilibrium is not always ensured in continuous-time overlapping generations

models even under rather standard and simple assumptions.

Let us now refer to Rustichini (1989a) and Mallet Paret and Verduyn

Lunel (2008). They prove, using different techniques, that a decomposition

of C [τ , τ + 2ω] can be obtained such that C [τ , τ + 2ω] = P ⊕ Q, where

P ⊂ C [τ , τ + 2ω] (resp. Q ⊂ C [τ , τ + 2ω]) is the set of initial conditions

such that solutions of the functional equation satisfy limt→−∞ p (t) e−rt = 0

(resp. limt→∞ p (t) e−rt = 0). Using the results of Mallet Paret and Verduyn

Lunel (2008), we rewrite the solutions p (t), for t ∈ [τ + ω,∞) such that

limt→∞ p (t) e−rt = 0, as solutions of a delay equation with initial conditions
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in [τ , τ + ω]. The characteristic polynomial of such a delay equation has the

characteristic roots:

{λ such that ∆ (λ) = 0 and Re (λ) ≤ ρ} . (63)

Thus, according to the localization of the real roots, in the vicinity of the no-

trade steady-state, oscillations can survive if ρ < n while they are all damped

if ρ > n. Interestingly, we have seen that if ρ + n = 0, the characteristic

equation may be written as:

∆ (λ) = ω2 −

∫ ω

0

∫ ω

0

eλ(z−s)dzds. (64)

Then, if λ is a characteristic root, −λ is also a characteristic root, in ac-

cordance with the findings of Demichelis and Polemarchakis (2007). In this

particular case, an analysis of the local indeterminacy can be done using a

discrete counterpart of the model and this symmetry. For all other cases, in-

determinacy in continuous-time overlapping generations models is a difficult

problem that has yet to be solved.

The existence of a solution is established in the following lemma.

Lemma 6. For any given distribution of initial assets a (s, τ), there exists a

unique solution to equations (53) and (54). Such a solution does not always

constitute an equilibrium since it may imply p (t) ≤ 0 for some t ∈ [τ ,∞).
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Proof. Let us rewrite equation for t > ω as:

p′ (t) =
β

∫ ω

0
e−ρzdz

[
∫ t+ω

t

p (z) dz − e−(n+ρ)ω

∫ t

t−ω

p (z) dz

]

− (n+ ρ) p (t) .

(65)

Rewriting this in a compact form, p′ (t) =
∫ ω

−ω
p (z + t) dη (z) , with η (z)

being of dimension 1. The characteristic equation can then be rewritten as

∆ (λ) = 0, with:

∆ (λ) = λ−

∫ ω

−ω

eλzdη (z) . (66)

Let λ0 ∈ C. According to Theorem 5.2. of Mallet Paret and Verduyn Lunel

(2008), there exists dη
−

(z) and dη+ (z) of finite Lebesgue-Stieltjes measures

on [τ − ω, τ ] and on [τ , τ+ω], such that the following decomposition of ∆ (λ)

can be written:

∆ (λ) (λ− λ0) = ∆− (λ)∆+ (λ) (67)

with:

∆− (λ) = λ−

∫ 0

−ω

eλzdη
−

(z) and ∆+ (λ) = λ−

∫ ω

0

eλzdη+ (z) (68)

According to Theorem 5.3, if ∆+ (λ0) = 0, then every solution of p′ (t) −

∫ 0

−ω
p (z + t) dη

−
(z) is also a solution of p′ (t) =

∫ ω

−ω
p (z + t) dη (z). Let

p (t) = eλ1t, with λ1 ∈ {−n,−ρ} , be the stationary solution. If not, we

can exchange roots from ∆− to ∆+ such that all the roots in the quotient

function ∆∆−1
−

satisfy Reλ > λ1. Theorem 5.4 gives the reverse of The-

orem 5.3: any solution on [τ ,∞] of p′ (t) =
∫ ω

−ω
p (z + t) dη (z) for which
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p (t) e−λ1t is bounded is also a solution of p′ (t) =
∫ 0

−ω
p (z + t) dη

−
(z). Sim-

ilarly, the dynamics over the interval [τ , τ + ω] can be written as: p′ (t) =

∫ ω

0
p (z + t) dη

−
(z, t) + f (t).

