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Abstract

The self-similar structure of the attracting subshift of a primitive
substitution is carried over to the limit set of the repelling tree in
the boundary of Outer Space of the corresponding irreducible outer
automorphism of a free group. Thus, this repelling tree is self-similar
(in the sense of graph directed constructions). Its Hausdorff dimension
is computed. This reveals the fractal nature of the attracting tree in
the boundary of Outer Space of an irreducible outer automorphism of
a free group.
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Throughout this article, FN denotes the free group of finite rank N ≥ 2.
An R-tree (T, d) is an arcwise connected metric space such that two points

P and Q are connected by a unique arc and this arc is isometric to the
real segment [0, d(P,Q)]. An R-tree is usually regarded as a 1-dimensionnal
object. And, indeed, if T is a non-trivial R-tree with a minimal action of FN

by isometries, then T is a countable union of arcs and thus has Hausdorff
dimension 1.

Surprisingly, we exhibit in this article R-trees T in the boundary of
M. Culler and K. Vogtmann’s Outer Space CVN (which is made of R-trees
with minimal, very-small action of FN by isometries), such that the Hausdorff
dimension of their metric completion T is strictly bigger than 1.

More precisely, we prove that, for an irreducible (with irreducible powers)
outer automorphism Φ of FN , the metric completion TΦ of the attracting tree
TΦ in the boundary of Outer Space has Hausdorff dimension

Hdim(TΦ) ≥ max(1;
lnλΦ−1

lnλΦ
)

where λΦ and λΦ−1 are the expansion factors of Φ and Φ−1 respectively. We
insist that these two expansion factors may be distinct leading to a Hausdorff
dimension strictly bigger than 1.

This lower bound on the Hausdroff dimension is achieved by computing
the exact Hausdorff dimension of a subset of the metric completion: the
limit set Ω. This is the subset of TΦ where the dynamic of Φ, as given by
the repelling lamination concentrates.

For an irreducible (with irreducible powers) outer automorphism Φ of the
free group FN , M. Bestvina, M. Feighn and M. Handel ([BFH97]) defined the
attracting lamination LΦ. By choosing a basis A of FN , the lamination LΦ

can be viewed as a symbolic dynamical system (indeed a subshift of the shift
on bi-infinite reduced words in A±1) as explained in [CHL08a] and briefly
recalled in Section 1.1.

The attracting lamination LΦ is best described if we choose a train-track
representative τ = (Γ, ∗, π, f) of Φ, where Γ is a finite graph with base
point ∗, π is a marking isomorphism between FN and the fundamental group
π1(Γ, ∗) and f is a homotopy equivalence inducing Φ via π. M. Bestvina and
M. Handel ([BH92]) defined train-track representatives and proved that they
always exist for irreducible (with irreducible powers) outer automorphisms of
FN (see Sections 1.3 and 1.4). The lamination LΦ is a closed set of bi-infinite
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paths in the universal cover Γ̃ of Γ, and it is invariant under application of
any lift f̃ of f to Γ̃ (see Section 1.5).

Using the chart given by the train-track representative τ to describe the
attracting lamination LΦ we get in Proposition 1.1 a self-similar decomposi-
tion of LΦ into finitely many cylinders. Self-similarity is here to be under-
stood in the sense of graph directed constructions as introduced by [MW88]
which is a generalisation of iterated function systems. We refer to [Edg08]
for introduction and background on this topic.

The self-similar structure of the attracting lamination is wellknown to
symbolic dynamists and a key tool to deal with it is the prefix-suffix au-
tomaton (see Section 1.7).

In this article we carry over this self-similar decompostion of the attract-
ing lamination, which is partly folklore, to the limit set of the repelling tree
TΦ−1 of Φ in the boundary of Culler-Vogtman Outer Space. We refer to
K. Vogtman’s survey [Vog02] for background on Outer Space.

A construction of the repelling tree TΦ−1 of Φ can be found in [GJLL98].
It is an R-tree with a very small, minimal action of FN by isometries with
dense orbits. It comes with a contracting homothety H associated to the
choice of a representative automorphism ϕ of the outer class Φ. The ratio of
H is 1

λ
Φ−1

, where λΦ−1 is the expansion factor of Φ−1 (see Section 2.1).

