A one-dimensional Keller-Segel equation with a drift issued from the boundary - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

A one-dimensional Keller-Segel equation with a drift issued from the boundary

Résumé

We investigate in this note the dynamics of a one-dimensional Keller-Segel type model on the half-line. On the contrary to the classical configuration, the chemical production term is located on the boundary. We prove, under suitable assumptions, the following dichotomy which is reminiscent of the two-dimensional Keller-Segel system. Solutions are global if the mass is below the critical mass, they blow-up in finite time above the critical mass, and they converge to some equilibrium at the critical mass. Entropy techniques are presented which aim at providing quantitative convergence results for the subcritical case. This note is completed with a brief introduction to a more realistic model (still one-dimensional).
Fichier principal
Vignette du fichier
Calvez.Meunier.Note.1D.KS.Boundary.SUBMITTED.pdf (146.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00424649 , version 1 (16-10-2009)

Identifiants

Citer

Vincent Calvez, Nicolas Meunier. A one-dimensional Keller-Segel equation with a drift issued from the boundary. 2009. ⟨hal-00424649⟩
268 Consultations
230 Téléchargements

Altmetric

Partager

More