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A one-dimensional Keller-Segel equation with a drift issued from the boundary

We investigate in this note the dynamics of a one-dimensional Keller-Segel type model on the half-line. On the contrary to the classical configuration, the chemical production term is located on the boundary. We prove, under suitable assumptions, the following dichotomy which is reminiscent of the two-dimensional Keller-Segel system. Solutions are global if the mass is below the critical mass, they blow-up in finite time above the critical mass, and they converge to some equilibrium at the critical mass. Entropy techniques are presented which aim at providing quantitative convergence results for the subcritical case. This note is completed with a brief introduction to a more realistic model (still one-dimensional).

Résumé

Nous étudions dans cette note la dynamique d'un modèle unidimensionnel de type Keller-Segel posé sur une demi-droite. Dans le cas présent, la production du signal chimique est localisée sur le bord, au lieu d'être répartie à l'intérieur du domaine comme dans le cas classique. On démontre, sous des hypothèses convenables, la dichotomie suivante qui rappelle le système de Keller-Segel en dimension deux d'espace. Les solutions sont globales si la masse est sous-critique, elles explosent en temps fini si la masse dépasse la masse critique. Enfin, les solutions convergent vers un état d'équilibre lorsque la masse est égale à la valeur critique. Des méthodes d'entropie sont développées, dans le but d'obtenir des résultats de convergence quantitatifs. Cette note est enrichie d'une brève introduction à un modèle plus réaliste (à nouveau unidimensionnel).

Version française abrégée

Dans cette note nous allons étudier le comportement mathématique en dimension un de l'équation aux dérivées partielles suivante :

∂ t n(t, x) = ∂ xx n(t, x) + n(t, 0)∂ x n(t, x) , t > 0 , x ∈ (0, +∞) , (1) 
avec la condition initiale : n(t = 0, x) = n 0 (x) ≥ 0. Nous imposons au bord une condition de flux nul : ∂ x n(t, 0) + n(t, 0) 2 = 0, de sorte que la masse est conservée au cours du temps (au moins formellement) :

x>0 n(t, x) dx = x>0 n 0 (x) dx = M . (2) 
Ce modèle a été proposé dans [START_REF] Hawkins | Rebuilding cytoskeleton roads: active transport induced polarisation of cells[END_REF] pour décrire synthétiquement la polarisation des cellules de levure. Une caractéristique intéressante de (1) réside dans le fait que la solution peut devenir non bornée en temps fini. Dans cette note nous allons montrer l'alternative suivante : Théorème 1 (Existence globale vs. explosion) Supposons que n 0 (x) est continue sur [0, +∞) et que n 0 ∈ L 1 + ((1 + x)dx). Si M ≤ 1 alors la solution de (1) est globale en temps. Au contraire si M > 1, en supposant en outre que n 0 est décroissante, alors la solution de (1) explose en temps fini.

Nous annonçons également les résultats suivants concernant le comportement asymptotique de la solution lorsque M ≤ 1 :

Théorème 2 (Comportement asymptotique) Dans le cas critique M = 1, il existe une famille d'états stationnaires pour (1) paramétrée par α > 0. La solution converge (au sens de l'entropie relative [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF]) vers l'équilibre tel que α -1 = x>0 xn 0 (x) dx. Dans le cas sous-critique M < 1, la solution décroît vers zéro, et converge (au sens de l'entropie relative) vers un unique profil auto-similaire.

Enfin, nous nous intéressons à l'étude d'un modèle plus réaliste, qui prend en compte l'échange entre des particules libres, et des particules fixées au bord qui créent le potentiel attractif (concentration µ(t)) :

∂ t n(t, x) = ∂ xx n(t, x) + µ(t)∂ x n(t, x) , t > 0 , x ∈ (0, +∞) , µ ′ (t) = n(t, 0) -µ(t) ,
avec la condition de flux au bord :

∂ x n(t, 0) + µ(t)n(t, 0) = µ ′ (t).
Théorème 3 Avec les hypothèses des théorèmes précédents, et dans le cas sur-critique M > 1, µ(t) converge vers µ = M -1 et la densité n(t, x) converge en entropie relative vers h(x) = µ exp (-µx).

