Small points on rational subvarieties of tori.

Francesco Amoroso, Evelina Viada

To cite this version:

Francesco Amoroso, Evelina Viada. Small points on rational subvarieties of tori.. Commentarii Mathematici Helvetici, 2012, 87 (2), pp.355-383. hal-00424771

HAL Id: hal-00424771

https://hal.science/hal-00424771
Submitted on 17 Oct 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SMALL POINTS ON RATIONAL SUBVARIETIES OF TORI.

FRANCESCO AMOROSO AND EVELINA VIADA
Laboratoire de mathématiques Nicolas Oresme, CNRS UMR 6139
Université de Caen, Campus II, BP 5186
14032 Caen Cedex, France
Department of Mathematics
University of Basel, Rheinsprung 21
4051 Basel, Suisse

1. Introduction

In this article we study the distribution of the small points of proper subvarieties of the torus $\mathbb{G}_{\mathrm{m}}^{n}$ defined over \mathbb{Q}. For $n=1$, the problem corresponds to finding lower bounds for the Weil height of an algebraic number. Let α be a non-zero algebraic number of degree D which is not a root of unity. Lehmer (see [Leh 1933]) asked whether there exists an absolute constant $c>0$ such that $h(\alpha) \geq \frac{c}{D}$. The best known result in this direction is Dobrowolski's result ([Dob 1979]): if $D>1$,

$$
h(\alpha) \geq \frac{c}{D}\left(\frac{\log D}{\log \log D}\right)^{-3}
$$

for some absolute constant $c>0$. Dobrowolski's theorem was generalized to \mathbb{Q} irreducible subvarieties $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ in a series of articles by David and the first author. They prove the Generalized Dobrowolski Bound stated below. Their proofs are long and involved. Mainly, they need an intricate descent argument, hard to read by non specialists. This descent has been used in several occasions by other authors. Our first achievement in this paper is a simple and short proof of an explicit and improved version of the Generalized Dobrowolski Bound. More precisely, we generalize this statement describing the distribution of small points for different invariants. In addition we improve some bounds in the applications.

We fix the usual embedding of $\mathbb{G}_{\mathrm{m}}^{n}$ in \mathbb{P}^{n} given by $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(1: x_{1}\right.$: $\cdots: x_{n}$). For a set $S \subseteq \mathbb{G}_{\mathrm{m}}^{n}$, we denote by \bar{S} the Zariski closure of S in $\mathbb{G}_{\mathrm{m}}^{n}$. On \mathbb{P}^{n} we consider the Weil logarithmic absolute height, denoted by $h(\cdot)$. Given $\varepsilon>0$ we denote by $S(\varepsilon)$ the set of $\boldsymbol{\alpha} \in S \cap \mathbb{G}_{\mathrm{m}}(\overline{\mathbb{Q}})$ of height $\leq \varepsilon$. A variety $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ is the intersection of $\mathbb{G}_{\mathrm{m}}^{n}$ with a variety of \mathbb{P}^{n} defined over $\overline{\overline{\mathbb{Q}}}$. Note that the varieties which appear in this paper are not necessarily irreducible or equidimensional. However we consider only proper subvarieties of $\mathbb{G}_{\mathrm{m}}^{n}$, therefore we say subvariety of $\mathbb{G}_{\mathrm{m}}^{n}$ for proper subvariety of $\mathbb{G}_{\mathrm{m}}^{n}$. We define the essential minimum $\hat{\mu}^{\text {ess }}(V)$ of V as the infimum of the set of $\varepsilon>0$ such that $V(\varepsilon)$ is Zariski-dense in V. We say that $B \subset \mathbb{G}_{\mathrm{m}}^{n}$ is torsion if it is a translate of a subtorus by a torsion point. The Kronecker theorem for points and the Bogomolov conjecture (Zhang [Zha 1995]) for varieties of positive dimension yield

$$
\begin{equation*}
\hat{\mu}^{\text {ess }}(V)>0 \text { if and only if } V \text { is not a union of torsion varieties. } \tag{1.1}
\end{equation*}
$$

According to different geometric and arithmetic assumptions, we relate $\hat{\mu}^{\text {ess }}(V)$ to different invariants of V, proving essentially sharp effective versions of (1.1). Lehmer's conjecture can be seen as a sharp effective version of (1.1) for points. The Generalized Dobrowolski Bound is a quasi optimal effective version of (1.1) for varieties defined over \mathbb{Q} of arbitrary dimension. For varieties over arbitrary fields which are not union of translates of subtori we speak of Effective Bogomolov. This case has been treated in our previous work [Amo-Via 2009]. Note that there are intersections between the two problems, namely for varieties over \mathbb{Q} which are not translates. Therefore an interesting new case treated in this work, is the one of translates defined over \mathbb{Q} and specially the case of 0 -dimensional varieties consisting of the conjugates of a non-torsion point $\alpha \in \mathbb{G}_{\mathrm{m}}^{n}(\overline{\mathbb{Q}})$. Naturally the Galois group plays a key role in this work.

Let us introduce relevant invariants of a proper projective subvariety $V \subseteq \mathbb{P}^{n}$. The obstruction index $\omega(V)$ is the minimum degree of a hypersurface Z containing V. Define $\delta(V)$ as the minimal degree δ such that V is, as a set, the intersection of hypersurfaces of degree $\leq \delta$. Finally, define $\delta_{0}(V)$ as the minimal degree δ_{0} such that there exists an intersection $X=Z_{1} \cap \cdots \cap Z_{r}$ of hypersurfaces Z_{j} of degree $\leq \delta_{0}$ such that any $\overline{\mathbb{Q}}$-irreducible component of V is a $\overline{\mathbb{Q}}$-irreducible component of X. In corollary 2.3 we prove that if V is defined over \mathbb{Q}, we can choose the above hypersurfaces Z, Z_{1}, \ldots, Z_{r} also defined over \mathbb{Q}.

The following effective version of (1.1) is proved in [Amo-Dav 1999] for $\operatorname{dim} V=$ 0 , in [Amo-Dav 2000] for $\operatorname{codim} V=1$ and in [Amo-Dav 2001] for varieties of arbitary dimension.
Generalized Dobrowolski Bound. Let V be a subvariety of $\mathbb{G}_{\mathrm{m}}^{n}$ defined over \mathbb{Q} of codimension k. Let us assume that V is not contained in any union of proper torsion varieties. Then, there exist two positive constants $c(n)$ and $\kappa(k)=$ $(k+1)(k+1)!^{k}-k$ such that

$$
\begin{equation*}
\hat{\mu}^{\mathrm{ess}}(V) \geq \frac{c(n)}{\omega(V)}(\log 3 \omega(V))^{-\kappa(k)} \tag{1.2}
\end{equation*}
$$

To recover a slightly weaker version of Dobrowolski's theorem it is sufficient to take V equal to the set of conjugates of the algebraic number α.

For a subvariety V of $\mathbb{G}_{\mathrm{m}}^{n}$, we denote by V^{*} the complement in V of the union of the torsion varieties $B \subseteq V$. By (1.1) the minimum of the height on $V^{*}(\overline{\mathbb{Q}})$ is >0. In [Amo-Dav 2004] is proved that for a \mathbb{Q}-irreducible V and $\boldsymbol{\alpha} \in V^{*}(\overline{\mathbb{Q}})$

$$
\begin{equation*}
h(\boldsymbol{\alpha}) \geq \frac{c(n)}{\delta(V)}(\log 3 \delta(V))^{-\kappa(n)} . \tag{1.3}
\end{equation*}
$$

where $c(n)>0$ is not computed and where $\kappa(n) \approx n^{n^{2}}$ is as above. Notice that this lower bound implies (1.2), with a possible worse exponent on the remainder term. To see that, apply (1.3) to a hypersurface $Z \supseteq V$ defined over \mathbb{Q} and of degree $\omega(V)$.

For $n=1$ Dobrovolski's result remains the best known. In order to simplify the exposition and the computation of the constants we prefer to assume $n \geq 2$. Our first achievement is a simple and short proof of an explicit and improved version of (1.3):

Theorem 1.1. Let $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ be $a \mathbb{Q}$-irreducible variety of dimension d. Then, for any $\boldsymbol{\alpha} \in V^{*}(\overline{\mathbb{Q}})$

$$
h(\boldsymbol{\alpha}) \geq \delta(V)^{-1}\left(935 n^{5} \log \left(n^{2} \delta(V)\right)\right)^{-(d+1)(n+1)^{2}}
$$

In short, the exponent $\kappa(n)$ on the remainder term is improved by one exponential. In addition the constant $c(n)$ is computed. This could be useful in possible applications. However, the most interesting aspect remains the simplicity of the new method. We avoid the technical descent argument and the generalization of Philippon zero's estimate used in [Amo-Dav 1999]. This new method could find other applications, as for instance in the context of the Relative Lehmer Problem, where methods similar to the ones of David and the first author are used (see [Del 2009]).

To be able to use a conclusive geometric induction similar to the one presented in [Amo-Via 2009] we first need to produce a new sharp lower bound for $\hat{\mu}^{\text {ess }}(V)$ in terms of $\delta_{0}(V)$ for varieties which are not union of torsion varieties.
Theorem 1.2. Let V be a subvariety of $\mathbb{G}_{\mathrm{m}}^{n}$ of codimension k, defined and irreducible over \mathbb{Q}. Assume that V is not a union of torsion varieties. Let

$$
\theta_{0}=\delta_{0}(V)\left(52 n^{2} \log \left(n^{2} \delta_{0}(V)\right)\right)^{(n+1)(k+1)}
$$

Then there exists a hypersurface Z defined over \mathbb{Q} of degree at most θ_{0} which does not contain V and such that

$$
V\left(\theta_{0}^{-1}\right) \subseteq V \cap Z
$$

This theorem is the arithmetic counterpart to [Amo-Via 2009], theorem 2.1. On one side, V has to be defined over \mathbb{Q}, assumption not necessary in [Amo-Via 2009]. On the other side V can be a union of translates of torsion varieties by non-torsion points, situation to avoid in [Amo-Via 2009]. Despite some similarity, the methods used in other works are not sufficient to prove this theorem. As in [Amo-Via 2009], we first produce an inequality involving some parameters, $\hat{\mu}^{\text {ess }}(V)$ and the Hilbert functions of two varieties related to V (theorem 3.1). Some ingredients of the proof of theorem 3.1 come from [Amo-Dav 2003]. The main difference is the following. In the quoted paper, using Siegel's lemma, the authors construct one auxiliary function vanishing on V and then they extrapolate to show that the obstruction index of $[p] V$ is small. Here we use Siegel's lemma in its full power and we find a family of linearly independent auxiliary functions vanishing on V. Then, we extrapolate at $[p] V$ for each auxiliary function. We don't use an interpolation determinant, as in [Amo-Via 2009], because the problem is not symmetric. Another important difference is that, to decode the diophantine information in theorem 3.1 it is not sufficient to use the estimates for the Hilbert Function due to M. Chardin and P. Philippon [Cha-Phi 1999], like we do in [Amo-Via 2009]. In the present situation we need a refinement of their results which is proved in the appendix of this article by M. Chardin and P. Philippon. A further subtle point is to control the behavior of δ_{0} under the action of groups (proposition 2.7). The final geometric induction allows us to prove the main result of this article:
Theorem 1.3. Let $V_{0} \subseteq V_{1}$ be subvarieties of $\mathbb{G}_{\mathrm{m}}^{n}$, defined over \mathbb{Q}, of codimensions k_{0} and k_{1} respectively. Assume that V_{0} is \mathbb{Q}-irreducible. Let

$$
\theta=\delta\left(V_{1}\right)\left(935 n^{5} \log \left(n^{2} \delta\left(V_{1}\right)\right)\right)^{\left(k_{0}-k_{1}+1\right)\left(k_{0}+1\right)(n+1)}
$$

Then,

- either there exists a \mathbb{Q}-irreducible B union of torsion varieties such that $V_{0} \subseteq B \subseteq V_{1}$ and $\delta_{0}(B) \leq \theta$,
- or there exists a hypersurface Z defined over \mathbb{Q} of degree at most θ such that $V_{0} \nsubseteq Z$ and $V_{0}\left(\theta^{-1}\right) \subseteq Z$.

In section 5 , we show how to deduce theorem 1.1. In addition we prove some corollaries. Combining theorem 1.1 with the estimate on the sum of the degrees of the maximal torsion varieties of V ([Amo-Via 2009], corollary 5.3), we can give the following complete description of the small points of V.

