
HAL Id: hal-00424690
https://hal.science/hal-00424690

Preprint submitted on 16 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anderson localization for a supersymmetric sigma model
Margherita Disertori, Tom Spencer

To cite this version:
Margherita Disertori, Tom Spencer. Anderson localization for a supersymmetric sigma model. 2009.
�hal-00424690�

https://hal.science/hal-00424690
https://hal.archives-ouvertes.fr


Anderson localization for a supersymmetric

sigma model

M. Disertoria∗, T. Spencerb
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Abstract

We study a lattice sigma model which is expected to reflect the
Anderson localization and delocalization transition for real symmetric
band matrices in 3D. In this statistical mechanics model, the field
takes values in a supermanifold based on the hyperbolic plane. The
existence of a diffusive phase in 3 dimensions was proved in [2] for
low temperatures. Here we prove localization at high temperatures
for any dimension d ≥ 1. Our analysis uses Ward identities coming
from internal supersymmetry.

1 Introduction

It is well known that the study of localization properties in a disordered
material can be translated to the study of correlation functions in a lattice
field theory, with an internal hyperbolic supersymmetry (SUSY), [9, 5, 6, 8].
In the physics literature one usually assumes the sigma model approximation,
which is believed to capture the essential features of the energy correlations
and transport properties of the underlying quantum system.

∗e-mail: margherita.disertori@univ-rouen.fr
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The SUSY field theories which are equivalent to the Anderson tight-
binding model and random band matrices are difficult to analyze with math-
ematical rigor in more than one dimension. In this context, Zirnbauer intro-
duced a lattice field model which may be thought of as a simplified version of
one of Efetov’s nonlinear sigma models [10, 3]. In Zirnbauer’s sigma model
the field takes values in a target space H(2|2) which is a supermanifold exten-
sion of the hyperbolic plane. The model is expected to reflect the spectral
properties of random band matrices, such as localization and diffusion, in
any dimension. In [10] localization was established in one dimensional chain
by analyzing the transfer matrix. We refer to [2] for a historical introduction
and motivations.

More recently the existence of a ‘diffusive’ phase at low temperatures (β
large) has been proved for the H(2|2) model in three or more dimensions,
see [2]. For β small, a localized phase was expected. However, unlike con-
ventional statistical mechanics models, the H(2|2) model has a noncompact
hyperbolic symmetry and so high temperature expansions cannot be done
in the usual way. In fact, it is known that the bosonic hyperbolic sigma
model in 3D has no localized phase because its effective action is convex for
all β > 0. On the other hand, numerical simulations [4] indicated that the
SUSY hyperbolic sigma model has a phase transition for β < βc ≃ 0.038.

In this paper we show that for any dimension d > 1 the H(2|2) model
exhibits localization for β1/2 ln β−1 ≤ 1/(2d − 1). Thus the sigma model
approximation captures the physics of both localization and diffusion. More-
over, for a one dimensional chain we recover localization for all values of β.
Localization is also expected in 2D (see [2] section 1.4 and 4.3), for all val-
ues of β by both the renormalization group and by a simple saddle analysis.
However, a rigorous proof is still missing for this case.

The techniques employed in this work to prove localization are quite dif-
ferent from the ones used in [2] to prove extended states. The two papers can
be read independently. The only common point is the use of supersymmetry
to prove some identities. In the present case supersymmetry is applied only
to prove that the partition function is normalized to 1. We refer to Sec-
tion 4 and Appendix C in [2] for an introduction to supersymmetric Ward
identities.
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1.1 The model

Let Λ be a finite subset in Z
d and tj a real variable for each site j ∈ Λ. We

will consider periodic or Neumann boundary conditions. Accordingly for any
two points x, y ∈ λ, |x − y| will denote the Euclidian distance on the lattice
(Neumann bc) or the periodized lattice (periodic bc).

We introduce the probability measure

dµε
Λ(t) =

∏

j∈Λ

dtj√
2π

e−FΛ(∇t)e−Mε
Λ
(t) ×

[

√

det Dε
Λ(t)

]

(1.1)

where dtj is the Lebesgue measure, F is the kinetic part and M is the mass
term:

FΛ(∇t) = β
∑

(jj′)∈Λ

(cosh(tj − tj′) − 1)

Mε
Λ(t) =

∑

j∈Λ

εj(cosh tj − 1) . (1.2)

We denoted by (jj′) the nearest neighbor pairs |j−j′| = 1. Dε
Λ(t) is a positive

definite matrix defined by

(Dε
Λ)ij = 0 |i − j| > 1

(Dε
Λ)ij = −β |i − j| = 1

(Dε
Λ)jj = β [2d + Vj ] + εje

−tj i = j ,
(1.3)

Vj =
∑

k,(jk)

[

etk−tj − 1
]

(1.4)

and εj ≥ 0 are regularizing parameters that are necessary to make the integral
well defined. We remark that Vj + 2d > 0 for all t configuration and all j.
Finally β > 0 is a parameter that can be interpreted as a measure of the
temperature or the disorder.