In order to obtain the existence of an equilibrium, we need to find an ini-

tial condition for p′ (t) =
∫ 0

−ω
p (z + t) dη

−
(z) , which is a function defined

over the interval [τ , τ + ω] , and which satisfies both the advance and the

delay equations. This initial condition is a solution of the following integral

equation:

p0 (t) = f (t) +

∫ t

0

p0 (v) δ1 (t, v) dv +

∫ t+ω

ω

ϕ (v, p0 (v)) δ3 (v − t) dv

+

∫ ω

t

p0 (v) (δ2 (t, v) + δ3 (v − t)) dv, (69)

where p0 (0) and ϕ (ω, p0 (ω)) = p0 (ω) are given. Indeed, let p0 (t) for

t ∈ [τ , τ + ω] . Integrating equation p′ (t) =
∫ 0

−ω
p (z + t) dη

−
(z) over t ∈

[τ + ω, τ + 2ω] with initial condition p0 (t) , we obtain p1 (t) = ϕ (t, p0 (t))

for t ∈ [τ + ω, τ + 2ω]. Let the solution of the advanced equation p′ (t) =

∫ ω

0
p (z + t) dη

−
(z, t)+f (t) with initial condition p1 (t) in the interval [τ , τ + ω]

be p2 (t). Thus, we look for p0 such that p0 (t) = p2 (t). �

We use two preliminary results to prove the existence of a bounded solu-

tion. First, the dynamics are described by functional equations with discrete

advances over the interval [τ , τ + ω] and discrete delays over [τ + ω,∞). The

delay-differential equation may then be initialized for any set of initial condi-
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tions; consequently, there exists a unique solution in [τ ,∞). This solution is

characterized by oscillations whose magnitude decreases with time. However,

these oscillations may lead to negative prices for some finite interval of time,

even with a positive price for times t = τ and t→ ∞. Such solutions are, of

course, not a valid equilibrium.

Let us conclude this section by some numerical computations of the solu-

tion. To do this, we use the same parameters as Edmond (2008). The lifetime

is set to ω = 80 (years) and the initial date to τ = 0. The aggregate endow-

ment is constant and the distribution of individual endowments is uniform

within the population. The steady-state growth rate of prices is thus the

opposite of the discount rate, which is set to ρ = 0.04. Figures 1 and 2 show

the initial asset distribution a (s, τ), the function f (t) defined in Property 1,

and the equilibrium prices p (t) represented by the solid line and compared

to the benchmark e−0.05t. The initial equilibrium price is not determined by

the model and is thus set to 1. The top row of Figure 1 corresponds to the

casein which the young have initial liabilities, whereas in the bottom row, it

is the old who have initial liabilities. Finally the population growth rate is
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set to n = 0.01 in Figure 1, whereas n = 0.1 in Figure 2.

Asset distribution Function f (t) Prices p (t)
Figure 1

Asset distribution Function f (t) Prices p (t)
Figure 2

At first sight, these figures are similar to those obtained by Edmond (2008).

The distribution At first sight, these figures are similar to those obtained

by Edmond (2008). The distribution of initial assets barely affects the in-

tertemporal prices profile. It strongly modifies the function f (t) , but not

the prices, which are much more sensitive to the population growth rate.

36



The higher the value of n, the wider the gap between pure exponential dis-

counting and equilibrium prices. We also note that prices do not display

large fluctuations. This is explained by the fact that the complex roots of

the solution have real parts that are smaller than min {−ρ, n} (see Lemma

5), and hence the trajectory is dominated by e−ρt. This, however, does not

mean that these fluctuations do not exist. Indeed, in Figure 3, the dynamics

of the interest rate (i.e. −p′ (t) /p (t)) are represented for both n = 0.01 and

n = 0.1.