Corollary 1.4. Let $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ be a \mathbb{Q}-irreducible variety of dimension d. Let

$$
\theta=\delta(V)\left(935 n^{5} \log \left(n^{2} \delta(V)\right)\right)^{(d+1)(n+1)^{2}}
$$

Then

$$
\overline{V\left(\theta^{-1}\right)}=B_{1} \cup \cdots \cup B_{t},
$$

where B_{1}, \ldots, B_{t} are the maximal torsion varieties of V. In addition, $\delta_{0}\left(B_{j}\right) \leq \theta$ and

$$
\sum_{j=1}^{t} \theta^{\operatorname{dim}\left(B_{j}\right)} \operatorname{deg}\left(B_{j}\right) \leq \theta^{n}
$$

A direct application of theorem 1.3 allows us to show
Corollary 1.5. Let $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ be a \mathbb{Q}-irreducible subvariety of codimension k which is not contained in any union of proper torsion varieties. Then

$$
\hat{\mu}^{\mathrm{ess}}(V) \geq \omega(V)^{-1}\left(935 n^{5} \log \left(n^{2} \omega(V)\right)\right)^{-k(k+1)(n+1)} .
$$

As mentioned, also theorem 1.1 implies a similar but less sharp lower bound for the essential minimum, where the exponent on the remainder term is $n(n+1)^{2}$ instead of the better $k(k+1)(n+1)$.

An important application of corollary 1.5 is a lower bound for the product of the heights of multiplicatively independent algebraic numbers. For instance, this kind of result is used by Bombieri, Masser and Zannier to show the finiteness of the intersection of a transverse curve with the union of all subtori of codimension two [Bom-Mas-Zan 1999]. From corollary 1.5 we deduce the following refined version of [Amo-Dav 1999], theorem 1.6:

Corollary 1.6. Let $\alpha_{1}, \ldots, \alpha_{n}$ be multiplicatively independent algebraic numbers in a number field K of degree $D=[K: \mathbb{Q}]$. Then

$$
h\left(\alpha_{1}\right) \cdots h\left(\alpha_{n}\right) \geq D^{-1}\left(1050 n^{5} \log (3 D)\right)^{-n^{2}(n+1)^{2}} .
$$

The dependence on δ (or ω) of our results is essentially sharp. However, the dependence in the dimension n of the ambient variety remains mysterious. One could conjecture that for all \mathbb{Q}-irreducible linear subvarieties $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ and for all $\boldsymbol{\alpha} \in V^{*}(\mathbb{Q})$ we had $h(\boldsymbol{\alpha}) \geq c$ for some positive absolute constant c (not depending on n). This is false, as the following example shows. Let $V_{n} \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ be the hypersurface defined by the equation

$$
x_{1}+\cdots+x_{n-1}+x_{n}=0 .
$$

We claim that, for n which goes to ∞,

$$
\min _{\boldsymbol{\alpha} \in V_{n}^{*}} h(\boldsymbol{\alpha}) \rightarrow 0 .
$$

Indeed, let $n \geq 3$. Consider for instance the point $\boldsymbol{\alpha} \in \mathbb{G}_{\mathrm{m}}^{n}(\overline{\mathbb{Q}})$ whose coordinates are the roots $\alpha_{1}, \ldots, \alpha_{n}$ of the polynomial $f(x)=x^{n}-2 x-6$. Observe that f is irreducible by Eisenstein's criterion. Moreover $\boldsymbol{\alpha} \in V_{n}$, because the coefficient of x^{n-1} in f is zero. We now show that $\boldsymbol{\alpha}$ has small height. For a non-zero integer a, let $\mathbf{a}=(\mathrm{a}, \ldots, \mathrm{a}) \in \mathbb{G}_{\mathrm{m}}^{n}$. Since $\boldsymbol{\alpha}^{n}=\mathbf{2} \cdot \boldsymbol{\alpha}+\mathbf{6}$ we obtain

$$
n h(\boldsymbol{\alpha})=h\left(\boldsymbol{\alpha}^{n}\right)=h(\mathbf{2} \cdot \boldsymbol{\alpha}+\mathbf{6}) \leq h(\mathbf{2} \cdot \boldsymbol{\alpha})+h(\mathbf{6})+\log 2 \leq h(\boldsymbol{\alpha})+\log 24 .
$$

Thus

$$
h(\boldsymbol{\alpha}) \leq \frac{\log 24}{n-1} .
$$

We claim that $\boldsymbol{\alpha} \in V_{n}^{*}$. Assume on the contrary that $\boldsymbol{\alpha}$ is in a torsion variety contained in V_{n}. From the description of [Sch 1996], p. 163, of the torsion varieties contained in a linear variety, we see that there exist $i<j$ such that $u=\alpha_{i} / \alpha_{j}$ is a root of unity. Note that $u \neq 1$ because f has distinct roots. Thus

$$
0=f\left(\alpha_{j}\right)-f\left(u \alpha_{j}\right)=\left(1-u^{n}\right) \alpha_{j}^{n}-2(1-u) \alpha_{j} .
$$

Let $\gamma=\left(1-u^{n}\right) /(1-u)$. Then γ is an algebraic integer and $\gamma \alpha_{j}^{n-1}=2$. Passing to norms, we infer that $\pm 6=\operatorname{Norm}_{\mathbb{Q}}^{\mathbb{Q}\left(\alpha_{j}\right)}\left(\alpha_{j}\right)$ divides a power of 2 . This is a plainly contradiction. Thus $\boldsymbol{\alpha} \in V_{n}^{*}$ and $h(\boldsymbol{\alpha}) \leq \frac{\log 24}{n-1}$.

2. Geometry

2.1. Algebraic interpolation. In the introduction, we have already mentioned the definitions of $\omega(V)$ and $\delta_{0}(V)$ for a projective variety $V \subseteq \mathbb{P}^{n}$. Let us be more precise and give some further details and useful relations.
Definition 2.1. Let $V \subseteq \mathbb{P}^{n}$ be a projective variety and let K be a subfield of $\overline{\mathbb{Q}}$.
i) The obstruction index $\omega_{K}(V)$ is the minimum degree of a hypersurface defined over K containing V.
ii) We define $\delta_{K, 0}(V)$ as the minimal degree δ such that there exists an intersection X of hypersurfaces defined over K of degree $\leq \delta$ such that every $\overline{\mathbb{Q}}$-irreducible component of V is $a \overline{\mathbb{Q}}$-irreducible component of X.
iii) Suppose that V is defined over K. We define $\delta_{K}(V)$ as the minimal degree δ such that V is, as a set, the intersection of hypersurfaces defined over K of degree $\leq \delta$.
If $K=\overline{\mathbb{Q}}$ we shall omit the index \mathbb{Q}.
Note that the definition of $\delta_{K, 0}$ makes sense for every number field K, independently of the field of definition L of V. Indeed, $V^{\prime}=\bigcup_{\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / K)} \sigma(V)$ is defined over K and the $\overline{\mathbb{Q}}$-irreducible components of V are components of V^{\prime}. On the contrary, δ_{K} can only be defined for extensions of the field of definition of V. Indeed if V is the intersection of hypersurfaces over K then it is also defined over K. In addition, if V is defined over K, then in the above definition ii), it is equivalent to require that every K-irreducible component of V is a K-irreducible component of X.

Clearly, for L a field extension of $K, \omega_{K} \geq \omega_{L}, \delta_{K, 0} \geq \delta_{L, 0}$ and $\delta_{K} \geq \delta_{L}$. We are now going to show that these are equalities for extensions L of the field of definition K of V.

Let G be a group acting on $\mathbb{G}_{\mathrm{m}}^{n}$. For any subset S of $\mathbb{G}_{\mathrm{m}}^{n}$ we define

$$
\begin{aligned}
S^{G} & =\bigcap_{g \in G} g(S), \\
G \cdot S & =\bigcup_{g \in G} g(S) .
\end{aligned}
$$

In what follows we provide relations between the obstruction indices of V and V^{G} in two special cases, namely for G the Galois group (lemma 2.2 below) and for G the kernel of the "multiplication by l " (lemma 2.4).
Lemma 2.2. Let K be a number field and let Z be a hypersurface defined over some extension L of K. Then there exist $D \leq[L: K]$ and hypersurfaces Z_{1}, \ldots, Z_{D} defined over K and of degree $\leq \operatorname{deg} Z$ such that

$$
Z^{\mathrm{Gal}(\overline{\mathbb{Q}} / K)}=Z_{1} \cap \cdots \cap Z_{D}
$$

Proof. Let $F(\mathbf{x}) \in L[\mathbf{x}]$ be an equation defining Z. We fix a basis $\left\{e_{j}\right\}$ of L / K and we write $F(\mathbf{x})=\sum e_{j} F_{j}(\mathbf{x})$ with $F_{j}(\mathbf{x}) \in K[\mathbf{x}]$. Up to order, we can suppose $F_{j}(\mathbf{x}) \neq 0$ for $j=1, \ldots, D$ and $F_{j}(\mathbf{x})=0$ for $j>D$. Define Z_{j} to be the zero set of $F_{j}(\mathbf{x})$, for $j \leq D$. Clearly $Z^{\operatorname{Gal}(\overline{\mathbb{Q}} / K)} \supseteq Z_{1} \cap \cdots \cap Z_{D}$. We now show the reverse inclusion. Let $\boldsymbol{\alpha} \in Z^{\operatorname{Gal}(\mathbb{Q} / K)}$. Let each $\sigma_{1}, \ldots, \sigma_{[L: K]}$ be an extension to $\overline{\mathbb{Q}}$ of each of the $[L: K]$ embeddings of L in $\overline{\mathbb{Q}}$ fixing K. Then, for every i, also $\sigma_{i}^{-1}(\boldsymbol{\alpha}) \in Z^{\mathrm{Gal}(\overline{\mathbb{Q}} / K)}$. Since the F_{j} are invariant under the action of any such σ_{i}, we obtain that for every $i \leq[L: K]$

$$
\begin{aligned}
0 & =\sigma_{i}\left(F\left(\sigma_{i}^{-1}(\boldsymbol{\alpha})\right)=\sigma_{i}\left(\sum e_{j} F_{j}\left(\sigma_{i}^{-1}(\boldsymbol{\alpha})\right)\right)\right. \\
& =\sigma_{i}\left(\sum e_{j}\left(\sigma_{i}^{-1} F_{j}(\boldsymbol{\alpha})\right)\right)=\sum \sigma_{i}\left(e_{j}\right) F_{j}(\boldsymbol{\alpha}) .
\end{aligned}
$$

The matrix $\left(\sigma_{i} e_{j}\right)_{i, j}$ is non singular. This implies that $F_{j}(\boldsymbol{\alpha})=0$ for all $1 \leq j \leq$ $[L: K]$. This shows the inclusion $Z^{\operatorname{Gal}(\overline{\mathbb{Q}} / K)} \subseteq Z_{1} \cap \cdots \cap Z_{D}$.

Corollary 2.3. Let V be a variety defined over a number field K. Then $\delta_{K}(V)=$ $\delta(V), \omega_{K}(V)=\omega(V)$ and $\delta_{K, 0}(V)=\delta_{0}(V)$

Proof. We already mentioned that such invariants decrease by fields extensions. Then we have only to show that $\delta_{K}(V) \leq \delta(V), \omega_{K}(V) \leq \omega(V)$ and $\delta_{K, 0}(V) \leq$ $\delta_{0}(V)$.
Let $X \supseteq V$ be an intersection of hypersurfaces of degree $\leq \delta$, for $\delta \in \mathbb{N}$. By lemma $2.2 X^{\mathrm{Gal}(\overline{\mathbb{Q}} / K)}$ is an intersection of hypersurfaces defined over K, of degree $\leq \delta$. Since V is defined over $K, V=V^{\mathrm{Gal}(\mathbb{Q} / K)} \subseteq X^{\mathrm{Gal}(\mathbb{Q} / K)}$.

Choosing $\delta=\delta(V)$ and $X=V$ we see that $\delta_{K}(V) \leq \delta(V)$. Choosing $\delta=$ $\omega(V)$ and $X \supseteq V$ a hypersurface defined over $\overline{\mathbb{Q}}$ of minimal degree δ we see that $\omega_{K}(V) \leq \omega(V)$. Choose at last $\delta=\delta_{0}(V)$ and $X \supseteq V$ such that every
$\overline{\mathbb{Q}}$-irreducible component of V is a $\overline{\mathbb{Q}}$-irreducible component of X. Let W be a $\overline{\mathbb{Q}}$-irreducible component of V. Then W is a $\overline{\mathbb{Q}}$-irreducible component of X. Since $V \subseteq X^{\operatorname{Gal}(\overline{\mathbb{Q}} / K)} \subseteq X$, we see that W is a $\overline{\mathbb{Q}}$-irreducible component of $X^{\operatorname{Gal}(\overline{\mathbb{Q}} / K)}$, too. Thus $\delta_{K, 0}(V) \leq \delta_{0}(V)$.