From [LL03, LL03, CHL08b] (see Sections 2.2, 2.3 and 2.4), there exists a
continuous map Q2 that maps the attracting lamination LΦ into the metric
completion TΦ−1 of the repelling tree TΦ−1. The self-similar decomposition
of the attracting lamination is carried over through Q2 to get a self-similar
limit set Ω inside TΦ−1 . Using the ratio 1

λ
Φ−1

of the homothety H , we get the

main result of this article:

Theorem 2.15. Let Φ be an irreducible (with irreducible powers) outer au-
tomorphism of the free group FN . Let TΦ−1 be the repelling tree of Φ.

The limit set Ω ⊆ TΦ−1 has Hausdorff dimension

δΦ−1 = Hdim(Ω) =
lnλΦ

lnλΦ−1

where λΦ and λΦ−1 are the expansion factors of Φ and Φ−1 respectively.

Knowing δΦ−1 we can use the Hausdorff measure in dimension δΦ−1 to
describe the correspondence between the unique ergodic probability measure
carried by the attracting lamination and the metric of the R-tree TΦ−1 .
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We insist that the expansion factors of an irreducible (with irreducible
powers) outer automorphism and its inverse are not equal in general. Surpris-
ingly, this leads to compact subsets of an R-tree which can be of Hausdorff
dimension strictly bigger than 1 although an R-tree is usually regarded as a
1-dimensional object.

During his beautiful course on the Mapping Class Group at MSRI in Fall
2007, L. Mosher mentioned that the convex core (see [Gui05]) of the product
of the attracting and repelling trees of an irreducible (with irreducible powers)
parageometric automorphism should be of Hausdorff dimension given by the
ratio δΦ−1 of the logarithms of the expansion factors of the automorphism
and its inverse. This lead us to understand that the limit set of the repelling
tree has the Hausdorff dimension δΦ−1 .

The main difficulty in proving our Theorem is to carefully study how
the self-similar pieces of the limit set intersect. This involves describing the
points that belong to more than one piece and proving that their prefix-suffix
representations are periodic.

Finally in Section 3 we describe two classical examples and detail the
shape of the limit sets and compact hearts.

In the end of this introduction we want to recall two more classical con-
structions which are sources of inspiration for our work.

The above picture is very different from the situation of pseudo-Anosov
mapping classes which are a source of inspiration for studying outer automor-
phims. Indeed, a pseudo-Anosov homeomorphism ϕ of a hyperbolic surface
and its inverse have the same expansion factor. Recall that the mapping class
Φ of an homeomorphim ϕ of a surface S induces an outer automorphism of
the fundamental group of the surface. And if the surface has non-trivial
boundary, its fundamental group is a free group. The pseudo-Anosov home-
omorphism ϕ comes with an unstable foliation Fϕ on the hyperbolic surface
S. Tightening this foliation we get the unstable geodesic lamination LΦ of
the mapping class Φ of which the attracting lamination of Φ is the algebraic
version. Under iterations of ϕ, any closed curve converges to the unstable
geodesic lamination.

The mapping class Φ also acts on Teichmller space and its boundary and
has a repelling fixed point which can be described as an R-tree TΦ−1 with
small action of the fundamental group of the surface. Geometrically the
tree TΦ−1 is transverse to the lift of the unstable geodesic lamination to the
universal cover of the surface.
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The limit set Ω of TΦ−1 is equal to TΦ−1 and is a countable union of
intervals. Thus its Hausdorff dimension is 1 which is consistent with our
Theorem.

Alternatively, following W. Thurston [FLP91], the pseudo-Anosov map-
ping class Φ fixes a train-track on the surface S. This train-track carries the
unstable foliation. The compact sets Ωee (see section 2.5) for this train-track
are intervals transverse to the foliation. The first return map T along the
unstable foliation, on the union of these intervals is an interval exchange
transformation.

Let us now review the above description in the case of an irreducible (with
irreducible powers) outer automorphism Φ represented by a substitution σ.
We refer to N. Pytheas Fogg [Fog02] for background and results on symbolic
dynamics.