English Version

In this note we shall study the mathematical behavior of the following one dimensional partial differential equation:

∂ t n(t, x) = ∂ xx n(t, x) + n(t, 0)∂ x n(t, x) , t > 0 , x ∈ (0, +∞) , (3) 
together with the initial condition: n(t = 0, x) = n 0 (x) ≥ 0. We impose a zero-flux boundary condition for the density n,

∂ x n(t, 0) + n(t, 0) 2 = 0 . (4) 
Notice that (4) and n 0 ∈ L 1 + guarantees nonnegative solutions n(t, x) ≥ 0 and mass conservation (at least formally):

x>0 n(t, x) dx = x>0 n 0 (x) dx = M .
(

) 5 
This model has been proposed in [START_REF] Hawkins | Rebuilding cytoskeleton roads: active transport induced polarisation of cells[END_REF] to describe basically the polarisation of cells. The interesting feature of (3) is that the solution may become unbounded in finite time. Such a behavior is called blow-up in finite time. In this note we shall prove the following simple alternative: 4) is global in time. On the contrary if M > 1, assume in addition that n 0 is non increasing, then the solution of (3)-( 4) blows-up in finite time. Remark 2 It would be possible to weaken the assumptions on n 0 (x) (basically x>0 n 0 (x) |log n 0 (x)| dx < +∞) by using strong regularizing effects of the laplacian (at least in the subcritical case M < 1) but this is beyond the scope of this note. Remark 3 Such a critical mass phenomenon (global existence versus blow-up depending on the initial mass) has been widely studied for the Keller-Segel (KS) system:

Theorem 1 Assume n 0 (x) is continuous on [0, +∞) and n 0 ∈ L 1 + ((1 + x)dx). If M ≤ 1 the solution of (3)-(
∂ t n(t, x) = ∂ xx n(t, x) - ∂ x (n(t, x)∂ x c(t, x
)) (also known as the Smoluchowski-Poisson system) in two dimensions of space (see [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF] and references therein). The KS system describes macroscopically a population of diffusive particles which attract each other through a diffusive chemical signal (resp. gravitational field), solution of the Poisson equation: -∆c(t, x) = n(t, x) with homogeneous Neumann boundary conditions [START_REF] Keller | Model for chemotaxis[END_REF][START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF][START_REF] Nagai | Blow-up of radially symmetric solutions to a chemotaxis system[END_REF][START_REF] Horstmann | From 1970 until present : the Keller-Segel model in chemotaxis and its consequences. I[END_REF]. On the other hand the chemical field in (3) is in fact solution of the Laplace equation with inhomogeneous Neumann boundary conditions: -∂ x c(t, 0) = n(t, 0) (production of the signal is located on the boundary). Although the Keller-Segel cannot exhibit blowing-up solutions in one dimension of space, it is indeed the case for (3) (Theorem 1). As a conclusion, (3) appears to have the same "singularity" as the two-dimensional Keller-Segel system. Note that there exist other ways to mimick the two dimensional case singular behaviour of KS in one dimension [START_REF] Biler | Global and exploding solutions for nonlocal quadratic evolution problems[END_REF][START_REF] Calvez | Modified Keller-Segel system and critical mass for the log interaction kernel[END_REF][START_REF] Cieślak | Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system[END_REF]. Remark 4 There is a strong connection between the equation under interest here (3) and the onedimensional Stefan problem. The later writes indeed [START_REF] Herrero | Singularity formation in the one-dimensional supercooled Stefan problem[END_REF]:

∂ t u(t, z) = ∂ zz u(t, z) , t > 0 , z ∈ (-∞, s(t)) , lim z→-∞ ∂ z u(t, z) = 0 , u(t, s(t)) = 0 , ∂ z u(t, s(t)) = -s ′ (t) . ( 6 
)
The temperature is initially nonnegative: u(0, z) = u 0 (z) ≥ 0. By performing the following change of variables: φ(t, x) = -u(t, s(t)x), we get the following equation:

∂ t φ(t, x) = ∂ xx φ(t, x) -s ′ (t)∂ x φ(t, x) , t > 0 , x ∈ (0, +∞) , lim x→+∞ ∂ x φ(t, x) = 0 , φ(t, 0) = 0 , ∂ x φ(t, 0) = -s ′ (t) . ( 7 
)
By differentiating this equation, we recover (3) for n(t, x) = ∂ x φ(t, x). The condition φ(t, 0) = 0 turns out to be the mass conservation of n(t, x). This connection provides some insights concerning the possible continuation of solutions after blow-up [START_REF] Herrero | Singularity formation in the one-dimensional supercooled Stefan problem[END_REF]. This question has raised a lot of interest in the past recent years [START_REF] Herrero | Chemotactic collapse for the Keller-Segel model[END_REF][START_REF] Velázquez | Point dynamics in a singular limit of the Keller-Segel model. I. Motion of the concentration regions[END_REF][START_REF] Velázquez | Point dynamics in a singular limit of the Keller-Segel model. II. Formation of the concentration regions[END_REF][START_REF] Dolbeault | The two-dimensional Keller-Segel model after blow-up[END_REF]. It is postulated in [START_REF] Herrero | Singularity formation in the one-dimensional supercooled Stefan problem[END_REF] that the one-dimensional Stefan problem is generically non continuable after the blow-up time.

Using ad-hoc entropy methods (which are to be adapted to the nonlinearity in this problem), we are able to investigate long-time behaviour in the critical (M = 1) and the subcritical case (M < 1): this is the purpose of Theorems 5 and 6. In short, the results read as follows: there exists a one-parameter family of stationary states for the critical mass only (namely decreasing exponentials). In this case the conservation of the first momentum enables to select one particular profile among this family. In the subcritical case, an appropriate rescaling has to be performed in order to capture the intermediate asymptotics. For each mass M < 1 there exists a unique stationary state (with explicit formulation), and we prove convergence (in relative entropy) of the rescaled solution towards this profile (namely the product of a decreasing exponential and a Gaussian profile). The results are clearly similar to the classical Keller-Segel in two dimensions [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF], except that the density converges towards a Dirac mass in the critical case [START_REF] Blanchet | Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2[END_REF].

The critical mass phenomenon

Blow-up for M > 1. To prove that solutions blow-up in finite time, we show that the first momentum of n(t, x) cannot remain positive for all time. This technique was first used by Nagai [START_REF] Nagai | Blow-up of radially symmetric solutions to a chemotaxis system[END_REF], then by many authors in various contexts (see [START_REF] Biler | Existence and nonexistence of solutions for a model of gravitational interaction of particle III[END_REF][START_REF] Biler | Global and exploding solutions for nonlocal quadratic evolution problems[END_REF][START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF][START_REF] Dolbeault | Optimal critical mass in the two-dimensional Keller-Segel model in R 2[END_REF][START_REF] Cieślak | Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system[END_REF] for instance). Other strategies have been used to prove the existence of blowing-up solutions (either constructive by Herrero and Velazquez [START_REF] Herrero | Chemotactic collapse for the Keller-Segel model[END_REF] or undirect [START_REF] Horstmann | Blow-up in a chemotaxis model without symmetry assumptions[END_REF]), however up to date this trick is the only way to provide explicit criterion and appears to be quite robust to variations around Keller-Segel [START_REF] Blanchet | Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions[END_REF]8].

First, the assumption that n 0 is a nonincreasing function guarantees that n(t, •) is also a nonincreasing function for any time t > 0 due to the maximum principle (notice that the derivative v(t, x) = ∂ x n(t, x) satisfies a parabolic type equation, is initially nonpositive, and is nonpositive on the boundary due to ( 4)). Therefore -∂ x n(t, x)/n(t, 0) is a probability density at any time t > 0. We deduce from Jensen's inequality the following interpolation estimate:

x>0 x -∂ x n(t, x) n(t, 0) dx 2 ≤ x>0 x 2 -∂ x n(t, x) n(t, 0) dx , M 2 ≤ 2n(t, 0) x>0 xn(t, x) dx .
Secondly introduce the first momentum J(t) = x>0 xn(t, x) dx. We have for M > 1:

dJ(t) dt = n(t, 0) -M n(t, 0) ≤ M 2 2J(t) (1 -M ) , (8) 
dJ(t) 2 dt ≤ M 2 (1 -M ) .
Therefore blow-up of the solution occurs in finite time if M > 1.