We shall recall some important relations between the obstruction indices. If V is equidimensional of codimension k, then, by a result of M. Chardin ([Cha 1988]),

$$
\begin{equation*}
\omega(V) \leq n \operatorname{deg}(V)^{1 / k} \tag{2.4}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\omega(V) \leq \delta_{0}(V) \leq \delta(V) \leq \operatorname{deg}(V) \leq \delta_{0}(V)^{k} \tag{2.5}
\end{equation*}
$$

The first three inequalities are immediate. The last one follows from [Phi 1995], corollary 5 , p. 357 (with $m=n, S=\mathbb{P}^{n}$ and $\delta=\delta_{0}(V)$.
2.2. An upper bound for $\delta_{0}([l] V)$. Let V be an equidimensional variety and let $l \neq 0$ be an integer. We need a bound for $\delta_{0}([l] V)$. We denote by $[l]: \mathbb{G}_{\mathrm{m}}^{n} \rightarrow$ $\mathbb{G}_{\mathrm{m}}^{n}, \quad \boldsymbol{\alpha} \mapsto \boldsymbol{\alpha}^{l}=\left(\alpha_{1}^{l}, \ldots, \alpha_{n}^{l}\right)$ the "multiplication by l " and by ker $[l]$ its kernel. The following lemma is analogue to lemma 2.2. Here we consider the action of ker [l], whereas in lemma 2.2 we considered the Galois action.

Lemma 2.4. Let $Z \subset \mathbb{G}_{\mathrm{m}}^{n}$ be a hypersurface. Then, there exist $D \leq l^{n}$ and hypersurfaces Z_{1}, \ldots, Z_{D} of degree $\leq \operatorname{deg} Z$ such that $\operatorname{ker}[l] \cdot Z_{j}=Z_{j}$ and

$$
Z^{\operatorname{ker}[l]}=Z_{1} \cap \cdots \cap Z_{D}
$$

Proof. Let $F(\mathbf{x}) \in \overline{\mathbb{Q}}[\mathbf{x}]$ be an equation for Z. Performing the euclidean divisions by l on the exponents of each monomial, we can write

$$
F(\mathbf{x})=\sum_{\boldsymbol{\lambda} \in \Lambda} \mathbf{x}^{\boldsymbol{\lambda}} F_{\boldsymbol{\lambda}}\left(\mathbf{x}^{l}\right)
$$

where $\mathbf{x}^{l}=\left(x_{1}^{l}, \ldots, x_{n}^{l}\right)$ and $\boldsymbol{\lambda}$ runs over the set Λ of integral multi-indices $\boldsymbol{\lambda}=$ $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $0 \leq \lambda_{i}<l$. Let Z_{j} be the hypersurfaces defined by the nontrivial $F_{\boldsymbol{\lambda}}\left(\mathbf{x}^{l}\right)$. Clearly $\operatorname{ker}[l] \cdot Z_{j}=Z_{j}$. Moreover $Z^{\operatorname{ker}[l]} \supseteq Z_{1} \cap \cdots \cap Z_{D}$. We now show the reverse inclusion. Let $\boldsymbol{\alpha} \in Z^{\operatorname{ker}[l]}$. Then, for every $\boldsymbol{\zeta} \in \operatorname{ker}[l]$,

$$
0=F(\boldsymbol{\zeta} \boldsymbol{\alpha})=\sum_{\boldsymbol{\lambda} \in \Lambda}(\boldsymbol{\zeta} \boldsymbol{\alpha})^{\boldsymbol{\lambda}} F_{\boldsymbol{\lambda}}\left((\boldsymbol{\zeta} \boldsymbol{\alpha})^{l}\right)=\sum_{\boldsymbol{\lambda} \in \Lambda} \boldsymbol{\zeta}^{\boldsymbol{\lambda}} \boldsymbol{\alpha}^{\boldsymbol{\lambda}} F_{\boldsymbol{\lambda}}\left(\boldsymbol{\alpha}^{l}\right)
$$

Let $\boldsymbol{\zeta}_{i}$ varying over all elements of $\operatorname{ker}[l]$ and $\boldsymbol{\lambda}_{j}$ varying over all elements of Λ. Then we can write the following homogenous linear system

$$
\left(\boldsymbol{\zeta}_{i}^{\boldsymbol{\lambda}_{j}}\right)_{i, j}\left(\boldsymbol{\alpha}^{\boldsymbol{\lambda}_{j}} F_{\boldsymbol{\lambda}_{j}}\left(\boldsymbol{\alpha}^{l}\right)\right)_{j}=\mathbf{0}
$$

Since the matrix $\left(\boldsymbol{\zeta}_{i}^{\boldsymbol{\lambda}_{j}}\right)_{i, j}$ is non singular, $\left(\boldsymbol{\alpha}^{\boldsymbol{\lambda}_{j}} F_{\boldsymbol{\lambda}_{j}}(\boldsymbol{\alpha})\right)_{j}$ must be the zero vector. We remark that no monomial vanishes on $\mathbb{G}_{\mathrm{m}}^{n}$. Then we have $\boldsymbol{\alpha} \in Z_{1} \cap \cdots \cap Z_{D}$. This shows that $Z^{\operatorname{ker}[l]} \subseteq Z_{1} \cap \cdots \cap Z_{D}$.

To estimate δ_{0}, we need a generalization of lemma 3.7 of [Amo-Via 2009], which holds for $\overline{\mathbb{Q}}$-irreducible varieties. Here the variety is not necessarily $\overline{\mathbb{Q}}$-irreducible. In general, the lemma does not extend to all equidimensional varieties, however it extends under some additional assumptions.

Lemma 2.5. Let V be a \mathbb{Q}-irreducible subvariety of $\mathbb{G}_{\mathrm{m}}^{n}$ and let l be a positive integer. Let K be the field of definition of one of the $\overline{\mathbb{Q}}$-irreducible components of V. Assume that $K \cap \mathbb{Q}\left(\zeta_{l}\right)=\mathbb{Q}$, for a primitive l-th root of unity ζ_{l}. Then

$$
\delta_{0}(\operatorname{ker}[l] \cdot V) \leq l^{n} \delta_{0}(V)
$$

Proof. The first step is to prove the following remark. By definition of $\delta_{0}(V)$, there exists a variety X defined by rational equations of degree $\leq \delta_{0}(V)$ such that V is a \mathbb{Q}-irreducible component of X. Let W_{1}, \ldots, W_{t} be the $\overline{\mathbb{Q}}$-irreducible components of V.

Remark 2.6. Let $\boldsymbol{\zeta} \in \operatorname{ker}[l]$. Assume that for some i the variety $\boldsymbol{\zeta} W_{i} \subseteq X$. Then $\zeta W_{j} \subseteq X$ for any index j.

Proof. We remark that the Galois group permutes transitively W_{1}, \ldots, W_{t}. Let K_{i} be the field of definition of W_{i}. By assumption $K_{i} \cap \mathbb{Q}(\boldsymbol{\zeta})=\mathbb{Q}$. Thus $\left[K_{i}(\boldsymbol{\zeta})\right.$: $\left.K_{i}\right]=[\mathbb{Q}(\boldsymbol{\zeta}): \mathbb{Q}]$. Hence, for any $j=1, \ldots, t$ there exists $\tau \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ such that $\tau\left(W_{i}\right)=W_{j}$ and $\tau(\boldsymbol{\zeta})=\boldsymbol{\zeta}$. We infer that $\boldsymbol{\zeta} W_{j}=\tau\left(\boldsymbol{\zeta} W_{i}\right)$ is included in $\tau(X)=X$.

In what follows we say that a $\overline{\mathbb{Q}}$-irreducible variety $W \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ is imbedded in a variety $X \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ if V is a subset of X but not an irreducible component of X. Let us denote $W=W_{1}$. Let S be the set of $\boldsymbol{\zeta} \in \operatorname{ker}[l]$ such that $\boldsymbol{\zeta} W$ is imbedded in X. Then, by the remark above, $V \subseteq \zeta^{-1} X$. We define

$$
X^{\prime}=X \cap \bigcap_{\zeta \in S} \zeta^{-1} X
$$

Note that $V \subseteq X^{\prime}$. Furthermore, the varieties X and $\zeta^{-1} X$ are intersections of hypersurfaces of degree $\leq \delta_{0}(V)$. Thus $\delta\left(X^{\prime}\right) \leq \delta_{0}(V)$.

We shall show that no translate $\boldsymbol{\zeta} W_{j}$ is imbedded in X^{\prime}. Assume by contradiction that $\boldsymbol{\zeta} W_{j}$ was imbedded in X^{\prime} for some $\boldsymbol{\zeta} \in \operatorname{ker}[l]$ and for some $j \in\{1, \ldots, n\}$. We will prove that $\mathbf{1} \in S$. Then W would be imbedded in X, which contradicts the fact that W is a component of X. Since ζ has finite order, to prove $1 \in S$ it is sufficient to prove that $\zeta^{n} \in S$, for all positive integers n. We proced by induction. Since $X^{\prime} \subseteq X, \boldsymbol{\zeta} W_{j}$ is imbedded in X and so $\boldsymbol{\zeta} \in S$. We now assume $\boldsymbol{\zeta}^{n} \in S$ for some $n \geq 1$ and we prove that $\boldsymbol{\zeta}^{n+1} \in S$. Since $X^{\prime} \subseteq \boldsymbol{\zeta}^{-n} X, \boldsymbol{\zeta} W_{j}$ is imbedded in $\boldsymbol{\zeta}^{-n} X$. Thus $\boldsymbol{\zeta}^{n+1} W_{j}$ is imbedded in X and $\boldsymbol{\zeta}^{n+1} \in \bar{S}$.

We now define

$$
Y=\operatorname{ker}[l] \cdot X^{\prime}
$$

Clearly $\operatorname{ker}[l] \cdot V \subseteq Y$ and $\delta(Y) \leq l^{n} \delta\left(X^{\prime}\right) \leq l^{n} \delta_{0}(V)$. Let $\boldsymbol{\zeta} W_{j}(\boldsymbol{\zeta} \in \operatorname{ker}[l]$, $j \in\{1, \ldots, t\})$ be a $\overline{\mathbb{Q}}$-irreducible component of $\operatorname{ker}[l] \cdot V$. Assume by contradiction $\boldsymbol{\zeta} W_{j}$ imbedded in Y. Then $\boldsymbol{\zeta} W_{j}$ is imbedded in $\boldsymbol{\eta} X^{\prime}$ for some $\boldsymbol{\eta} \in \operatorname{ker}[l]$. Thus $\boldsymbol{\eta}^{-1} \boldsymbol{\zeta} W_{j}$ is imbedded in X^{\prime}, which contradicts the construction of X^{\prime}.

At last we provide the necessary upper bound for $\delta_{0}([l] V)$.
Proposition 2.7. Let V be $a \mathbb{Q}$-irreducible subvariety of $\mathbb{G}_{\mathrm{m}}^{n}$ and let l be a positive integer. Let K be the field of definition of one of the $\overline{\mathbb{Q}}$-irreducible component of V. Assume that $K \cap \mathbb{Q}\left(\zeta_{l}\right)=\mathbb{Q}$. Then

$$
\delta_{0}([l] V) \leq l^{n-1} \delta_{0}(V) .
$$

Proof. By lemma 2.5 there exist hypersurfaces Z_{1}, \ldots, Z_{r} of degree $\leq l^{n} \delta_{0}(V)$ such that every $\overline{\mathbb{Q}}$-irreducible component of $\operatorname{ker}[l] \cdot V$ is a component of $Z_{1} \cap \cdots \cap Z_{r}$. By lemma 2.4 we can assume $\operatorname{ker}[l] \cdot Z_{i}=Z_{i}$. Thus

$$
[l] V \subseteq[l] Z_{1} \cap \cdots \cap[l] Z_{r}
$$

and $\operatorname{deg}\left([l] Z_{i}\right)=l^{-1} \operatorname{deg}\left(Z_{i}\right)$. We now show that each component of $[l] V$ is isolated in such an intersection. Suppose on the contrary that U is a $\overline{\mathbb{Q}}$-irreducible component of V such that

$$
[l] U \subsetneq Y \subseteq[l] Z_{1} \cap \cdots \cap[l] Z_{r}
$$

for some $\overline{\mathbb{Q}}$-irreducible Y. Then there exists a $\overline{\mathbb{Q}}$-irreducible component Y^{\prime} of $[l]^{-1} Y$ such that

$$
U \subsetneq Y^{\prime} \subseteq\left(\operatorname{ker}[l] \cdot Z_{1}\right) \cap \cdots \cap\left(\operatorname{ker}[l] \cdot Z_{r}\right)=Z_{1} \cap \cdots \cap Z_{r} .
$$

This contradicts the fact that each component of V is isolated in $Z_{1} \cap \cdots \cap Z_{r}$.
2.3. Exceptional primes. Let $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ be a \mathbb{Q}-irreducible variety and let \wp be a finite set of primes. In what follows, we need a lower bound for the degree of $\bigcup_{p \in \wp}[p] V$ and an upper bound for $\delta_{0}([p] V)$ for $p \in \wp$. This holds outside a set of "bad" primes. One has to ensure that there are few bad primes. This is the object of the next proposition. Part of the proof was already in [Amo-Dav 1999], section 2. We prefer to reproduce the integral argument.