Let Φ be an outer automorphism of FN which admits a basis A of FN

and a representative σ which is a substitution (that is to say, only positive
letters appear in the images of the elements of A). In this case we rather
regard σ as an homomorphism of the free monoid on the alphabet A.

Under iterations of σ, any letter a ∈ A converges to the attracting subshift
Σσ. This is the subshift of the full shift on bi-infinite words in A which
consists of bi-infinite words whose finite factors are factors of images of a
under iterations of σ. Considering the shift map S we get a symbolic dynamic
system (Σσ, S).

This attracting subshift Σσ is the (symbolic) attracting lamination LΦ

of the irreducible (with irreducible powers) outer automorphism Φ (more
precisely it is half of LΦ as we fixed, as a convention, that laminations are
invariant by taking inverses). The self-similar decomposition of the attracting
subshift occurs in this case in the basis A which is a train-track for Φ and is
well-known to dynamists.

If in addition, the substitution σ satisfies the arithmetic-type Pisot con-
dition, then the dynamical system (Σσ, S) has a geometric interpretation as
a Rauzy fractal Rσ.

The Rauzy fractal Rσ is a compact subset of R
N−1. The Rauzy fractal is

graphically striking when N = 3 in which case it is a compact subset of the
plane. The Rauzy fractal comes with a piecewise exchange T . The dynamical
system (Rσ, T ) is semi-conjugated with the attracting subshift (Σσ, S).

Indeed, V. Canterini and A. Siegel [CS01] defined a map R from the
attracting shif Σσ onto the Rauzy fractal: A bi-infinite word Z in the at-
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tracting subshift Σσ corresponds to the trajectory of exactly one point, R(Z)
of Rσ. The map R is continuous and onto and therefore Rσ is a geometric
representation of the dynamic of the attracting subshift.

The map R factors through the map Q2 which means that the Rauzy
fractal is a quotient of the compact limit set ΩA of the repelling tree TΦ−1 of
Φ.

The self-similar decomposition of the attracting subshift Σσ, described by
the prefix-suffix automaton, is carried over by the continuous map R to Rσ.
The self-similar decomposition of the Rauzy fractal Rσ obtained is the same
as the self-similar decomposition of ΩA described in Proposition 2.5.

However, we note that the self-similar decomposition of the Rauzy fractal
does not lead directly to a meaningful Hausdorff dimension because intersec-
tions between pieces may not be neglectable: the map R is non-injective in
a “Hausdorff-dimension” essential way.
Acknowledgement: This research started at the MSRI, while I was attend-
ing the special semester on Geometric Group Theory organised by M. Bestv-
ina, J. McCammond, M. Sageev, and K. Vogtmann. I wish to thank them
for the beautiful opportunity they offered us.

If I had not been in California at that time, this paper would certainly
be a joint paper with my favorite co-authors: A. Hilion and M. Lustig.

This work greatly benefited from the insight of X. Bressaud’s PhD stu-
dent, Y. Jullian, who helped me a lot to handle graph directed constructions
and self-similarity tools and concepts.

1 Laminations and Automorphisms

1.1 Laminations

The free group FN is Gromov-hyperbolic and has a well defined boundary at
infinity ∂FN , which is a topological space, indeed a Cantor set.

The action of FN on its boundary is by homeomorphisms.
The double boundary of FN is

∂2FN = (∂FN )2
r ∆

where ∆ is the diagonal. An element of ∂2FN is a line.
A lamination (in its algebraic setting) is a closed, FN -invariant, flip-

invariant subset of ∂2FN (where the flip is the map exchanging the two co-
ordinates of a line). The elements of a lamination are called leaves.
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We refer the reader to [CHL08a] where laminations for free groups are
defined and different equivalent approaches are exposed with care.

1.2 Charts and Cylinders

To give a geometric interpretation of the boundary, of leaves and of lamina-
tions we introduce charts.

Let Γ be a finite graph, with basepoint ∗ and π : FN → π1(Γ, ∗) a
marking isomorphism. We say that (Γ, ∗, π) is a chart for FN .