Note that the definition of the matrix D differs from the one introduced
in [2] eq. (1.1). It is not difficult to see that when you mix the term

∑

k tk
and the determinant in the effective action (1.2) of [2] the result is indeed
the determinant of the matrix D above, more precisely

Aij = etiDije
tj =







0 |i − j| > 1
−βeti+tj |i − j| = 1
β

∑

i′,(ii′) eti+ti′ i = j
(1.5)
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where A is the matrix introduced in [2] eq. (1.1). For technical reasons the
above representation is more convenient when we want to prove diffusion as in
[2] while the other is more practical when we study localization (except in the
proof of Theorem 2 where we will go back to the “diffusion” representation
for a while).

Now, for any function f(t) we will define its average by

〈f(t)〉 =

∫

dµε
Λ(t) f(t) . (1.6)

Normalization and choice of εj By internal supersymmetry (see [2] Sect.
4 and eq.(5.1)) this measure is already normalized to 1 so the partition func-
tion is

Zε
Λ =

∫

dµε
Λ(t) = 1 . (1.7)

This identity is true regardless of the boundary conditions and the values of
β or εj as long as the integral is well defined. Since we consider β > 0 fixed
we only need εj to be non zero at one lattice point. In the following we will
consider three cases.

1. Uniform pinning: εj = ε ≤ 1
|Λ| for all j ∈ Λ. The measure is translation

invariant with periodic bc. The correlation function in this case has a
divergent prefactor 1/ε in the localized regime.

2. Two pinnings: εx = εy = O(1) and εj = 0 for all other points. This is
the analog of inserting two electrical contacts in a metal sample.

3. One pinning at j = 0: ε0 = O(1) and εj = 0 for all other points. This is
more suitable for an interpretation of the model as a random walk in a
random environment. Our results suggest that edge reinforced random
walk (see [7]) will also localize when the reinforcement is strong.

The observable. We will study the correlation function

Gxy := D−1
xy (1.8)

where x, y can be any two points on the lattice such that both εx > 0 and
εy > 0. This observable does not give information on localization properties
in the case of one pinning point. In such case a good observable to study is

Oj = e+tj/2 (1.9)
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where j is any point in the lattice. This observable is analogous to x
1/4
e in

the notation of [7] where e is an an edge (j, j′).

1.2 Main results

Theorem 1 Let εx > 0, εy > 0 and
∑

j∈Λ εj ≤ 1. Then for all 0 < β < βc

(βc defined below) the correlation function Gxy (1.8) decays exponentially with
the distance |x − y|. More precisely:

〈Gxy〉 ≤ C0

(

ε−1
x + ε−1

y

) [

Iβ eβ(cd−1) cd

]|x−y|
, (1.10)

where cd = 2d − 1, C0 is a constant and

Iβ =
√

β

∫ ∞

−∞

dt√
2π

e−β(cosh t−1) . (1.11)

Finally βc is defined by:

Iβce
βc(cd−1)cd = 1 . (1.12)

Our estimates hold uniformly in the volume.

Remark 1 The integral Iβ satisfies Iβ < 1 ∀β > 0:

Iβ =
√

β
2π

∫ ∞

−∞
dt e−β(cosh t−1) <

√

β
2π

∫ ∞

−∞
dt cosh(t/2) e−β(cosh t−1) = 1 .

(1.13)
More precisely

Iβ ≤
{

(lnβ−1)
√

β β < 0.15

ce−
1

β β >> 1
(1.14)

where c > 1 is a constant.

Remark 2 The constraints εx > 0 and εy > 0 exclude the case of one
pinning. Moreover

∑

j∈Λ εj ≤ 1 implies ε ≤ 1
|Λ| when ǫj = ε is constant. The

case of one pinning is covered by Theorem 2 below.
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Main consequence For d = 1 the critical beta is βc = ∞ since

Iβe
β(cd−1)cd = Iβ < 1 ∀β > 0 . (1.15)

Therefore the correlation function decays exponentially for all values of β.
On the other hand for d > 1 we obtain localization only for small β since
βc < (2d − 1)−2 < 1.