Proposition 2.8. Let $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ be a \mathbb{Q}-irreducible variety of dimension d. Assume that V is not a union of torsion varieties. Then there exists a set of prime numbers $E(V)$ of cardinality

$$
|E(V)| \leq \frac{d+1}{\log 2} \log \operatorname{deg}(V)
$$

such that for all prime numbers $p \notin E(V)$

$$
\begin{equation*}
\delta_{0}([p] V) \leq p^{n-1} \delta_{0}(V) \tag{2.6}
\end{equation*}
$$

and, for all finite subsets \wp of primes lying outside $E(V)$,

$$
\begin{equation*}
\operatorname{deg}\left(\bigcup_{p \in \wp}[p] V\right) \geq|\wp| \operatorname{deg}(V) . \tag{2.7}
\end{equation*}
$$

Proof. We remark that the Galois group permutes transitively the $\overline{\mathbb{Q}}$-irreducible components $W=W_{1}, \ldots, W_{k}$ of V. We recall the definition of stabilizer:

$$
\operatorname{Stab}(W)=\left\{\boldsymbol{\alpha} \in \mathbb{G}_{\mathrm{m}}^{n} \text { such that } \boldsymbol{\alpha} W=W\right\} .
$$

Define $H=\operatorname{Stab}(W) / \operatorname{Stab}(W)^{0}$ where $\operatorname{Stab}(W)^{0}$ is the connected component of $\operatorname{Stab}(W)$ through the neutral element. Then, H is a finite group of cardinality

$$
\begin{equation*}
|H| \leq \operatorname{deg}(\operatorname{Stab} W) \leq \operatorname{deg}(W)^{d+1} \tag{2.8}
\end{equation*}
$$

We denote $d_{0}=\operatorname{dim} \operatorname{Stab}(W) \leq d$. We remark that for any natural number l, it holds

$$
|\operatorname{ker}[l] \cap \operatorname{Stab}(W)|=\left|\operatorname{ker}[l] \cap \operatorname{Stab}(W)^{0}\right| \cdot|\operatorname{ker}[l] \cap H|=l^{d_{0}}|\operatorname{ker}[l] \cap H|
$$

where we identify $[l]$ with the "multiplication" by l in the quotient $\mathbb{T}_{\mathrm{m}}^{n} / \operatorname{Stab}(W)^{0}$. Furthermore, denote by K the field of definition of W. Then $[K: \mathbb{Q}]=k$.

Let E_{1} be the set of prime numbers p such that p divides $|H|$. Let E_{2} be the set of primes p such that $[p] W=[p] W_{i}$ for some $1<i \leq k$. Let E_{3} be the set of primes p such that $K \cap \mathbb{Q}\left(\zeta_{p}\right) \neq \mathbb{Q}$, where as usual ζ_{p} is a primitive p-th root of unity. We define

$$
E(V)=E_{1} \cup E_{2} \cup E_{3}
$$

Since $E_{3} \subseteq E(V)$, proposition 2.7 shows that the upper bound (2.6) holds.
We now prove (2.7). First we show that

$$
\begin{equation*}
p \nmid H \mid \Longrightarrow \operatorname{deg}\left([p] W_{i}\right) \geq \operatorname{deg}\left(W_{i}\right), \quad \text { for } i=1, \ldots, k . \tag{2.9}
\end{equation*}
$$

If $p \nmid|H|$, then $|\operatorname{ker}[p] \cap H|=1$. By the degree formula for the image of the multiplication by p (see for instance [Dav-Phi 1999], proposition 2.1 (i)),

$$
\operatorname{deg}([p] W)=p^{d-d_{0}}|\operatorname{ker}[p] \cap H|^{-1} \operatorname{deg}(W)=p^{d-d_{0}} \operatorname{deg}(W) \geq \operatorname{deg}(W)
$$

This shows (2.9).
We now show that, for l_{1}, l_{2} natural integers,
$\begin{gathered}V \neq \text { union of torsion varieties } \\ l_{1} \neq l_{2}\end{gathered} \Longrightarrow\left[l_{1}\right] W_{i} \neq\left[l_{2}\right] W_{j}$, for $i, j=1, \ldots, k$.
Assume on the contrary that $\left[l_{1}\right] W$ is a Galois conjugate to $\left[l_{2}\right] W$. Since the multiplication by natural numbers commute with the Galois action, the same holds replacing l_{i} by l_{i}^{r} for $r \in \mathbb{N}$, as well. We can suppose $l_{1}<l_{2}$. Let \hat{h} be the normalised height for subvarieties of $\mathbb{G}_{\mathrm{m}}^{n}$ (see for instance [Dav-Phi 1999]). Then $\hat{h}\left(\left[l_{1}\right] W\right)=\hat{h}\left(\left[l_{2}\right] W\right)$. By the height formula for the image of the multiplication by an integer ([Dav-Phi 1999], proposition 2.1 (i)), we obtain
$l_{1}^{d-d_{0}+1}\left|\operatorname{ker}\left[l_{1}\right] \cap H\right|^{-1} \hat{h}(W)=\hat{h}\left(\left[l_{1}\right] W\right)=\hat{h}\left(\left[l_{2}\right] W\right)=l_{2}^{d-d_{0}+1}\left|\operatorname{ker}\left[l_{2}\right] \cap H\right|^{-1} \hat{h}(W)$.
Since V is not a union of torsion varieties, W is not torsion. Then $\hat{h}(W)>0$. Thus

$$
l_{2} / l_{1} \leq\left(l_{2} / l_{1}\right)^{d-d_{0}+1} \leq \frac{\left|\operatorname{ker}\left[l_{2}\right] \cap H\right|}{\left|\operatorname{ker}\left[l_{1}\right] \cap H\right|} \leq|H|
$$

Replacing l_{1} and l_{2} with l_{1}^{r} and l_{2}^{r} and letting $r \rightarrow+\infty$ we get a contradiction.
Let \wp be a set of primes lying outside $E(V)$ and assume that V is not a union of torsion varieties. The statements (2.9) and (2.10) and the definition of $E(V)$
show that

$$
\begin{aligned}
\operatorname{deg}\left(\bigcup_{p \in \wp}[p] V\right) & =\operatorname{deg}\left(\bigcup_{j=1}^{k} \bigcup_{p \in \wp}[p] W_{j}\right)=\sum_{j=1}^{k} \sum_{p \in \wp} \operatorname{deg}\left([p] W_{j}\right) \\
& \geq \sum_{j=1}^{k} \sum_{p \in \wp} \operatorname{deg}\left(W_{j}\right)=|\wp| \operatorname{deg}(V)
\end{aligned}
$$

To conclude the proof, we need to provide an upper bound for the cardinality of $E(V)=E_{1} \cup E_{2} \cup E_{3}$. First we remark that by (2.8) the set E_{1} of primes p dividing $|H|$ has cardinality

$$
\leq \frac{\log |H|}{\log 2} \leq \frac{d+1}{\log 2} \log \operatorname{deg}(W)=\frac{d+1}{\log 2} \log (\operatorname{deg}(V) / k)
$$

Below we detail the proof that the set E_{2} has cardinality

$$
\begin{equation*}
\left|E_{2}\right| \leq \frac{\log k}{\log 2} \tag{2.11}
\end{equation*}
$$

We have still to estimate the cardinality of the set E_{3} of primes p such that $K \cap \mathbb{Q}\left(\zeta_{p}\right) \neq \mathbb{Q}$. It holds

$$
\begin{equation*}
\left|E_{3}\right| \leq \frac{\log k}{\log 2} \tag{2.12}
\end{equation*}
$$

Indeed, for $l \in \mathbb{N}$, define $K_{l}=K \cap \mathbb{Q}\left(\zeta_{l}\right)$. Thus, K_{l} / \mathbb{Q} is Galois. We note that for $n, m \in \mathbb{N}$ coprime, $K_{n} \cap K_{m}=\mathbb{Q}$ and $K_{n} K_{m} \subseteq K_{n m}$. By induction we easily see that

$$
k=[K: \mathbb{Q}] \geq\left[\prod_{p \in E_{3}} K_{p}: \mathbb{Q}\right]=\prod_{p \in E_{3}}\left[K_{p}: \mathbb{Q}\right] \geq 2^{\left|E_{3}\right|}
$$

This is equivalent to (2.12). We conclude that

$$
\begin{aligned}
|E(V)| \leq\left|E_{1}\right|+\left|E_{2}\right|+\left|E_{3}\right| & \leq \frac{d+1}{\log 2} \log (\operatorname{deg}(V) / k)+\frac{2 \log k}{\log 2} \\
& \leq \frac{d+1}{\log 2} \log (\operatorname{deg}(V))+\frac{1-d}{\log 2} \log k \\
& \leq \frac{d+1}{\log 2} \log \operatorname{deg}(V)
\end{aligned}
$$

as required.
The upper bound for $\left|E_{2}\right|$ is a variant of the corresponding lemma of Dobrowolski ([Dob 1979], lemma 3). For a natural integer l and for $i \in\{1, \ldots, k\}$, let

$$
\mathcal{I}(l, i)=\left\{j,[l] W_{i}=[l] W_{j}\right\}
$$

Thus, for a fixed l, these sets have the same cardinality. Moreover, $p \in E_{2}$ if and only if $\mathcal{I}(p, 1) \geq 2$.

Let l_{1}, l_{2} be coprime integers. Then, by the definition of the sets \mathcal{I},

$$
\begin{equation*}
\mathcal{I}\left(l_{1} l_{2}, i\right) \supseteq \bigcup_{j \in \mathcal{I}\left(l_{1}, i\right)} \mathcal{I}\left(l_{2}, j\right) . \tag{2.13}
\end{equation*}
$$

Indeed, if $m \in \mathcal{I}\left(l_{2}, j\right)$ for some $j \in \mathcal{I}\left(l_{1}, i\right)$, we have $\left[l_{2}\right] W_{j}=\left[l_{2}\right] W_{m}$ and $\left[l_{1}\right] W_{i}=$ $\left[l_{1}\right] W_{j}$ which implies $\left[l_{1} l_{2}\right] W_{i}=\left[l_{1} l_{2}\right] W_{j}=\left[l_{1} l_{2}\right] W_{m}$. This immediately gives the inclusion. Moreover, for $j \in \mathcal{I}\left(l_{1}, i\right)$ the sets $\mathcal{I}\left(l_{2}, j\right)$ are pairwise distinct. Indeed, let $j_{1}, j_{2} \in \mathcal{I}\left(l_{1}, i\right)$ such that $\mathcal{I}\left(l_{2}, j_{1}\right) \cap \mathcal{I}\left(l_{2}, j_{2}\right) \neq \emptyset$. Then $\left[l_{1}\right] W_{j_{1}}=\left[l_{1}\right] W_{j_{2}}$
and $\left[l_{2}\right] W_{j_{1}}=\left[l_{2}\right] W_{j_{2}}$. Thus, there exist $\mathbf{x}_{1} \in \operatorname{ker}\left[l_{1}\right]$ and $\mathbf{x}_{2} \in \operatorname{ker}\left[l_{2}\right]$ such that $W_{j_{2}}=\mathbf{x}_{1} W_{j_{1}}=\mathbf{x}_{2} W_{j_{1}}$. This implies that $\mathbf{x}_{2}^{-1} \mathbf{x}_{1} \in \operatorname{Stab}\left(W_{j_{1}}\right)$. Since l_{1}, l_{2} are coprime, by the Bézout identity, there exist integers u_{1}, u_{2} such that $u_{1} l_{1}+u_{2} l_{2}=1$. Thus

$$
\mathbf{x}_{1}=\mathbf{x}_{1}^{1-u_{1} l_{1}}=\mathbf{x}_{1}^{u_{2} l_{2}}=\left(\mathbf{x}_{2}^{-1} \mathbf{x}_{1}\right)^{u_{2} l_{2}} \in \operatorname{Stab}\left(W_{j_{1}}\right) .
$$

Hence $W_{j_{2}}=\mathbf{x}_{1} W_{j_{1}}=W_{j_{1}}$, and $j_{1}=j_{2}$. This proves that (2.13) is a disjoint union. We infer

$$
\left|\mathcal{I}\left(l_{1} l_{2}, i\right)\right| \geq \sum_{j \in \mathcal{I}\left(l_{1}, i\right)}\left|\mathcal{I}\left(l_{2}, j\right)\right|=\left|\mathcal{I}\left(l_{1}, 1\right)\right|\left|\mathcal{I}\left(l_{2}, 1\right)\right|
$$

Iterating this process, we see that

$$
k \geq\left|\mathcal{I}\left(\prod_{p \in E_{2}} p, 1\right)\right| \geq \prod_{p \in E_{2}}|\mathcal{I}(p, 1)| \geq 2^{\left|E_{2}\right|}
$$

which proves (2.11) and concludes the proof of the proposition.

We remark that the inequalities (2.9) and (2.11) in the proof of the previous proposition hold even for a \mathbb{Q}-irreducible varieties which is the union of torsion varieties.