Assigning a positive length to each edge in Γ (e.g. 1 to each edge) defines

a path metric of the universal cover Γ̃. For such a metric, Γ̃ is a 0-hyperbolic
space, indeed a tree, and it has a boundary at infinity ∂Γ̃ which is simply
the space of ends. Points of the boundary ∂Γ̃ can be seen as infinite geodesic
paths starting from a fixed lift ∗̃ of the base point ∗.

The action of FN on Γ̃ by deck transformations through the marking π is
by isometries. We denote by ∂π : ∂FN → ∂Γ̃ the canonical homeomorphism
between the boundaries at infinity.

Through ∂π there is a canonical correspondence, which associates to a
line (X, Y ) ∈ ∂2FN the geodesic bi-infinite oriented arc of Γ̃ [∂π(X), ∂π(Y )]
joining the points at infinity ∂π(X) and ∂π(Y ). We say that this bi-infinite
geodesic path is the geometric realisation of the line (X, Y ).

For a finite oriented geodesic arc γ in Γ̃, the cylinder of γ CΓ(γ) is the
set of lines whose geometric realisations contain γ.

Cylinders are closed-open sets and they form a basis of the topology of
∂2FN . An element u of FN translates by left multiplication the cylinder
CΓ(γ) to uCΓ(γ) = CΓ(uγ).

1.3 Automorphisms and topological representatives

Let ϕ be an automorphism of FN . It extends canonically to an homeomor-
phism ∂ϕ : ∂FN → ∂FN and also induces an homeomorphism, ∂2ϕ of ∂2FN .

For example, the inner automorphism iu : x 7→ uxu−1, defined by the
conjugation by the element u of FN , acts on ∂FN as (the left multiplication
by) u.

If L is a lamination ϕ(L) = {(∂ϕ(X), ∂ϕ(Y )) | (X, Y ) ∈ L} is also
a lamination. As a lamination is invariant under the action of FN , inner
automorphisms act trivially on the set of laminations, and we get an action
of the outer automorphism group Out(FN ) on the set of laminations. We
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consistently denote by Φ(L) = ϕ(L) the image of L by the outer class Φ of
ϕ.

If (Γ, ∗, π) is a chart for FN as in the previous section, a topological
representative of the outer automorphism Φ is a continuous map f : Γ → Γ
which sends vertices to vertices, edges to finite reduced paths, and which is
a homotopy equivalence inducing Φ through the marking π. A lift f̃ : Γ̃ → Γ̃
of f to the universal cover Γ̃ of Γ is a topological representative of the
automorphism ϕ ∈ Φ if the following condition holds:

∀P ∈ Γ̃, ∀u ∈ FN , f̃(uP ) = ϕ(u)f̃(P ).

If ψ = iu ◦ϕ is another automorphism in the outer class Φ, then f̃ ′ = uf̃ is a
topological representative of ψ: Lifts of f are in one-to-one correspondence
with automorphisms in the outer class Φ.

For any lift f̃ of the homotopy equivalence f of Γ, f̃ is a quasi-isometry
of Γ̃ and extends to an homeomorphism, ∂f̃ , of the boundary at infinity ∂Γ̃.

If f̃ is a topological representative of the automorphism ϕ then the fol-
lowing diagram commutes:

∂FN

∂ϕ

∼=
//

∂π∼=
��

∂FN

∂π∼=
��

∂Γ̃
∂ ef

∼=
//
∂Γ̃

For a subset C of ∂2FN (e.g. a cylinder CΓ(γ)) we abuse of notations

and write: ϕ(C) = f̃(C) = {(∂ϕ(X), ∂ϕ(Y )) | (X, Y ) ∈ C}. We note that
the homeomorphism ∂2ϕ maps a cylinder CΓ(γ) to a closed-open set of ∂2FN

which is a finite union of cylinders but may fail to be a cylinder.

1.4 Train-track representatives and legal lamination

A train-track representative τ = (Γ, ∗, π, f) of the outer automorphism
Φ of FN is a chart (Γ, ∗, π) together with a topological representative f of Φ
such that for all integer n ≥ 1, fn is locally injective on each edge of Γ.