Theorem 2 Let ε0 = O(1) and εj = 0 ∀j 6= 0. Then for all 0 < β < βc

(βc defined below), the field tx wants to be as negative as −|x|. More precisely
〈Ox〉 (defined in (1.9)) decays exponentially with the distance |x − y|

〈Ox〉 ≤ C0

[

Iβ eβ(cd−1) cd

]|x|
, (1.16)

where cd and Iβ are defined in Theorem 1 above and C0 is a constant. Finally
βc is defined by:

Iβce
βc(cd−1)cd = 1 . (1.17)

Our estimates hold uniformly in the volume.

Main consequence. For d = 1 the critical beta is βc = ∞ since

Iβe
β(cd−1)cd = Iβ < 1 ∀β > 0 . (1.18)

Therefore 〈Ox〉 decays exponentially for all values of β. On the other hand
for d > 1 the result holds only for small β since βc < (2d − 1)−2 < 1.

Acknowledgments. It is our pleasure to thank A. Abdesselam for discus-
sions and suggestions related to this paper. A special thanks to M. Zirnbauer
who explained the model to us and shared his many insights.

2 Proof of Theorem 1

We want to estimate

〈Gxy〉 =

∫

dµε
Λ(t)Gxy =

∫

∏

j∈Λ

dtj√
2π

e−FΛ(∇t)e−Mε
Λ
(t) ×

√

det Dε
Λ(t) D−1

xy .

(2.1)
The proof in done in four steps.
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Step 1. We mix the observable Gxy and a piece of the probability measure

namely
√

det D. The key identity is

√

det Dε
Λ(t) D−1

xy =
√

D−1
xy

√

D−1
xy det Dε

Λ(t) (2.2)

(remember that D−1
xy > 0). The first term is bounded by

D−1
xy ≤

(

1

εxe−tx
+

1

εye−ty

)

. (2.3)

This is proved in Lemma 1. Inserting this in (2.1) we have

〈Gxy〉 ≤
∫

dνε
Λ(t)

√

[D−1
xy det Dε

Λ(t)]

(

etx/2

√
εx

+
ety/2

√
εy

)

(2.4)

where

dνε
Λ(t) =

∏

j∈Λ

dtj√
2π

e−FΛ(∇t)e−Mε
Λ
(t) . (2.5)

Unlike the measure dµε
Λ given by (1.1), this measure is no longer normalized

to 1.

Step 2. We need to extract some decay in the distance |x − y|. This is
hidden in D−1

xy detD. By some combinatorial arguments (the proof is given
in Lemma 2 ) we can write

[D−1
xy detDε

Λ(t)] =
∑

γxy

β |γ| det Dε̃
Λc

γ
(2.6)

where the sum ranges over non self intersecting paths γ made of nearest
neighbor pairs in Λ starting at x and ending at y. Let |γ|, denote the length
of γ and let Λγ be the corresponding set of lattice points and set Λc

γ = Λ\Λγ.
Finally Dε̃

Λc
γ

is the matrix one obtains by deleting the rows and columns

corresponding to the lattice points j ∈ Λγ. It is is exactly like the matrix
Dε

Λ, but defined on the complement of γ, Λc
γ and with modified masses:

Dε̃
ij = 0 |i − j| > 1

Dε̃
ij = −β |i − j| = 1

Dε̃
ii = β

[

2d + Ṽi

]

+ ε̃ie
ti i = j ,

(2.7)
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where i, j ∈ Λc
γ and

Ṽi =
∑

k∈Λc
γ ,(ki)

[

etk−ti − 1
]

(2.8)

ε̃i = εi + β
∑

k∈Λγ ,(ki)

etk . (2.9)

By combining (2.4) and (2.6) we have

〈Gxy〉 ≤
∑

γxy

β |γ|/2

∫

dνε
Λ(t)

(

etx/2

√
εx

+
ety/2

√
εy

)

√

det Dε̃
Λc

γ
. (2.10)

Step 3. The measure dνε
Λ(t) defined in (2.5) can be factored as a measure

on Λγ times a measure on the complement set Λc
γ

dνε
Λ(t) = dνε

Λγ
(t) dνε

Λc
γ
(t) e−F∂γ(∇t) , (2.11)

where
F∂γ(∇t) =

∑

(j,k),k∈Λγ ,j 6∈Λγ

β (cosh(tj − tk) − 1) (2.12)

describes the interaction between Λγ and Λc
γ. Then the integral in (2.10) can

be written as
∫

dνε
Λ(t)