−p′ (t) /p (t) when n = 0.01 −p′ (t) /p (t) when n = 0.1
Figure 3

The interest rate converges to its long run value given by ρ = 0.04, but the

dynamics depend on the sign of the difference between the discount rate ρ and

the population growth rate n. A direct result from Lemma 5 is that if ρ > n,

complex roots that enter the solution have real parts that are much smaller

than −ρ and consequently, the dynamics are monotonic (picture shown on

the left). Conversely, if ρ < n, there exist complex roots with real parts that

are very close to −ρ and thus, the dynamics are oscillatory.
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5 Conclusion

In this article, we have presented the latest developments in continuous-

time overlapping generations models. The aggregation of the behaviors of

individuals allows us to obtain a functional differential equation of mixed

type, whose solution represents the equilibrium prices. Over time, prices

display fluctuations that may be permanent.

Several issues remain open in the theory of overlapping generations mod-

els in continuous-time. One of the most difficult issues is the determinacy of

the equilibrium. It is well known that in traditional models, the solution does

not determine the level of prices p (τ ). Moreover, Demichelis and Polemar-

chakis (2007) argue that the degree of indeterminacy could be greater when

considering continuous-time frameworks. A promising method of studying

this issue could be inspired from the work of Mallet Paret and Verduyn Lunel

(2008). The idea is that for a given mixed-type delay-differential equation,

we can determine a delay-differential equation whose characteristic roots are

those of ∆ (λ) = 0. It is, however, very difficult to arrange this equation

in an explicit form, even in the simplest of cases. It is nevertheless equiv-

alent to finding λ0, ∆− (λ) , and ∆+ (λ) that appear in the factorization

∆ (λ) (λ− λ0) = ∆− (λ)∆+ (λ) , where ∆− (λ) has delays only and ∆+ (λ)

has advances only. Mallet Paret and Verduyn Lunel (2008) go on to prove,

in problem of dimension one, the existence of an invariant n# of the factor-
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ization that satisfies n# ≥ 2. In this case, the indeterminacy is of degree

n# − 1.

6 Appendix

Proof of Property 1. Replacing (40) and (42) for s ≥ τ , in (43) yield:

p (t) =
β

∫ ω

0
e−ρzdz

∫ t

t−ω

e−(n+ρ)(t−s)

∫ s+ω

s

p (z) dzds,

for t > τ + ω and:

p (t) =

∫ τ

t−ω

βe−(n+ρ)(t−s)

(

a (s, τ) +
∫ s+ω

τ
p (ν) dv

)

(

∫ s+ω

τ
e−ρ(ν−s)dv

) ds

+

∫ t

τ

βe−(n+ρ)(t−s)

∫ s+ω

s
p (z) dz

∫ s+ω

s
e−ρ(z−s)dz

ds,

for τ < t < τ + ω. Concerning the dynamics for t > τ + ω, using Fubini’s

Theorem and β = n/ (e−nω − 1), we obtain:

p (t) =
e−nω − 1

n
∫ ω

0
e−ρzdz

[
∫ t

t−ω

p (z)
e−(n+ρ)ω − e−(n+ρ)(t−z)

n+ ρ
dz

+

∫ t+ω

t

p (z)
e−(n+ρ)(t−z+ω) − 1

n + ρ
dz

]

Concerning the dynamics for τ < t < τ + ω, we use the fact that:

∫ τ

t−ω

βe−(n+ρ)(t−s)

∫ s+ω

τ
p (ν) dv

∫ s+ω

τ
e−ρ(ν−s)dv

ds

=

∫ t

τ

βp (ν)

∫ τ

t−ω
e−(n+ρ)(t−s)ds

∫ s+ω

τ
e−ρ(ν−s)dv

dv +

∫ t+ω

t

βp (ν)

∫ τ

v−ω
e−(n+ρ)(t−s)ds

∫ s+ω

τ
e−ρ(ν−s)dv

dv,
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and:

∫ t

τ

βe−(n+ρ)(t−s)

∫ s+ω

s
p (z) dz

∫ s+ω

s
e−ρ(z−s)dz

ds

=

∫ t

τ

βp (z)

∫ z

τ
e−(n+ρ)(t−s)ds

∫ s+ω

s
e−ρ(z−s)dz

dz +

∫ t+ω

t

βp (z)

∫ t

z−ω
e−(n+ρ)(t−s)ds

∫ s+ω

s
e−ρ(z−s)dz

dz.
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