The lift f̃ of f which is the topological representative of the automorphism
ϕ ∈ Φ is a train-track representative for ϕ.

The train-track τ is irreducible if it contains no vertices of valence 1 or
2, and if Γ contains no non-trivial f -invariant subgraph.
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An outer automorphism Φ is irreducible (with irreducible powers) if for
each n, Φn does not fix a conjugacy class of a free factor. M. Bestvina and
M. Handel [BH92] proved that irreducible (with irreducible powers) outer
automorphisms always have an irreducible train-track representative.

A geodesic path γ in Γ̃ (finite, infinite or bi-infinite) is legal if for all

n ≥ 1, the restriction of f̃n to γ is injective (this does not depend on the

choice of a particular lift f̃ of f). In particular, from the definition, every
1-edge path is legal. A line (X, Y ) ∈ ∂2FN is legal if its geometric realisation
[∂π(X); ∂π(Y )] is a legal bi-infinite path.

The legal lamination Lτ of the train-track τ = (Γ, ∗, π, f) is the set of
legal lines. From the definitions it is clear that

Φ(Lτ ) ⊆ Lτ .

Indeed if ϕ ∈ Φ is an automorphism representing the outer class Φ, ∂2ϕ sends
any legal line to a legal line.

The transition matrix M of the homotopy equivalence f of the graph
Γ is the square matrix of size the number of edges of Γ, and for each pair
(e, e′) of edges of Γ, the entry me,e′ is the number of occurences of e in the
path f(e′). We insist that occurences are positive and are counted without
taking in account orientation.

The expansion factor λΦ of the outer automorphism Φ is the Perron-
Frobenius eigen-value λΦ > 1 of the transition matrix M of the irreducible
train-track representative τ = (Γ, ∗, π, f) of Φ. The expansion factor does not
depend on the choice of a particular irreducible train-track representative.
We denote by (µe)e a positive Perron-Frobenius eigen-vector of the transition
matrix M . This eigen-vector is unique up to a mulitplicative constant.

1.5 Attracting lamination

In [BFH97] the attracting lamination of an irreducible (with irreducible pow-
ers) outer automorphism is defined.

Let τ = (Γ, ∗, π, f) be an irreducible train-track representative of the

outer automorphism Φ. Fix an edge e in the universal cover Γ̃ of Γ. The
attracting lamination LΦ of Φ is the set of leaves which are limits of
sequences of translates of iterated images of e:

LΦ = {(X, Y ) ∈ ∂2FN | ∃ε = ±1, ∃un ∈ FN , (X, Y ) = lim
n→∞

unf̃
n(eε)}.
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Where the sequence of paths unf̃
n(e) converges to the leaf (X, Y ) if the

sequence of startpoints converges to ∂π(X) and the endpoints to ∂π(Y ) in

the topological space Γ̃ ∪ ∂Γ̃.
From the definition it is clear that LΦ is closed, FN -invariant and flip-

invariant, indeed a lamination. Moreover, as f̃(unf̃
n(eε)) = ϕ(un)f̃

n+1(eε)
the attracting lamination is invariant by Φ.

This definition does not depend on the particular choice of a lift f̃ of f ,
and as τ is irreducible this does not depend either on the choice of the edge
e of Γ̃.

As τ is a train-track representative, each path f̃n(e) is legal and thus the
attracting lamination is a sublamination of the legal lamination Lτ .

It is proven in [BFH97] that the attracting lamination does only depend
on the irreducible (with irreducible powers) outer automorphism Φ and not
on the choice of the train-track representative τ . It is proven there that the
attracting lamination LΦ is minimal and thus is the smallest sublamination
of the legal lamination Lτ such that

Φ(LΦ) = LΦ.

1.6 Self-similar decomposition of the attracting lami-

nation

Although we noticed that the image of a cylinder by an automorphism is
not in general a cylinder, we describe in this section the image of legal lines
contained in a cylinder.

Let (X, Y ) ∈ ∂2FN be a legal line for the train-track representative

τ = (Γ, ∗, π, f) of the outer automorphism Φ of FN . The lift f̃ of f which
is a train-track representative of the automorphism ϕ ∈ Φ restricts to an
homeomorphism from the geometric realisation [∂π(X); ∂π(Y )] to its image
[∂π∂ϕ(X); ∂π∂ϕ(Y )].