(

etx/2

√
εx

+
ety/2

√
εy

)

√

det Dε̃
Λc

γ
=

∫

dνε
Λγ

(t)

(

etx/2

√
εx

+
ety/2

√
εy

)

Zγ
Λc

γ
(tγ) ,

(2.13)
where we defined

Zγ
Λc

γ
(tγ) =

∫

dνε
Λc

γ
(t)

√

det Dε̃
Λc

γ
e−F∂γ(∇t)

=

∫

∏

j∈Λc
γ

dtj√
2π

e
−FΛc

γ
(∇t)

e
−Mε

Λc
γ
(t)

√

detDε̃
Λc

γ
e−F∂γ(∇t) . (2.14)

Note that Zγ
Λc

γ
(tγ) is still a function of the t variables along the path {tk}k∈Λγ

(they are not integrated). Now Zγ
Λc

γ
(tγ) is almost equal to the partition

function

1 = Z ε̃
Λc

γ
=

∫

dµε̃
Λc

γ
(t) =

∫

dν ε̃
Λc

γ
(t)

√

det Dε̃
Λc

γ

=

∫

∏

j∈Λc
γ

dtj√
2π

e
−FΛc

γ
(∇t)

e
−M ε̃

Λc
γ
(t)

√

detDε̃
Λc

γ
, (2.15)
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where Z ε̃
Λc

γ
= 1 by supersymmetry (see (1.7)). Comparing (2.14) and (2.15)

we see that there are two main differences:

- the mass term Mε
Λc

γ
in (2.14) depends on ε instead of ε̃ and is smaller

than what it should be
Mε

Λc
γ
≤ M ε̃

Λc
γ

since M ε̃ contains additional mass terms;

- the exponent in (2.14) contains the additional factor −F∂γ(∇t) coming
from the kinetic interaction between points on Λγ and points on Λc

γ.

This last term is helping us since it makes the integral smaller. We will use
it to recover the missing mass. This is done in Lemma 3 below. The key
ingredient is a global translation on the t variables. The result is

〈Gxy〉 ≤ e1
∑

γxy

β |γ|/2eβ|∂γ|
∫

dνε
Λγ

(t)

(

etx/2

√
εx

+
ety/2

√
εy

)

, (2.16)

where |∂γ| ≤ (2d−2)|γ|+2 is the number of points inside Λc
γ on the boundary

with Λγ.

Step 4. We are left with an integral along the path γ. The integral in
(2.16) is bounded by

∫

dνε
Λγ

(t)

(

etx/2

√
εx

+
ety/2

√
εy

)

≤
(

Ix
1√
εx

+
Iy
1√
εy

)

I
|γ|
2 ,

where

Ix
1 =

∫ ∞

−∞

dt√
2π

et/2e−εx(cosh t−1) =
1√
εx

(2.17)

I2 =

∫ ∞

−∞

dt√
2π

e−β(cosh t−1) =
1

β1/2
Iβ (2.18)
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where Iβ was defined in (2.17). In the same way Iy
1 = 1/

√
εy. Inserting all

this we have

〈Gxy〉 ≤ e1

(

1

εx

+
1

εy

)

∑

γxy

eβ|∂γ| (Iβ)|γ| (2.19)

≤ 2 e1+2β

(

1

εx
+

1

εy

)

∑

n≥|x−y|

(

eβ(2d−2) Iβ

)n
cn
d

≤ C0

(

1

εx
+

1

εy

)

[

eβ(2d−2)Iβ cd

]|x−y|

where cd = (2d−1), C0 is a constant and the second inequality holds since the
number of self-avoiding walks made of n steps is bounded by 2d(2d−1)n < 2cn

d

and |∂γ| ≤ (2d − 2)|γ| + 2. Finally the sum over n is convergent since
(eβ(2d−2)Iβcd) < 1.

This concludes the proof of Theorem 1. 2

2.1 The lemmas

Lemma 1 The following inequality holds:

D−1
xy ≤ etx

εx

+
ety

εy

. (2.20)

Proof By Cauchy-Schwartz inequality

D−1
xy ≤

√

D−1
xx

√

D−1
yy ≤ D−1

xx + D−1
yy .

Since (f, Df) ≥
∑

j εje
−tjf 2

j for any fj ∈ R we have

D−1
xx ≤ 1

εxe−tx
.