Global existence for M < 1. Global existence results for Keller-Segel type systems have been initiated by Jäger and Luckhaus [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF] in the two dimensional case. It relies on a mixture of Gagliardo-Nirenberg type and interpolation inequalities. The novelty here is to use a trace-type Sobolev inequality (simple in the one-dimensional setting) which is required due to the location of the chemical source on the boundary. We compute the evolution of the density entropy as following,

d dt x>0 n(t, x) log n(t, x) dx = x>0 ∂ t n(t, x) log n(t, x) dx = - x>0 (∂ x n(t, x) + n(t, 0)n(t, x)) ∂ x n(t, x) n(t, x) dx = - x>0 (∂ x log n(t, x)) 2 n(t, x) dx + n(t, 0) 2 .
The one-dimensional trace inequality we mentioned above writes as following,

n(t, 0) = - x>0 ∂ x n(t, x) dx = - x>0 (∂ x log n(t, x)) n(t, x) dx , n(t, 0) 2 ≤ M x>0 (∂ x log n(t, x)) 2 n(t, x) dx . ( 9 
)
Therefore we deduce that

d dt x>0 n(t, x) log n(t, x) dx ≤ (M -1) x>0 (∂ x log n(t, x)) 2 n(t, x) dx , (10) 
hence the entropy is nonincreasing when the mass is smaller than 1. Observe that equality holds in the trace inequality (9) if log n(t, x) is constant w.r.t. x: there exists α(t) > 0 such that n(t, x) = M α(t) exp(-α(t)x). In fact the boundary condition (4) implies M = 1, which is the only configuration where a stationary state can exist (see Section 2). A major step towards a complete existence theory of (3) in the subcritical is to ensure that the boundary value n(t, 0) makes perfect sense. This is a consequence of an Aubin-Lions type argument [START_REF] Aubin | Un théorème de compacité[END_REF], which is straightforward in this over-simplified context. We ask for continuity w.r.t.

x of the density n(t, x):

(n(t, x) -n(t, y)) 2 ≤ y x n(t, z) dz y x (∂ x log n(t, z)) 2 n(t, z) dz .
The bound [START_REF] Calvez | Modified Keller-Segel system and critical mass for the log interaction kernel[END_REF] together with the control of moments guarantee that x>0 (∂ x log n(t, x)) 2 n(t, x) dx is finite almost every time. Therefore n(t, •) is continuous almost every time.

To conclude this Section, let us mention that it is now classical to prove suitable regularizing effects acting on (3) in the subcritical case M < 1. Indeed an a priori estimate (10) on x>0 n(t, x) (log n(t, x)) + dx yields the boundedness of all L p -norms (1 < p < +∞) [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF][START_REF] Calvez | Volume effects in the Keller-Segel model: energy estimates preventing blow-up[END_REF][START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF][START_REF] Calvez | Modified Keller-Segel system and critical mass for the log interaction kernel[END_REF].

2 Long-time behaviour: convergence in relative entropy for the critical and the subcritical cases

The critical case. Equilibrium configurations for the cell density are only possible when the mass is critical: M = 1 (as it is for the two-dimensional Keller-Segel problem). In this case, a straigtforward computation leads to the one-parameter family:

h α (x) = αe -αx , α > 0. (11) 
On the other hand, notice that the first momentum of the cell density is conserved (8). This prescribes a unique choice for α: α -1 = J(0) .

Theorem 5 Assume n 0 (x) being as in Theorem 1, and the mass being critical: M = 1. As time goes to infinity, the cell density converges (in relative entropy) towards h α (x).