As the attracting lamination is made of legal lines, for any (legal) path γ

in the universal cover Γ̃ of Γ we have

ϕ(CΓ(γ) ∩ LΦ) ⊆ CΓ(f̃(γ)) ∩ LΦ.

For any oriented edge ẽ in Γ̃ we denote by Cee the set

Cee = CΓ(ẽ) ∩ LΦ
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Proposition 1.1. Let ϕ ∈ Φ be an irreducible (with irreducible powers)
automorphism of FN and Φ be its outer class. Let τ = (Γ, ∗, π, f) be a train-

track representative for Φ and f̃ a lift of f to the universal cover Γ̃ associated
to ϕ. For any edge ẽ of Γ̃

Cee =
⊎

(ee′,ep,es)

ϕ(Cee′),

the finite disjoint union is taken over triples (ẽ′, p̃, s̃) such that ẽ′ is an edge

of Γ̃, p̃.ẽ.s̃ is a reduced path in Γ̃ and f̃(ẽ′) = p̃.ẽ.s̃.
The above decomposition of Cee does not depend on the choice of a par-

ticular automorphism ϕ in the outer class Φ and of its associated lift f̃ of
f .

Proof. By the previous remark, any leaf in ϕ(Cee′) contains the edge ẽ which
proves that ϕ(Cee′) ⊆ Cee.

Conversely, let (X, Y ) be a leaf in Cee, in particular it is a legal leaf
in LΦ and there exists a legal leaf (X ′, Y ′) in LΦ such that ∂ϕ(X ′) = X

and ∂ϕ(Y ′) = Y . The map f̃ restricts to an homeomorphism between the
bi-infinite geodesic paths [∂π(X ′); ∂π(Y ′)] and [∂π(X); ∂π(Y )], and as the
former is legal and the latter contains the edge ẽ, there exists an edge ẽ′ in
[∂π(X ′); ∂π(Y ′)] such that f̃(ẽ′) = p̃.ẽ.s̃ contains the edge ẽ. Thus, the leaf
(X, Y ) is in ϕ(Cee′).

We now proceed to prove that the union is a disjoint union. Let (ẽ′, p̃, s̃)

and (ẽ′′, p̃′, s̃′) be two triples such that f̃(ẽ′) = p̃.ẽ.s̃ and f̃(ẽ′′) = p̃′.ẽ.s̃′.
Assume that the intersection ϕ(Cee′) ∩ ϕ(Cee′′) is non-empty. As ∂2ϕ is a
homeomorphism the intersection Cee′ ∩ Cee′′ is non-empty and let (X, Y ) be

a leaf in the intersection. As before, (X, Y ) is legal and f̃ restricts to a
homeomorphism between the geometric realizations of (X, Y ) and its image.
The edge ẽ is in both the images of ẽ′ and ẽ′′ by this homeomorphism and
thus ẽ′ = ẽ′′. It follows that the two tuples are equal and that the union in
the Proposition is a disjoint union.

Finally, let f̃ ′ be another lift of f and let ϕ′ ∈ Φ be the automorphism
associated to f̃ ′. There exists u ∈ FN such that f̃ ′ = uf̃ and ϕ′ = iu ◦ϕ. For
any edge ẽ′ of Γ̃, let ẽ′′ = ϕ′−1(u−1)ẽ′. We have

f̃ ′(ẽ′′) = f̃ ′(ϕ′−1
(u−1)ẽ′) = ϕ′(ϕ′−1

(u−1))f̃ ′(ẽ′) = u−1uf̃(ẽ′) = f̃(ẽ′)

and

ϕ′(Cee′′) = ψ(Cϕ′−1(u−1)ẽ
′) = ϕ′(ϕ′−1

(u−1)Cee′) = u−1ϕ′(Cee′) = ϕ(Cee′).
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This proves that the decompositions obtained for f̃ and ϕ and for f̃ ′ and ϕ′

are the same.