Hence the result. 2

Lemma 2 For any invertible matrix M on Λ we have the following identity:

[M−1
xy detM ] =

∑

γxy=(j1,...jm)

[(−Mxj1)(−Mj1j2) · · · (−Mjmy)] detΛc
γ
M (2.21)

where γ is any non self intersecting path starting at x and ending at y.
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Proof This is a classical formula arising from the fact that every permu-
tation can be decomposed as a product of cycles. One may derive it using
the representation of a determinant as a sum over a gas of disjoint non self
intersecting closed paths:

det M =
∑

L1,...Lp

A(L1) · · ·A(Lp)

where a loop L = (j1, . . . , jm) is an ordered set of m distinct points and

A(L) =

{

− [(−Mj1j2)(−Mj2j3) · · · (−Mjmj1)] m > 1
Mj1j1 m = 1

(2.22)

The sign (−1)m−1 is the number of pairs inside the loop that need to be ex-
changed in order to recover the trivial permutation. Now since [M−1

xy detM ] =
∂

∂Myx
detM , the derivation selects only loops that contain the pair yx. The

corresponding matrix element disappears and the loop becomes a path from
x to y. The sign −1 from −Myx cancels the global −1 in front of the product.
2

Lemma 3 For any configuration of {tk| k ∈ Λγ}, the conditioned partition
function Zγ

Λc
γ
(tγ) given by (2.14) is bounded by

Zγ
Λc

γ
(tγ) ≤ e

β
P

k∈Λγ
dγ

k
(1−etk−t∗)

e
P

j∈Λc
γ

εj(1−e−t∗ ) ≤ eβ|∂γ|eε|Λc
γ | , (2.23)

where t∗ is any real number satisfying

t∗ ≥ 0 , and t∗ ≥ tk ∀k ∈ Λγ , (2.24)

and dγ
k is the number of points nearest neighbor to k that do not belong to

Λγ:
dγ

k = #{j 6∈ Λγ | |j − k| = 1} .

Proof Before doing any bound we perform a global translation inside the
integral:

tj → tj + t∗ ∀j ∈ Λc
γ . (2.25)
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Then inside the exponential we have:

FΛc
γ
(∇t) 7→ FΛc

γ
(∇t) (2.26)

Mε
Λc

γ
(t) 7→ Mε

Λc
γ
(t + t∗) (2.27)

F∂γ(∇t) 7→ F∂γ(∇t + t∗) =
∑

(j,k),k∈Λγ,j∈Λc
γ

β (cosh(tj + t∗ − tk) − 1) . (2.28)

In the numerator we have
[

det Dε̃
Λc

γ

]

7→
[

det Dε̃e−t∗

Λc
γ

]

so the only effect of the translation is to modify the mass ε̃j defined in (2.9)
at each lattice point. After the translation

Zγ
Λc

γ
=

∫





∏

j∈Λc
γ

dtj√
2π



 e
−FΛc

γ
(∇t)

√

det Dε̃e−t∗

Λc
γ

e
−Mε

Λc
γ
(t+t∗)

e−F∂γ(∇t+t∗) (2.29)

=

∫





∏

j∈Λc
γ

dtj√
2π



 e
−FΛc

γ
(∇t)

e
−M ε̃e−t∗

Λc
γ

(t)
√

det Dε̃e−t∗

Λc
γ

e
M ε̃e−t∗

Λc
γ

(t)−Mε
Λc

γ
(t+t∗)−F∂γ(∇t+t∗)

=

∫

dµε̃e−t∗

Λc
γ

(t) e
P

j∈Λc
γ
Errj ≤ Z ε̃e−t∗

Λc
γ

e
P

j∈Λc
γ

suptj
Errj =

∏

j∈Λc
γ

e
suptj

Errj ,

where we used Z ε̃e−t∗

Λc
γ

= 1 (see (1.7)) and we defined

∑

j∈Λc
γ

Errj =
[

M ε̃e−t∗

Λc
γ

(t) − Mε
Λc

γ
(t + t∗) − F∂γ(∇t + t∗)

]

(2.30)

Errj = ε̃je
−t∗(cosh tj−1) − εj(cosh(tj+t∗)−1) −

∑

k∈Λγ ,(j,k)

β (cosh(tj+t∗−tk)−1).