3. Diophantine analysis

3.1. Coding the information. Let $I \subset \overline{\mathbb{Q}}[\mathbf{x}]$ be a homogeneous reduced ideal. For $\nu \in \mathbb{N}$ we denote by $H(\overline{\mathbb{Q}}[\mathbf{x}] / I ; \nu)$ the Hilbert function $\operatorname{dim}[\overline{\mathbb{Q}}[\mathbf{x}] / I]_{\nu}$. Let T be a positive integer. We denote by $I^{(T)}$ the T-symbolic power of I, i. e. the ideal of polynomials vanishing on the variety defined by I with multiplicity at least T. Let V be a variety of $\mathbb{G}_{\mathrm{m}}^{n}$. Let I be the radical homogeneous ideal in $\overline{\mathbb{Q}}[\mathbf{x}]$ defining the Zariski closure of V in \mathbb{P}^{n}. By abuse of notation, we set $H(V ; \nu)=H(\overline{\mathbb{Q}}[\mathbf{x}] / I ; \nu)$ and $H(V, T ; \nu)=H\left(\overline{\mathbb{Q}}[\mathbf{x}] / I^{(T)} ; \nu\right)$.

Proposition 3.1. Let ν, T be positive integers and let \wp be a finite set of prime numbers. Let V be a subvariety of $\mathbb{G}_{\mathrm{m}}^{n}$ defined over \mathbb{Q}. Define $V^{\prime}=\bigcup[p] V$ for p running over \wp. Then, for some $p \in \wp$,
$\hat{\mu}^{\text {ess }}(V) \geq \frac{1}{p \nu}\left(T \log p-\frac{T H(V, T ; \nu)}{H\left(V^{\prime} ; \nu\right)}(\log (\nu+1)+\log p)-n \log (\nu+1)\right)$.

Proof. Denote for simplicity $H=H(V, T ; \nu)$ and $H^{\prime}=H\left(V^{\prime} ; \nu\right)$ and choose a real ε such that $\varepsilon>\hat{\mu}^{\text {ess }}(V)$. We remark that the lower bound for $\hat{\mu}^{\text {ess }}(V)$ of the proposition is obviously negative if $H \geq H^{\prime}$. Hence we assume $H^{\prime}>H$.

As usual in diophantine approximation, we first construct the auxiliary function. We are going to show that there exists an homogeneous polynomial $F \in \mathbb{Q}[\mathbf{x}]_{\nu}$ vanishing on V with multiplicity $\geq T$ but not vanishing identically on V^{\prime} and such that the Weil height of the vector of its coefficients satisfies

$$
\begin{equation*}
\left(H^{\prime}-H\right) h(F) \leq H((T+n) \log (\nu+1)+\nu \varepsilon) . \tag{3.14}
\end{equation*}
$$

Consider the vector space E of homogeneous polynomials $F \in \mathbb{Q}[\mathbf{x}]_{\nu}$ vanishing on V with multiplicity $\geq T$. Let

$$
L=\binom{\nu+n}{n}
$$

Then $\operatorname{dim}(E)=L-H$. If $\operatorname{dim}(E)=0$, then $H=L \geq H^{\prime}$ and (3.14) is clear. Assume now $\operatorname{dim}(E) \geq 1$. Then there exists a base $F_{1}, \ldots F_{L-H}$ of E such that

$$
\begin{equation*}
\sum_{j=1}^{L-H} h\left(F_{j}\right) \leq H((T+n) \log (\nu+1)+\nu \varepsilon) . \tag{3.15}
\end{equation*}
$$

This is a standard application of Bombieri and Vaaler's version of Siegel's lemma. The proof can be found in [Amo-Dav 2000], theorem 4.1. We briefly give a sketch. Theorem 8 of [Bom-Vaa 1983] shows that there exists a basis $\left\{F_{1}, \ldots F_{L-H}\right\}$ of E such that $\sum_{j=1}^{L-H} h\left(F_{j}\right)$ is bounded by the logarithmic L_{2}-height (defined choosing the L_{2}-norm at the infinite places) $h_{2}(E)$. By the duality principle (see the proof of theorem 9 of [Bom-Vaa 1983]) $h_{2}(E)$ is equal to the L_{2}-height of the vector space E^{\perp} of dimension H. Given $\boldsymbol{\alpha}=\left(\alpha_{1} \cdots \alpha_{n}\right) \in \mathbb{G}_{\mathrm{m}}^{n}(\overline{\mathbb{Q}})$ and a multi-index $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{N}^{n}$ we define $\boldsymbol{\alpha}^{\boldsymbol{\lambda}}=\alpha_{1}^{\lambda_{1}} \cdots \alpha_{n}^{\lambda_{n}}$. Given two multi-indices $\boldsymbol{\lambda}, \boldsymbol{\mu}$ we write $\binom{\boldsymbol{\lambda}}{\boldsymbol{\mu}}$ for the product over j of $\binom{\lambda_{j}}{\mu_{j}}$. Since $V(\varepsilon)$ is Zariski-dense in V, the space E^{\perp} is spanned by the vectors

$$
\begin{equation*}
\left(\binom{\boldsymbol{\lambda}}{\boldsymbol{\mu}} \boldsymbol{\alpha}^{\boldsymbol{\lambda}-\boldsymbol{\mu}}\right)_{|\boldsymbol{\lambda}| \leq \nu} \quad(\boldsymbol{\alpha} \in V(\varepsilon),|\boldsymbol{\mu}| \leq T) \tag{3.16}
\end{equation*}
$$

of L_{2}-height $\leq(T+n) \log (\nu+1)+\nu \varepsilon\left(\right.$ use $\left.\sum_{|\boldsymbol{\lambda}| \leq \nu}\binom{\boldsymbol{\lambda}}{\boldsymbol{\mu}} \leq(\nu+1)^{T+n}\right)$. Since the L_{2}-height of a vector space is bounded by the sum of the L_{2}-height of a basis (by an application of Hadamard's inequality, [Bom-Vaa 1983], equation (2.6)) we find that $h_{2}(E) \leq H((T+n) \log (\nu+1)+\nu \varepsilon)$. Then equation (3.15) is proved.

We can assume $F_{1}, \ldots F_{L-H} \in \mathbb{Z}[\mathbf{x}]$ and $h\left(F_{1}\right) \leq \cdots \leq h\left(F_{L-H}\right)$. We claim that there exists $j_{0} \leq L-H^{\prime}+1$ such that $F_{j_{0}}$ does not vanish on V^{\prime}. Indeed, if all $F_{1}, \ldots F_{L-H^{\prime}+1}$ vanish on V^{\prime}, then $H^{\prime} \leq L-\left(L-H^{\prime}+1\right)=H^{\prime}-1$. Let $F=F_{j_{0}}$. Then

$$
\sum_{j=1}^{L-H} h\left(F_{j}\right) \geq\left(L-H-j_{0}+1\right) h(F) \geq\left(H^{\prime}-H\right) h(F)
$$

Using (3.15) we deduce that $h(F)$ satisfy (3.14).
The extrapolation step is based on a generalization of Dobrowolski's main lemma ([Dob 1979], lemme 1). We recall that F does not vanish on V^{\prime} and $\varepsilon>\hat{\mu}^{\text {ess }}(V)$. Then there exists $\boldsymbol{\alpha} \in V(\varepsilon)$ such that $F\left(\boldsymbol{\alpha}^{p}\right) \neq 0$ for some prime $p \in \wp$. Let v be a place dividing p. By [Amo-Dav 1999], theorem 3.1

$$
\left|F\left(\boldsymbol{\alpha}^{p}\right)\right|_{v} \leq p^{-T}|\boldsymbol{\alpha}|_{v}^{p \nu}
$$

where $|\boldsymbol{\alpha}|=\max \left\{1,\left|\alpha_{1}\right|_{v}, \ldots,\left|\alpha_{n}\right|_{v}\right\}$. Moreover, for an arbitrary place v,

$$
\left|F\left(\boldsymbol{\alpha}^{p}\right)\right|_{v} \leq \begin{cases}|\boldsymbol{\alpha}|_{v}^{p \nu}, & \text { if } v \nmid \infty \\ L|F|_{v}|\boldsymbol{\alpha}|_{v}^{p \nu}, & \text { if } v \mid \infty\end{cases}
$$

Note that $L \leq(\nu+1)^{n}$ and $h(\boldsymbol{\alpha}) \leq \varepsilon$. The Product formula gives

$$
0 \leq-T \log p+n \log (\nu+1)+h(F)+p \nu \varepsilon
$$

Comparing with (3.14) we get

$$
\begin{aligned}
\left(H^{\prime}-H\right)(T \log p-n \log (\nu+1)-p \nu \varepsilon) & \leq H((T+n) \log (\nu+1)+\nu \varepsilon) \\
& \leq H((T+n) \log (\nu+1)+p \nu \varepsilon)
\end{aligned}
$$

which easily implies our claim
3.2. Decoding the information. To decode the information of proposition 3.1 we need an upper bound for the Hilbert function. The proposition below follows from a result of M. Chardin [Cha 1988]. It is proved in lemma 2.5 of [Amo-Dav 2003].

Proposition 3.2. Let $V \subseteq \mathbb{P}_{n}$ be an equidimensional variety of dimension d and codimension $k=n-d$. Let ν, T be positive integers. Then

$$
H(V, T ; \nu) \leq\binom{ T-1+k}{k}\binom{\nu+d}{d} \operatorname{deg}(V)
$$

We also need a sharp lower bound for the Hilbert Function. This is a deep result of M. Chardin and P. Philippon. Let K be a subfield of $\overline{\mathbb{Q}}$ and let V be a K-irreducible variety. They prove ([Cha-Phi 1999], corollary 3) that for an equidimensional V

$$
H(V ; \nu) \geq\binom{\nu+d-m}{d} \operatorname{deg}(V)
$$

for $\nu>m$ and $m=k\left(\delta_{0}(V)-1\right)$.
We need a generalization of this result. Consider finitely many equidimensional varieties V_{j} of the same dimension d. Let $k=n-d$,

$$
m=-1+\sum_{j}\left(k\left(\delta_{0}\left(V_{j}\right)-1\right)+1\right)<k \sum_{j} \delta_{0}\left(V_{j}\right) .
$$

Let us consider the equidimensional variety $V^{\prime}=\bigcup V_{j}$. In the appendix of this article, M. Chardin and P. Philippon prove (see subsection 6.1)

$$
\begin{equation*}
H\left(V^{\prime} ; \nu\right) \geq\binom{\nu+d-m}{d} \operatorname{deg}\left(V^{\prime}\right) \tag{3.17}
\end{equation*}
$$

for $\nu>m$.
Let \wp be a set of prime numbers. We apply the previous result to $V^{\prime}=\bigcup_{p \in \wp}[p] V$. Using the upper bound (2.6) of proposition 2.8 and (3.17) we get:

Proposition 3.3. Let $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ be a \mathbb{Q}-irreducible variety of dimension d and codimension $k=n-d$ which is not a union of torsion varieties. Let N be a positive real number and let \wp be a set of prime numbers with $p \leq N$ lying outside the set $E(V)$ of proposition 2.8. Define

$$
V^{\prime}=\bigcup_{p \in \wp}[p] V
$$

and

$$
m=\left[k N^{n} \delta_{0}(V)\right]
$$

Then for any $\nu \geq m$ we have

$$
H\left(V^{\prime} ; \nu\right) \geq\binom{\nu+d-m}{d} \operatorname{deg}\left(V^{\prime}\right)
$$

We are now ready to prove the main result of this section, theorem 1.2. Let us recall the statement.

Theorem 1.2. Let V be a variety of $\mathbb{G}_{\mathrm{m}}^{n}$ of codimension k, defined and irreducible over \mathbb{Q}. Assume that V is not a union of torsion varieties. Let

$$
\theta_{0}=\delta_{0}(V)\left(52 n^{2} \log \left(n^{2} \delta_{0}(V)\right)\right)^{(n+1)(k+1)}
$$

Then there exists a hypersurface Z defined over \mathbb{Q} of degree at most θ_{0} which does not contain V and such that

$$
V\left(\theta_{0}^{-1}\right) \subseteq V \cap Z
$$

Proof. For simplicity, denote $\delta_{0}=\delta_{0}(V)$. We prove a slightly more precise result. Namely that

$$
V\left(\delta_{0}^{-1} n^{-2}\left(39 n^{2} \log \left(n^{2} \delta_{0}\right)\right)^{-(n+1)(k+1)+1}\right)
$$

is contained in a hypersurface Z defined over \mathbb{Q}, such that $V \nsubseteq Z$ and

$$
\operatorname{deg} Z \leq \delta_{0} n^{2}\left(39 n^{2} \log \left(n^{2} \delta_{0}\right)\right)^{(n+1)(k+1)}
$$

Since $39 n^{2 /((n+1)(k+1)} \leq 39 n^{1 /(n+1)} \leq 39 \cdot 4^{1 / 5} \leq 52$ this statement implies the statement of theorem 1.2. Let

$$
N=\left(39 n^{2} \log \left(n^{2} \delta_{0}\right)\right)^{k+1}
$$

We need a lower and an upper bound for $\log N$. We have

$$
\begin{equation*}
\log N \geq 2 \log (39 \cdot 4 \log 4) \geq 10.75 \tag{3.18}
\end{equation*}
$$

and (using $\log x<\sqrt{x}$ for $x>0, k+1 \leq 1.5 n$ and $39 \leq 2^{5.29} \leq n^{5.29}$)

$$
\begin{equation*}
\log N \leq(k+1) \log \left(39 n^{2} \cdot \sqrt{n^{2} \delta_{0}}\right) \leq 1.5 n \log \left(n^{8.29} \delta_{0}\right) \leq 6.22 n \log \left(n^{2} \delta_{0}\right) \tag{3.19}
\end{equation*}
$$