1.7 Prefix-suffix automaton

We now use the previous Section to define the prefix-suffix automaton for
a train-track representative of an irreducible (with irreducible powers) outer
automorphism of the free group. This automaton is a classical tool in the
case of substitutions, see [CS01] and, indeed, working with a substitution
simplifies some technicalities.

Let τ = (Γ, ∗, π, f) be a train-track representative of the outer automor-
phism Φ of the free group FN . The prefix-suffix automaton of τ is the
finite oriented labelled graph Σ whose vertices are edges of Γ and such that
there is an edge labelled by (e′, p, e, s) from e to e′ if and only if the reduced
path f(e′) is equal to the reduced path p.e.s, where p and s are reduced paths
in Γ (the prefix and the suffix respectively). We draw this edge as

e
p,s
−→ e′.

An e-path σ is a (finite or infinite) reduced path in Σ starting at the
vertex e. The length |σ| of an e-path σ is its number of edges. We denote
by Σe the set of finite e-paths and by ∂Σe the set of infinite e-paths.

For a finite or infinite e-path σ we denote by σ(n) its n-th vertex (which
is an edge of Γ). We write σ(0) = e and in particular σ(|σ|) is the terminal
vertex of σ.

We now fix a lift f̃ of f which is associated to the automorphism ϕ ∈ Φ.
Let ẽ be an edge in the universal cover Γ̃ which lies above the edge e of Γ.

For an edge e
p,s
−→ e′ of Σ there exists a unique edge ẽ′ of Γ̃ which is a lift of

e′ and such that f̃(ẽ′) = p̃ · ẽ · s̃ where p̃ and s̃ are lifts of p and s respectively.

Let σ be an e-path and denote by en−1
pn−1,sn−1

−→ en, its n-th edge for
1 ≤ n ≤ |σ| (with e0 = e). By induction, for any 1 ≤ n ≤ |σ|, there

exists a unique edge ẽn of Γ̃ which is a lift of en = σ(n) and such that

f̃(ẽn) = p̃n−1 · ẽn−1 · s̃n−1 where p̃n−1 and s̃n−1 are lifts of pn−1 and sn−1

respectively (and ẽ0 = ẽ). We use the notation

σ(ẽ, f̃ , n) = ẽn.

Let ϕ be the automorphism in the outer class Φ associated to f̃ . For a
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finite e-path σ, we define

Cee,σ = ϕn(C
σ(ee, ef,n)).

We remark that this definition does not depend on the choice of the auto-
morphism ϕ in the outer class Φ and of the associated lift f̃ of f .

Applying recursively Propostion 1.1 we get

Proposition 1.2. Let Φ be an irreducible (with irreducible powers) automor-
phism of FN and Φ be its outer class. Let τ = (Γ, ∗, π, f) be a train-track
representative for Φ.

For any edge ẽ of Γ̃ and any n ∈ N,

Cee =
⊎

σ∈Σe,|σ|=n

Cee,σ

For an infinite e-path σ we denote by Cee,σ the compact non-empty nested
intersection

Cee,σ =
⋂

σ′prefix of σ

Cee,σ′

and we get

Proposition 1.3. Let Φ be an irreducible (with irreducible powers) outer
automorphism of FN and let τ = (Γ, ∗, π, f) be a train-track representative
for Φ. Let ẽ be a lift of an edge e of Γ.

Then
Cee =

⊎

σ∈∂Σe

Cee,σ.

We denote by ρee : Cee → ∂Σe the continuous onto map, which maps any
leaf (X, Y ) in Cee to the unique infinite e-path σ in ∂Σe such that (X, Y ) ∈
Cee,σ.

The infinite e-path ρee(X, Y ) is the prefix-suffix representation of the
leaf (X, Y ) with respect to its edge ẽ.

Fixing a lift f̃ of f and its associated automorphism ϕ ∈ Φ, the action of
ϕ on prefix-suffix representations is easy to describe:

Lemma 1.4. Let ẽ1 be an edge of Γ̃. Let (X, Y ) be a leaf in Cee1
. Let ẽ0 be

an edge of Γ̃ such that f̃(ẽ1) = p̃0 · ẽ0 · s̃0 contains ẽ0. Then

ρee0
(∂2ϕ(X, Y )) = (e0

p0,s0
−→ e1) · ρee1

(X, Y )
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where e0, e1, p0, and s0 are the projections in Γ of ẽ0, ẽ1, p̃0, and s̃0 respec-
tively.