The convergence proof is based on evaluating the time evolution of the relative entropy, defined as follows:

H(t) = x>0 n(t, x) h α (x) log n(t, x) h α (x) h α (x) dx . (12) 
The precise description of the equality cases for inequality [START_REF] Calvez | Boundary Keller-Segel equation in the one dimensional case and application to the cell polarization[END_REF] enables to perform accurate estimates. A direct computation yields the following estimate:

d dt H(t) = - x>0 (∂ x log n(t, x) + n(t, 0)) 2 n(t, x) dx . (13) 
We refer to [START_REF] Calvez | Boundary Keller-Segel equation in the one dimensional case and application to the cell polarization[END_REF] for more details.

Self-similar decay in the subcritical case. In the sub-critical case M < 1 one expects the density n(t, x) to decay self-similarly. For this purpose the density is appropriately rescaled:

n(t, x) = 1 √ 1 + 2t u log √ 1 + 2t, x √ 1 + 2t .
The new density u(τ, y) satisfies:

∂ τ u(τ, y) = ∂ yy u(τ, y) + ∂ y (yu(τ, y)) + u(τ, 0)∂ y u(τ, y) , (14) 
and no-flux boundary conditions: ∂ y u(τ, 0) + u(τ, 0) 2 = 0. The additionnal left-sided drift contributes to confine the mass in the new frame (τ, y). The stationary equilibrium in this new setting can be computed explicitely. The expected self-similar profile writes: g α (y) = α exp -αyy 2 /2 , where α is given by the relation P (α) = M , P being an increasing function defined as following:

P (α) = y>0 exp -y - y 2 2α 2 dy , lim α→0 P (α) = 0 lim α→+∞ P (α) = 1 .
Theorem 6 Assume n 0 (x) being as in Theorem 1, and the mass being subcritical: M < 1. As time goes to infinity, the first momentum J(τ ) of the density converges to α(1 -M ) and the cell density converges (in relative entropy) towards g α (y).

The proof of this Theorem relies again on the time evolution of the relative entropy:

H(τ ) = y>0 u(τ, y) g α (y) log u(τ, y) g α (y) g α (y) dy . (15) 
More precisely we have:

d dτ H(τ ) + 1 2(1 -M ) (J(τ ) -α(1 -M )) 2 = - y>0 u(τ, y) (∂ y log u(τ, y) + y + u(τ, 0)) 2 dy - 1 (1 -M ) d dτ J(τ ) 2 . ( 16 
)
3 Analysis of a coupled ODE/PDE model

We investigate in this section a variant of (3) which is more relevant for modelling purposes [START_REF] Hawkins | Rebuilding cytoskeleton roads: active transport induced polarisation of cells[END_REF]. In this new setting, the chemical is supplied by a quantity µ(t) which evolves by exchanging particles at the boundary x = 0: ∂ t n(t, x) = ∂ xx n(t, x) + µ(t)∂ x n(t, x) , t > 0 , x ∈ (0, +∞) , µ ′ (t) = n(t, 0)µ(t) , [START_REF] Horstmann | Blow-up in a chemotaxis model without symmetry assumptions[END_REF] together with the initial conditions: n(t = 0, x) = n 0 (x) ≥ 0 and µ(t = 0) = µ 0 . The conservation of the total mass of particles:

x>0 n(t, x) dx + µ(t) = M , (18) 
yields the following boundary condition for the cell density: ∂ x n(t, 0) + µ(t)n(t, 0) = µ ′ (t) .

Long-time convergence in the case M > 1. We denote by m(t) the mass of the cell density n(t, x):

m(t) = x>0 n(t, x) dx . (19) 
(notice m ′ (t) + µ ′ (t) = 0 due to the conservation of mass). Introduce the relative entropy:

H(t) = x>0 n(t, x) m(t)h(x) log n(t, x) m(t)h(x) h(x) dx ,
where the expected profile h is given by: h(x) = µ exp (-µx) , µ = M -1 .

Theorem 7 As time goes to infinity, the mass m(t) of the cell density converges to 1 and the cell density converges (in relative entropy) towards h(x).

The proof of this Theorem relies again on the time evolution of the relative entropy. This is strongly inspired from the previous computation, but takes into consideration the non-conservation of mass for the cell density and the dynamics of µ(t) [START_REF] Calvez | Boundary Keller-Segel equation in the one dimensional case and application to the cell polarization[END_REF].