We define \wp as the set of prime numbers p such that $N^{3 / 4} \leq p \leq N$ and $p \notin E(V)$ where $E(V)$ is as in proposition 2.8. Thus

$$
|\wp| \geq \pi(N)-\pi\left(N^{3 / 4}\right)-|E(V)|
$$

where, as usual, $\pi(t)$ is the cardinality of the set of prime numbers $\leq t$. By theorem 1 of [Ros-Sch 1962] we have, for $t \geq 59$,

$$
\frac{t}{\log t}+\frac{t}{2(\log t)^{2}}<\pi(t) \leq \frac{t}{\log t}+\frac{3 t}{2(\log t)^{2}}
$$

By proposition 2.8 and by the last inequality in (2.5),

$$
\begin{aligned}
|E(V)| / \sqrt{N} & \leq \frac{d+1}{\log 2} \log \operatorname{deg}(V) \cdot \frac{1}{\left(39 n^{2} \log \left(n^{2} \delta_{0}\right)\right)^{(k+1) / 2}} \\
& \leq \frac{n k \log \delta_{0}}{\log 2 \cdot 39 n^{2} \log \left(n^{2} \delta_{0}\right)} \leq \frac{1}{39 \log 2}
\end{aligned}
$$

Thus $|\wp| \geq \frac{f(N) N}{\log N}$, where

$$
f(t)=1+\frac{1}{2 \log t}-\frac{1}{t^{1 / 4} \cdot 3 / 4}-\frac{3}{2 t^{1 / 4}(3 / 4)^{2} \log t}-\frac{\log t}{39(\log 2) t^{1 / 2}} .
$$

Since $f(t) \geq 0.937$ for $\log t \geq 10.75$, we obtain,

$$
|\wp| \geq \frac{0.937 N}{\log N}
$$

As in proposition 3.1, we set

$$
V^{\prime}=\bigcup_{p \in \wp}[p] V
$$

We constructed \wp such that $\wp \cap E(V)=\emptyset$. Then, by proposition 2.8,

$$
\begin{equation*}
\operatorname{deg}\left(V^{\prime}\right) \geq|\wp| \operatorname{deg}(V) \geq \frac{0.937 N}{\log N} \operatorname{deg}(V) \tag{3.20}
\end{equation*}
$$

As in the statement of proposition 3.3, let $m=\left[k N^{n} \delta_{0}\right]$. Choose

$$
\nu=m d+m \quad \text { and } \quad T=\left[39 n^{2} \log \left(n^{2} \delta_{0}\right)\right]
$$

We remark that

$$
\begin{equation*}
\nu+1 \leq n^{2} N^{n} \delta_{0} \tag{3.21}
\end{equation*}
$$

Let

$$
\theta:=\delta_{0} n^{2}\left(39 n^{2} \log \left(n^{2} \delta_{0}\right)\right)^{(n+1)(k+1)-1}
$$

Let W be the Zariski closure of the set $V\left(\theta^{-1}\right)$ and let $W^{\prime}=\bigcup_{p \in \wp}[p] W$. We remark that W is defined over \mathbb{Q} because the small points of V are invariant under the Galois action. Then

$$
\begin{equation*}
\hat{\mu}^{\operatorname{ess}}(W) \leq \theta^{-1} \tag{3.22}
\end{equation*}
$$

Furthermore

$$
H(W, T ; \nu) \leq H(V, T ; \nu) \quad \text { and } \quad H\left(W^{\prime} ; \nu\right) \leq H\left(V^{\prime} ; \nu\right)
$$

We are going to prove that the last inequality is strict. Assume on the contrary that

$$
\begin{equation*}
H\left(W^{\prime} ; \nu\right)=H\left(V^{\prime} ; \nu\right) \tag{3.23}
\end{equation*}
$$

Apply proposition 3.2 to V and proposition 3.3 to V^{\prime}. Then, by (3.20),

$$
\frac{H(W, T ; \nu)}{H\left(W^{\prime} ; \nu\right)} \leq \frac{H(V, T ; \nu)}{H\left(V^{\prime} ; \nu\right)} \leq \frac{\binom{T-1+k}{k}\binom{\nu+d}{d}}{\binom{\nu+d-m}{d}} \times \frac{\log N}{0.937 N}
$$

We remark that $\binom{T-1+k}{k} \leq T^{k}$. Moreover, by the choice $\nu=m d+m$,
$\binom{\nu+d}{d}\binom{\nu+d-m}{d}^{-1}=\prod_{j=1}^{d} \frac{\nu+j}{\nu-m+j} \leq\left(1+\frac{m}{\nu-m}\right)^{d}=\left(1+\frac{1}{d}\right)^{d} \leq e$.
Thus,

$$
\begin{equation*}
\lambda:=\frac{T H(W, T ; \nu)}{H\left(W^{\prime} ; \nu\right)} \leq \frac{e(\log N) T^{k+1}}{0.937 N} \leq 2.91 \log N \tag{3.24}
\end{equation*}
$$

By proposition 3.1 (with V replaced by W) there exists a prime $p \in \wp$ such that

$$
\theta^{-1} \geq \frac{1}{p \nu}((T+1) \log p-\lambda(\log (\nu+1)+\log N)-n \log (\nu+1)-\log N)
$$

By the choice of T, we have $T+1 \geq 39 n^{2} \log \left(n^{2} \delta_{0}\right)$. By (3.24), (3.21) and (3.19),

$$
\begin{aligned}
& \lambda(\log (\nu+1)+\log N)+n \log (\nu+1)+\log N \\
& \quad \leq 2.91(\log N)\left(\log \left(n^{2} \delta_{0}\right)+(n+1) \log N\right)+n \log \left(n^{2} \delta_{0}\right)+\left(n^{2}+1\right) \log N \\
& \quad \leq 2.91(6.22 n(n+1)+1) \log \left(n^{2} \delta_{0}\right) \log N+n \log \left(n^{2} \delta_{0}\right)+\left(n^{2}+1\right) \log N \\
& \quad \leq c \cdot 39 n^{2} \log \left(n^{2} \delta_{0}\right) \log N
\end{aligned}
$$

with

$$
c=\frac{2.91(6.22 \cdot 1.5+0.25)+0.5 / 10.75+(1+0.25) / \log 4}{39} \leq 0.74
$$

(use $n \geq 2$ and (3.18)). Let

$$
f(t)=\frac{N}{t}\left(\frac{\log t}{\log N}-0.74\right) \log N
$$

Then

$$
\theta^{-1}>\frac{39 f(p) \log \left(n^{2} \delta_{0}\right)}{N \nu}
$$

We remark that $f(t)$ has a single stationary point on $[0,+\infty]$ which is a local maximum. Since $p \in\left[N^{3 / 4}, N\right]$, we have $f(p) \geq \max \left\{f\left(N^{3 / 4}\right), f(N)\right\}$. Moreover, by (3.18),

$$
f\left(N^{3 / 4}\right) \geq e^{10.75 / 4}(3 / 4-0.74) \cdot 10.75>1
$$

and $f(N) \geq(1-0.74) \cdot 10.75>1$. Thus $f(p)>1$. Using (3.21), we finally obtain $\theta<\frac{N \nu}{39 n^{2} \log \left(n^{2} \delta_{0}\right)} \leq \frac{n^{2} N^{n+1} \delta_{0}}{39 n^{2} \log \left(n^{2} \delta_{0}\right)}=\delta_{0} n^{2}\left(39 n^{2} \log \left(n^{2} \delta_{0}\right)\right)^{(n+1)(k+1)-1}=\theta$.

This contradiction shows that the assumption (3.23) cannot hold. Thus we have:

$$
H\left(W^{\prime} ; \nu\right)<H\left(V^{\prime} ; \nu\right)
$$

Equivalently, there exists a homogeneous polynomial F of degree ν which vanishes on W^{\prime} but not on V^{\prime}. The varieties are defined over the rationals, so we can assume $F \in \mathbb{Q}[\mathbf{x}]$. Since F does not vanish on V^{\prime}, there exists a prime number $p \in \wp$ such that F does not vanish on $[p] V$. Let Z be the zero set of $F\left(\mathbf{x}^{p}\right)=0$. Then $V \nsubseteq Z$ and $V\left(\theta^{-1}\right) \subseteq W \subseteq Z$. We have

$$
\operatorname{deg}(Z) \leq N \operatorname{deg} F \leq N \nu \leq n^{2} N^{n+1} \delta_{0}=\delta_{0} n^{2}\left(39 n^{2} \log \left(n^{2} \delta_{0}\right)\right)^{(n+1)(k+1)}
$$

as required.

4. Distribution of the Small points

A geometric reduction process, close to that of [Amo-Via 2009], applied to each variety involved, allows us to prove the main result of this article using theorem 1.2.

Theorem 1.3. Let $V_{0} \subseteq V_{1}$ be subvarieties of $\mathbb{G}_{\mathrm{m}}^{n}$, defined over \mathbb{Q}, of codimensions k_{0} and k_{1} respectively. Assume that V_{0} is \mathbb{Q}-irreducible. Let

$$
\theta=\delta\left(V_{1}\right)\left(935 n^{5} \log \left(n^{2} \delta\left(V_{1}\right)\right)\right)^{\left(k_{0}-k_{1}+1\right)\left(k_{0}+1\right)(n+1)}
$$

Then,

- either there exists a \mathbb{Q}-irreducible B union of torsion varieties such that $V_{0} \subseteq B \subseteq V_{1}$ and $\delta_{0}(B) \leq \theta$,
- or there exists a hypersurface Z defined over \mathbb{Q} of degree at most θ such that $V_{0} \nsubseteq Z$ and $V_{0}\left(\theta^{-1}\right) \subseteq Z$.

Proof. Theorem 1.3 is analogue to theorem 2.2 of [Amo-Via 2009]. The proof is similar. Let us give the details.

We simply denote $\delta=\delta\left(V_{1}\right)$. By contradiction, we suppose that the conclusion of theorem 1.3 does not hold. Thus
V_{0} is not contained in any union $B \subseteq V_{1}$ of proper torsion varieties with $\delta_{0}(B) \leq \theta$ and
(4.26)

Each hypersurface Z defined over \mathbb{Q}, of degree $\leq \theta$, with $V_{0}\left(\theta^{-1}\right) \subseteq Z$ contains V_{0}.
For $r \in\left\{0, \ldots, k_{0}-k_{1}+1\right\}$ we define

$$
D_{r}=\delta\left(935 n^{5} \log \left(n^{2} \delta\right)\right)^{r\left(k_{0}+1\right)(n+1)}
$$

Since $r \leq k_{0}-k_{1}+1$, we have $D_{r} \leq \theta$. Using an inductive process on r, we are going to construct a chain of varieties

$$
X_{0} \supseteq \cdots \supseteq X_{r} \supseteq X_{r+1} \supseteq \cdots \supseteq X_{k_{0}-k_{1}+1}
$$

defined over \mathbb{Q} which satisfy:

Claim.

i) $V_{0} \subseteq X_{r}$.
ii) Each \mathbb{Q}-irreducible component of X_{r} containing V_{0} has codimension $\geq r+k_{1}$.
iii) $\bar{\delta}\left(X_{r}\right) \leq D_{r}$.

Theorem 1.3 is proved if we show the claim for $r=k_{0}-k_{1}+1$. Indeed, by i) there exists a \mathbb{Q}-irreducible component W of $X_{k_{0}-k_{1}+1}$ which contains V_{0}. By ii) codim $W \geq k_{0}+1$. This gives a contradiction.

We now define X_{r} and prove our claim by induction on r.

- For $r=0$, we simply choose $X_{0}=V_{1}$.
- We assume that our claim holds for some $r \in\left\{0, \ldots, k_{0}-k_{1}\right\}$ and we prove that it holds for $r+1$, as well. Since $V_{0} \subseteq X_{r}$, there exists at least one \mathbb{Q} irreducible component of X_{r} which contains V_{0}. Let $1 \leq s \leq t$ be integers and let
$W_{1}, \ldots, W_{s}, W_{s+1}, \ldots, W_{t}$ be the \mathbb{Q}-irreducible components of X_{r}. We enumerate these components so that

$$
V_{0} \subseteq W_{j} \quad \text { if and only if } \quad j=1, \ldots, s
$$

Assertion ii) of our claim for r implies that $r+k_{1} \leq \operatorname{codim}\left(W_{j}\right) \leq k_{0}$, for $j=$ $1, \ldots, s$.