(2.31)
To conclude we shall prove that the right hand side of (2.29) is bounded by
the rhs of (2.23):

∏

j∈Λc
γ

e
suptj

Errj ≤ e
β

P

k∈Λγ
dγ

k
(1−etk−t∗)

e
P

j∈Λc
γ

εj(1−e−t∗)
.

We distinguish two cases.
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Case 1. When j is far from the path γ that is |j − k| > 1 for all k ∈ Λγ

then ε̃j = εj and we have

Errj = εj

[

e−t∗(cosh tj − 1) − (cosh(tj + t∗) − 1)
]

= εj

[

etj sinh(−t∗) + 1 − e−t∗
]

≤ εj(1 − e−t∗) , (2.32)

where the last inequality holds for t∗ ≥ 0.

Case 2. When j is near to the path γ that is |j − k| = 1 for some k ∈ Λγ

then ε̃j = εj +
∑

k∈Λγ ,(j,k) βetk and we have

Errj =εj

[

e−t∗(cosh tj − 1) − (cosh(tj + t∗) − 1)
]

(2.33)

+ β
∑

k∈Λγ ,(j,k)

[

etk−t∗(cosh tj − 1) − (cosh(tj + t∗ − tk) − 1)
]

= εj

[

etj sinh(−t∗) + 1 − e−t∗
]

+ β
∑

k∈Λγ ,(j,k)

[

etj sinh(tk − t∗) + 1 − etk−t∗
]

≤ εj(1 − e−t∗) + β
∑

k∈Λγ ,(j,k)

(1 − etk−t∗) ,

where the last inequality holds if t∗ ≥ 0 and t∗ ≥ tk ∀k ∈ Λγ.

Finally
∑

j∈Λc
γ

Errj ≤
∑

j∈Λc
γ

[ εj(1 − e−t∗) + β
∑

k∈Λγ ,(j,k)

(1 − etk−t∗) ]

≤ β
∑

k∈Λγ

dγ
k(1 − etk−t∗) +

∑

j∈Λc
γ

εj(1 − e−t∗) . (2.34)

This concludes the proof of the lemma. 2

3 Proof of Theorem 2

The proof of Theorem 2 is almost identical to that of Theorem 1. This time
there is no term D−1

xy ensuring we can extract a path γ connecting x to y.
On the other hand, since there is a pinning only at one position the matrix-
tree theorem (see [1] for a simple proof and many references) applied to the
“diffusion” representation A given in (1.5) of the matrix D gives

detA = ε0e
t0

∑

T

∏

jj′∈T

(−Ajj′) = ε0e
t0

∑

T

∏

(jj′)∈T

[

βetj+tj′
]

, (3.1)
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where the sum is over the spanning trees on Λ made of nearest neighbor pairs
(since Ajj′ = 0 when |j − j′| > 1). Therefore each term in the sum contains
a path γ from 0 to x. Actually using (3.1) it is easy to see that

A−1
0x detA =

1

ε0et0
detA (3.2)

for all x ∈ Λ, x 6= 0. Therefore ε0e
t0A−1

0x = 1 and

detD = ε0e
t0 A−1

0x detD = ε0e
−tx D−1

0x detD = ε0e
−tx

∑

γ0x

β |γ|detΛc
γ
D , (3.3)

where A−1
0x = e−t0D−1

0x e−tx and in the last term we applied Lemma 2. Inserting
this result in (1.1) we have

〈Ox〉 =

∫

dµε
Λ(t) Ox =

∫

dνε
Λ(t)

√

det Dε
Λ etx/2 (3.4)

=
√

ε0

∫

dνε
Λ(t)etx/2e−tx/2

√

∑

γ0x

β |γ| detDε̃
Λc

γ

≤ √
ε0

∑

γ0x

β |γ|/2

∫

dνε
Λγ

(t) Zγ
Λc

γ
(tγ) ≤ √

ε0

∑

γ0x

β |γ|/2

∫

dνε
Λγ

(t) eβ|∂γ|

≤
∑

γ0x

eβ|∂γ| Iε0
I
|γ|
β ≤ C0 (cde

β(cd−1)Iβ)|x| ,

where dνε
Λ(t) was defined in (2.5), Zγ

Λc
γ
(tγ) in (2.14), Iβ in (1.13) and the

same definition holds for Iε. In the second line we used detΛc
γ
D = detDε̃

Λc
γ

(see (2.7)). We used Lemma 3 eq. (2.23) to bound Zγ
Λc

γ
(tγ). Finally the last

inequality holds since (cde
cd−1Iβ) < 1. This concludes the proof of Theorem 2.

2
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