Let $j \in\{1, \ldots, s\}$. Since $\delta\left(X_{r}\right) \leq D_{r}$, the variety W_{j} is a \mathbb{Q}-irreducible component of an intersection of hypersurfaces defined over \mathbb{Q} of degree $\leq D_{r}$. Thus $\delta_{0}\left(W_{j}\right) \leq D_{r} \leq \theta$. Moreover

$$
V_{0} \subseteq W_{j} \subseteq X_{r} \subseteq X_{0}=V_{1}
$$

By assumption (4.25), W_{j} is not a union of torsion varieties.
Let

$$
\theta_{0}=D_{r}\left(52 n^{2} \log \left(n^{2} D_{r}\right)\right)^{(n+1)\left(k_{0}+1\right)}
$$

In view of theorem 1.2 , the set $W_{j}\left(\theta_{0}^{-1}\right)$ is contained in a hypersurface Z_{j} defined over \mathbb{Q} which does not contain W_{j} and such that $\operatorname{deg} Z_{j} \leq \theta_{0}$. We show that $\theta_{0} \leq D_{r+1}$. For this we need an upper bound for $\log \left(n^{2} D_{r}\right)$. Using $\log x<\sqrt{x}$ for $x>0$, we obtain

$$
\begin{aligned}
D_{r} & =\delta\left(935 n^{5} \log \left(n^{2} \delta\right)\right)^{r\left(k_{0}+1\right)(n+1)} \leq \delta\left(935 n^{5} \cdot n \delta\right)^{r\left(k_{0}+1\right)(n+1)} \\
& \leq \delta\left(935 n^{6} \delta\right)^{n(n+1)^{2}} .
\end{aligned}
$$

We have $n^{2} \leq n^{n^{3} / 4}, n(n+1)^{2} \leq(9 / 4) n^{3}$ and $935 \leq n^{(\log 935) / \log 2}$. Thus $n^{2} D_{r} \leq$ $\left(n^{2} \delta\right)^{c n^{3}}$ with

$$
c=\frac{1}{8}+\frac{9}{4} \cdot \frac{1}{2}\left(\frac{\log 935}{\log 2}+6\right)<17.98 .
$$

We deduce

$$
\begin{aligned}
\theta_{0} & \leq D_{r}\left(52 n^{2} \cdot 17.98 n^{3} \log \left(n^{2} \delta\right)\right)^{(n+1)\left(k_{0}+1\right)} \\
& \leq D_{r}\left(935 n^{5} \log \left(n^{2} \delta\right)\right)^{(n+1)\left(k_{0}+1\right)} \\
& =D_{r+1}
\end{aligned}
$$

Since $V_{0} \subseteq W_{j}$

$$
V_{0}\left(\theta_{0}^{-1}\right) \subseteq W_{j}\left(\theta_{0}^{-1}\right) \subseteq Z_{j}
$$

As $\operatorname{deg} Z_{j} \leq \theta_{0} \leq D_{r+1} \leq \theta$, relation (4.26) implies that $V_{0} \subseteq Z_{j}$. Thus, for $j=1, \ldots, s$ we have $V_{0} \subseteq Z_{j}$ and

$$
V_{0} \subseteq \bigcap_{j=1}^{s} Z_{j}
$$

Let

$$
X_{r+1}=X_{r} \cap Z_{1} \cap \cdots \cap Z_{s}
$$

Then $V_{0} \subseteq X_{r+1} \subseteq X_{r}$.
Recall that $\operatorname{deg} Z_{j} \leq \theta_{0} \leq D_{r+1}$. Then

$$
\delta\left(X_{r+1}\right) \leq \max \left\{\delta\left(X_{r}\right), D_{r+1}\right\} \leq \max \left\{D_{r}, D_{r+1}\right\}=D_{r+1}
$$

We decompose

$$
X_{r+1}=W_{1}^{\prime} \cup \cdots \cup W_{s}^{\prime} \cup W_{s+1}^{\prime} \cup \cdots \cup W_{t}^{\prime}
$$

where $W_{j}^{\prime}=W_{j} \cap Z_{1} \cap \cdots \cap Z_{s}$.
Let $j \in\{1, \ldots, s\}$. Since $W_{j} \nsubseteq Z_{j}$, every \mathbb{Q}-irreducible component of W_{j}^{\prime} has codimension $\geq \operatorname{codim}\left(W_{j}\right)+1 \geq r+1+k_{1}$.

Let $j \in\{s+1, \ldots, t\}$. Since $V_{0} \nsubseteq W_{j}$, the variety V_{0} is not contained in any \mathbb{Q}-irreducible component of W_{j}^{\prime}.

We conclude that X_{r+1} satisfies our claim for $r+1$.

5. Proofs of Theorem 1.1 and of the Corollaries

Theorem 1.1 becomes a corollary of theorem 1.3:
Proof of theorem 1.1. Let

$$
\theta=\delta(V)\left(935 n^{5} \log \left(n^{2} \delta(V)\right)\right)^{(d+1)(n+1)^{2}}
$$

We have to show that $V^{*}\left(\theta^{-1}\right)=\emptyset$. Let V_{0} be one of the finitely many \mathbb{Q}-irreducible components of $\overline{V\left(\theta^{-1}\right)}$. Then $\overline{V_{0}\left(\theta^{-1}\right)}=V_{0}$. Apply theorem 1.3 to V_{0} and $V_{1}=V$. We have $k_{0} \leq n$ and $k_{1}=n-d$. Thus

$$
\left(k_{0}-k_{1}+1\right)\left(k_{0}+1\right)(n+1) \leq(d+1)(n+1)^{2}
$$

Since $V\left(\theta^{-1}\right)$ is dense in V_{0}, the first assertion of theorem 1.3 must hold. So $\overline{V_{0}\left(\theta^{-1}\right)}$ is contained in a union of torsion varieties $B \subseteq V$. Varing V_{0} over all components of $\overline{V\left(\theta^{-1}\right)}$, we conclude that $\overline{V\left(\theta^{-1}\right)} \subseteq B$ where $B \subseteq V$ is a union of torsion varieties. Thus $V^{*}\left(\theta^{-1}\right)=\emptyset$.

On the one hand, theorem 1.1 tells us that the small points of V are contained in the union V^{u} of torsion varieties included in V. On the other hand, the torsion is dense in a torsion varieties and V^{u} is a finite union of the maximal torsion varieties of V. Thus, the closure of the small points must be V^{u}. In [Amo-Via 2009], corollary 5.3 , we estimate the sum of the degrees of these maximal torsion varieties. This is the line of

Proof of corollary 1.4. Let $V^{u}=B_{1} \cup \cdots \cup B_{t}$ where B_{j} are the maximal torsion varieties of V. By [Amo-Via 2009], corollary 5.3, $\delta_{0}\left(B_{j}\right) \leq \theta^{\prime}$ and

$$
\sum_{j=1}^{t} \theta^{\prime \operatorname{dim}\left(B_{j}\right)} \operatorname{deg}\left(B_{j}\right) \leq \theta^{\prime n}
$$

where $\theta^{\prime} \leq \theta$. Since $V^{*}=V \backslash V^{u}$, theorem 1.1 shows that

$$
V\left(\theta^{-1}\right) \subseteq V^{u}=B_{1} \cup \cdots \cup B_{t}
$$

In addition

$$
V^{u}=\overline{V(0)} \subseteq \overline{V\left(\theta^{-1}\right)}
$$

Let $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ be a \mathbb{Q}-irreducible subvariety which is not contained in any union of proper torsion varieties. As remarked in the introduction, theorem 1.1 implies a lower bound for the essential minimum. The slightly better lower bound of corollary 1.5 is optained directly from theorem 1.3.

Proof of corollary 1.5. Choose a hypersurface Z defined over \mathbb{Q} containing V of minimal degree $\omega(V)$. The result follows choosing $V_{0}=V, V_{1}=Z, k_{0}=k$ and $k_{1}=1$ in theorem 1.3.

Finally, we prove the lower bound for the product of the heights of multiplicatively independent algebraic numbers announced in the introduction in corollary 1.6.

Proof of corollary 1.6. We reorder $\alpha_{1}, \ldots, \alpha_{n}$ in such a way that $h\left(\alpha_{1}\right) \leq$ $\cdots \leq h\left(\alpha_{n}\right)$. Let $A_{i}=\left[2 h\left(\alpha_{i}\right) / h\left(\alpha_{1}\right)\right]$ and choose algebraic numbers $\beta_{1}, \ldots, \beta_{n}$ such that $\beta_{i}^{A_{i}}=\alpha_{i}$. We apply corollary 1.5 to the 0 -dimensional variety V of degree $[\mathbb{Q}(\boldsymbol{\beta}): \mathbb{Q}]$, consisting of the conjugates of $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{n}\right)$. We have

$$
\hat{\mu}^{\mathrm{ess}}(V)=h(\boldsymbol{\beta}) \leq \sum_{i} A_{i}^{-1} h\left(\alpha_{i}\right) \leq n h\left(\alpha_{1}\right)
$$

By the bound (2.4) of Chardin, we deduce

$$
\omega(V) \leq n[\mathbb{Q}(\boldsymbol{\beta}): \mathbb{Q}]^{1 / n} \leq n\left(D A_{1} \cdots A_{n}\right)^{1 / n} \leq 2 n\left(h\left(\alpha_{1}\right) \cdots h\left(\alpha_{n}\right)\right)^{1 / n} h\left(\alpha_{1}\right)^{-1} D^{1 / n}
$$

In view of the upper bound for the essential minimum and in view of corollary 1.5 we obtain

$$
\begin{aligned}
n h\left(\alpha_{1}\right) & \geq \hat{\mu}^{\mathrm{ess}}(V) \\
& \geq(2 n)^{-1}\left(h\left(\alpha_{1}\right) \cdots h\left(\alpha_{n}\right)\right)^{-1 / n} h\left(\alpha_{1}\right) D^{-1 / n}\left(935 n^{5} \log \left(n^{2} \omega(V)\right)\right)^{-n(n+1)^{2}}
\end{aligned}
$$

or equivalently

$$
h\left(\alpha_{1}\right) \cdots h\left(\alpha_{n}\right) \geq D^{-1}\left(2 n^{2}\right)^{-n}\left(935 n^{5} \log \left(n^{2} \omega(V)\right)\right)^{-n^{2}(n+1)^{2}}
$$

To conclude the proof, we use an effective lower bound for the height due to P. Voutier. Note that α_{1} is not a root of unity. By [Vou 1996], corollary 2, $h\left(\alpha_{1}\right) \geq 2 D^{-1} \log (3 D)^{-3}$. Moreover we can clearly assume $D \geq 2$ and

$$
h\left(\alpha_{1}\right) \cdots h\left(\alpha_{n}\right) \leq D^{-1}(n \log (3 D))^{-3 n}
$$

Thus,

$$
\omega(V) \leq 2 n \cdot D^{-1 / n}(n \log (3 D))^{-3} \cdot \frac{1}{2} D \log (3 D)^{3} \cdot D^{1 / n}=n^{-2} D
$$

and $\left(\operatorname{using}\left(2 n^{2}\right)^{1 / n(n+1)^{2}} \cdot 935 \leq 8^{1 / 18} \cdot 935 \leq 1050\right.$ for $n \geq 2$)

$$
\begin{aligned}
\left(2 n^{2}\right)^{n}\left(935 n^{5} \log \left(n^{2} \omega(V)\right)\right)^{n^{2}(n+1)^{2}} & \leq\left(2 n^{2}\right)^{n}\left(935 n^{5} \log D\right)^{n^{2}(n+1)^{2}} \\
& \leq\left(1050 n^{5} \log (3 D)\right)^{n^{2}(n+1)^{2}}
\end{aligned}
$$

6. Appendix

The following appendix by M. Chardin and P. Philippon contains two results. The first one is an extension of the lower bound for the Hilbert function proved in [Cha-Phi 1999]. This result is crucial in the proof of proposition 3.3. The second result in this appendix deals with a filtration of invariants starting with ω and ending with δ_{0}. Let $V \subset \mathbb{P}^{n}$ be a K-irreducible variety of codimension k defined by a homogeneous prime ideal $I \subseteq A=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$. Let $1 \leq r \leq k$. Philippon (see [Phi 2000], corollary 6) defines $\delta_{r}^{\prime}(I)$ as the minimal degree δ such that there exist homogeneous polynomials $f_{1}, \ldots f_{r} \in A$ of degree δ which form a regular sequence in $I A_{I}$. Thus $\delta_{r}^{\prime}(I)$ is the minimal degree δ such that there exists an intersection X of hypersurfaces defined over K of degree $\leq \delta$ containing V and of local codimension $\geq r$ at V. The proof of corollary 2.3 shows that it is not restrictive to require also that all hypersurfaces are defined over $\overline{\mathbb{Q}}$. Thus $\delta_{1}^{\prime}(I)=\omega(V)$ and $\delta_{k}^{\prime}(I)=\delta_{0}(V)$. In addition, one can show that V is an isolated component of an intersection of k hypersurfaces of degree $\delta_{1}^{\prime}(I), \ldots, \delta_{k}^{\prime}(I)$. Thus, by Bézout's theorem, $\operatorname{deg}(V) \leq \delta_{1}^{\prime}(I) \cdots \delta_{k}^{\prime}(I)$. In the second part of the appendix, M. Chardin and P. Philippon prove that there exist hypersurfaces Z_{1}, \ldots, Z_{k} of degree d_{1}, \ldots, d_{k} such that V is an isolated component of $Z_{1} \cap \cdots \cap Z_{k}$ and

$$
\left(n^{k(k+1) / 2} 2^{n k(k-1)}\right)^{-1} d_{1} \cdots d_{k} \leq \operatorname{deg}(V) \leq d_{1} \cdots d_{k} .
$$

Obviously, by definition $\delta_{r}^{\prime} \leq d_{r}$. In addition, since $\operatorname{deg}(V) \leq \delta_{1}^{\prime}(I) \cdots \delta_{k}^{\prime}(I)$, we deduce

$$
\begin{equation*}
\left(n^{k(k+1) / 2} 2^{n k(k-1)}\right)^{-1} \delta_{1}^{\prime}(I) \cdots \delta_{k}^{\prime}(I) \leq \operatorname{deg}(I) \leq \delta_{1}^{\prime}(I) \cdots \delta_{k}^{\prime}(I) . \tag{6.27}
\end{equation*}
$$

Even if these inequalities are not needed here, we believe that they will be useful.

complément à [Cha-Phi 1999].
 Par M. Chardin et P. Philippon

6.1. Extension de la minoration de fonction de Hilbert. Dans l'énoncé suivant, nous utilisons la notion de modules et schémas (m, \mathfrak{b})-parfaits telle qu'introduite dans [Cha-Phi 1999]. Rappelons que dans cette propriété m est un entier et \mathfrak{b} est un idéal homogène de l'anneau de base (supposé gradué). En particulier, l'espace projectif \mathbb{P}^{n} est 0-régulier et son anneau de coordonnées $A=\mathbf{k}\left[x_{0}, \ldots, x_{n}\right]$ est $(0, A)$-régulier (en tant que A-module).

Théorème 6.1. Soient V_{1}, \ldots, V_{s} des sous-schémas de \mathbb{P}^{n}, équi-dimensionnels de même dimension D et de supports deux à deux distincts. Notons $\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{s}$ des idéaux homogènes de l'anneau de coordonnées $A=\mathbf{k}\left[x_{0}, \ldots, x_{n}\right]$. On suppose que V_{i} est (m_{i}, \mathfrak{b}_{i})-parfait pour $i=1, \ldots, s$ et on note V un sous-schéma de dimension D contenu dans $V_{1} \cup \cdots \cup V_{s}$. Alors on a

$$
\mathcal{H}(V, \nu) \geq \operatorname{deg}(V)\binom{\nu+D-m}{D}
$$

dès que $\nu>m:=m_{1}+\cdots+m_{s}+s-1$.
Nota Bene - Posons $\delta_{0}(V)$ le plus petit entier tel que V soit composante d'une intersection de $n-D$ formes de degré au plus δ_{0}. On sait que $m_{i} \leq(n-D)\left(\delta_{0}\left(V_{i}\right)-\right.$ 1) et on a donc dans l'énoncé ci-dessus:

$$
m \leq(n-D)\left(\delta_{0}\left(V_{1}\right)+\cdots+\delta_{0}\left(V_{s}\right)-s\right)+s-1
$$

Démonstration. On procède par récurrence sur D, on note $A=\mathbf{k}\left[x_{0}, \ldots, x_{n}\right]$ et I_{1}, \ldots, I_{s} les idéaux des V_{i}. Pour $D=0$ on sait que le A-module A / I_{i} est $\left(m_{i}, \mathfrak{b}_{i}\right)$-parfait et donc m_{i}-régulier d'après [Cha-Phi 1999], prop.3. D'après le théorème 2.4 de [Con-Her 2003] (appliqué avec $M=A /\left(I_{1} \cap \cdots \cap I_{i-1}\right)$ et A / I_{i} qui est de dimension 1) on sait que la régularité de $I_{i} /\left(I_{1} \cap \cdots \cap I_{i}\right)$ est majorée par la somme de la régularité de $A /\left(I_{1} \cap \cdots \cap I_{i-1}\right)$ et de celle de I_{i} (qui est égale à celle de A / I_{i} plus 1). De plus, la régularité de $A /\left(I_{1} \cap \cdots \cap I_{i}\right)$ est le maximum de celle de $I_{i} /\left(I_{1} \cap \cdots \cap I_{i}\right)$ et de celle de A / I_{i}, d'où les inégalités

$$
\begin{aligned}
\operatorname{reg}\left(A /\left(I_{1} \cap \cdots \cap I_{i}\right)\right) & \leq \max \left(\operatorname{reg}\left(I_{i} /\left(I_{1} \cap \cdots \cap I_{i}\right) ; \operatorname{reg}\left(A / I_{i}\right)\right)\right. \\
& \leq \operatorname{reg}\left(A /\left(I_{1} \cap \cdots \cap I_{i-1}\right)+\operatorname{reg}\left(A / I_{i}\right)+1\right.
\end{aligned}
$$

Comme la régularité de A / I_{i} est majorée par m_{i} on obtient par téléscopage que la régularité de $A /\left(I_{1} \cap \cdots \cap I_{s}\right)$ est majorée par $m_{1}+\cdots+m_{s}+s-1$. L'idéal J de V contient $I_{1} \cap \cdots \cap I_{s}$ et A / J a même dimension D, la minoration cherchée résulte alors de [Cha-Phi 1999], prop.4, dans ce cas.

Pour passer de $D-1$ à D on intersecte, comme dans loc. cit., V par une forme linéaire x assez générale de sorte que pour tout $i, j \in\{1, \ldots, s\}$ on ait $\operatorname{dim}\left(V_{i} \cap V_{j} \cap \mathcal{Z}(x)\right)<D-1$ et $\operatorname{dim}\left(V_{i} \cap \mathcal{Z}\left(\mathfrak{b}_{i}+x A\right)\right)<D-1$. On note W_{i} la partie de dimension $D-1$ de $V_{i} \cap \mathcal{Z}(x)$ et on vérifie que W_{i} est ($m_{i}, b_{i} \mathfrak{b}_{i}$)-parfait pour un $b_{i} \in A$ convenable. De plus les W_{i} sont deux à deux distincts, en posant $W=W_{1} \cup \cdots \cup W_{s}$ on a $\operatorname{deg}(W)=\operatorname{deg}(V)$ et

$$
\mathcal{H}(V, \nu)-\mathcal{H}(V, \nu-1)=\mathcal{H}(V \cap \mathcal{Z}(x), \nu) \geq \mathcal{H}(W, \nu)
$$

L'hypothèse de récurrence entraîne donc

$$
\mathcal{H}(V, \nu)-\mathcal{H}(V, \nu-1) \geq \operatorname{deg}(V)\binom{\nu+D-1-m}{D-1}
$$

puis la minoration voulue par intégration finie.
6.2. Complément à l'interpolation : estimations du degré. Dans le théorème 2 de [Cha-Phi 1999], on vérifie de plus :

$$
\left(n^{r(r+1) / 2} 2^{n r(r-1)}\right)^{-1} d_{1} \ldots d_{r} \leq \operatorname{deg}(X) \leq d_{1} \ldots d_{r}
$$

La majoration $\operatorname{deg}(X) \leq d_{1} \ldots d_{r}$ est une conséquence du théorème de Bézout. Pour l'autre inégalité, on peut en fait établir les propriétés supplémentaires suivantes, à annexer à celles $(1)_{i},(2)_{i}$ et $(3)_{i}$ du théorème 2 de [Cha-Phi 1999]. Pour $i=1, \ldots, r$ on pose $c_{i}=\left(n^{i(i+1) / 2} 2^{n i(i-1)}\right)^{-1}$ et cette propriété s'énonce :
$(4)_{i}$ pour toute composante Y de X_{i} on a $\mathcal{H}\left(Y, d_{i}-1\right) \geq c_{i} d_{1} \ldots d_{i}\binom{d_{i}+n-i}{n-i}$. Et en particulier $\operatorname{deg}\left(X_{i}\right) \geq \operatorname{deg}(Y) \geq c_{i} d_{1} \ldots d_{i} \geq c_{i} \operatorname{deg}\left(X_{i}\right)$.

La démonstration se fait dans la récurrence sur $i=1, \ldots, r$ et pour $i=r$ on a bien $\operatorname{deg}(X) \geq c_{r} d_{1} \ldots d_{r} \geq c_{r} \operatorname{deg}(X)$ car $X_{r}=X$. Le cas $i=1$ résulte déjà de $(2)_{1}\left(c_{1}=1 / n\right)$ et pour la récurrence l'argument à ajouter est le suivant $(1<i \leq r)$:

Comme $X \subset Y$ on a, par (2) ${ }_{i}$ et (4) ${ }_{i-1}$,

$$
\begin{aligned}
\mathcal{H}\left(Y, d_{i}-1\right) & \geq \mathcal{H}\left(X, d_{i}-1\right) \\
& \geq c(n, i)^{-1} \operatorname{deg}\left(X_{i-1}\right) d_{i}\binom{d_{i}+n-i}{n-i} \\
& \geq c(n, i)^{-1} c_{i-1} d_{1} \ldots d_{i}\binom{d_{i}+n-i}{n-i} .
\end{aligned}
$$

Ce qui conclut car $c_{i} \leq c_{i-1} c(n, i)^{-1}$, vu que $c(n, i)=\frac{n!}{(n-i)!} 2^{(i-1)(2 n-i)} \leq n^{i} 4^{n(i-1)}$.

References

[Amo-Dav 1999] F. Amoroso and S. David. "Le problème de Lehmer en dimension supérieure". J. Reine Angew. Math. 513, 145-179 (1999).
[Amo-Dav 2000] F. Amoroso and S. David. "Minoration de la hauteur normalisée des hypersurfaces". Acta Arith. 92, no. 4, 340-366 (2000).
[Amo-Dav 2001] F. Amoroso and S. David. "Densité des points à cordonnées multiplicativement indépendantes", Ramanujan J. 5, 237-246 (2001).
[Amo-Dav 2003] F. Amoroso and S. David. "Minoration de la hauteur normalisée dans un tore", Journal de l'Institut de Mathématiques de Jussieu, 2, no. 3, 335-381 (2003).
[Amo-Dav 2004] F. Amoroso and S. David. "Distribution des points de petite hauteur dans les groupes multiplicatifs", Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 3 no. 2 (2004), 325-348.
[Amo-Via 2009] F. Amoroso and E. Viada. "Small points on subvarieties of a torus", to appear in Duke math. Journal.
[Bom-Mas-Zan 1999] E. Bombieri, D. Masser and U. Zannier, "Intersecting a curve with algebraic subgroups of multiplicative groups", Internat. Math. Res. Notices, 20, 11191140 (1999).
[Bom-Vaa 1983] E. Bombieri and J. Vaaler. "On Siegel's lemma", Invent. Math., 73, 11-32 (1983).
[Cha 1988] M. Chardin "Une majoration de la fonction de Hilbert et ses conséquences pour l'interpolation algébrique", Bulletin de la Société Mathématique de France, 117, 305-318 (1988).
[Cha-Phi 1999] M. Chardin and P. Philippon "Régularité et interpolation", J. Algebr. Geom., 8, no. 3, 471-481, (1999) ; erratum, ibidem, 11, 599-600 (2002).
[Con-Her 2003] A. Conca and J. Herzog "Castelnuovo-Mumford regularity of products of ideals", Collect. Math. 54, 137-152 (2003).
[Dav-Phi 1999] S. David and P. Philippon. "Minorations des hauteurs normalisées des sous-variétés des tores", Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28, no. 3, 489-543 (1999); Errata, ibidem, 29, no 3, 729-731 (2000).
[Del 2009] E. Delsinne. "Le problème de Lehmer relatif en dimension supérieure". Ann. Sci. Éc. Norm. Supér. To appear.
[Dob 1979] E. Dobrowolski. "On a question of Lehmer and the number of irreducible factors of a polynomial". Acta Arith., 34, 391-401 (1979).
[Leh 1933] D. H. Lehmer. "Factorization of certain cyclotomic functions". Ann. of Math. 34 (1933), 461-479.
[Phi 1995] P. Philippon. "Sur des hauteurs alternatives. III", J. Math. Pures Appl. (9), 74, no. 4, 345-365 (1995).
[Phi 2000] P. Philippon. "Approximation algébrique des points dans les espaces projectifs. I", J. Number Theory, 81, 234-253 (2000).
[Ros-Sch 1962] J. B. Rosser and L. Schoenfeld. "Approximate formulas for some functions of prime numbers"., Ill. J. Math., 6, 64-94 (1962).
[Sch 1996] W. M. Schmidt. "Heights of points on subvarieties of $\mathbb{G}_{\mathrm{m}}^{n}$ ". In "Number Theory 93-94", S. David editor, London Math. Soc. Ser., volume 235, Cambridge University Press, 157-187 (1996).
[Vou 1996] P. Voutier "An effective lower bound for the height of algebraic numbers". Acta Arith. 74, no. 1, 81-95 (1996).
[Zha 1995] S. Zhang. "Positive line bundles on arithmetic varieties". J. Amer. Math. Soc., 8, no. 1, 187-221 (1995).