Roughly speaking this Lemma means that the action of ϕ on prefix-suffix
representations is by the shift map. This can be made precise in the case
of subsitutions. Indeed if σ is a substitution, in the basis A of FN , in the
outer class Φ then the rose with N petals is a a train-track representative
for Φ. The universal cover Γ̃ is the Cayley graph of FN and instead of the
attracting lamination LΦ we consider the attracting subshift which consists
of bi-infinite words in the alphabet A. Such a bi-infinite word Z encodes
a bi-infinite indexed path in Γ̃ that contains the origin. Thus Z belongs to
one of the cylinders Ca where a ∈ A is the letter at index one in Z. Its
prefix-suffix representation is computed with respect to this cylinder.

These classical conventions in the case of subsitutions make the above
discussion on self-similarity of cylinders of the attracting lamination and the
description of the prefix-suffix automaton much simpler.

1.8 Prefix-suffix representation of periodic leaves

In this section we continue our study of the prefix-suffix automaton.

Proposition 1.5. Let Φ be an irreducible (with irreducible powers) outer
automorphism of FN and let τ = (Γ, ∗, π, f) be a train-track representative
for Φ. Let ẽ0 be a lift of an edge e0 of Γ and let σ be an infinite e0-path in
∂Σe0

.
Then the compact set Cee0,σ is finite.

Proof. Fix an automorphism ϕ ∈ Φ and an associated lift f̃ of f to Γ̃. For
each n, let ẽn = σ(ẽ0, f̃ , n).

The length of the nested reduced path f̃n(ẽn) goes to infinity. There are
two cases:

Either both extremities of the reduced path f̃n(ẽn) goes to infinity in ∂Γ̃
and then Cee,σ contains only one element: the limit of these paths.

Or, one of the extremities (say the initial one by symmetry) converges

to a vertex ṽ inside Γ̃. Let ṽn be the initial vertex of ẽn, for n big enough,
f̃n(ṽn) = ṽ. As the length of the nested reduced path f̃n(ẽn) goes to infinity

the terminal vertices of these paths converge to a point ∂π(Y ) ∈ ∂Γ̃.

For each n, let En be the set of edges ẽ′n in Γ̃ such that ẽ′n.ẽn is a legal

reduced path in Γ̃. The cardinality of En is bounded above by the number of
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edges of Γ. For each n, and for each leaf (X, Y ) in Cee,σ, the leaf ∂2ϕ−n(X, Y )
belongs to CΓ(ẽn) and thus to one of the CΓ(ẽ′n · ẽn) for an ẽ′n in En. Thus
we can write

Cee,σ ⊆
⋃

ee′n∈En

CΓ(f̃n(ẽ′n.ẽn)).

We can order each of the En = {ẽ1n, ẽ
2
n, . . . , ẽ

rn
n } such that the reduced finite

paths (f̃n(ẽk
n))n∈N are nested. For n big enough the terminal vertex of f̃n(ẽk

n)
is ṽ while the lengths of these nested paths go to infinity and thus their initial
vertices converge to a point Xk ∈ ∂Γ̃. We get that the sequence of nested
paths (f̃n(ẽk

n.ẽn))n∈N converges to a leaf (Xk, Y ) in Cee,σ. This proves that
the cardinality of Cee,σ is bounded above by the number of edges of Γ.

The prefix-suffix representations of periodic leaves of the attracting lami-
nation LΦ have been described by Y. Jullian in his PhD thesis [Jul09] where
he obtains the following result. We give here a proof because he only con-
siders substitution automorphisms instead of general train-tracks but this is
only a technical and minor improvement.

Proposition 1.6 ([Jul09]). Let Φ be an irreducible (with irreducible powers)
outer automorphism of FN and let τ = (Γ, ∗, π, f) be a train-track represen-

tative for Φ. Let ϕ be an automorphism in the outer class Φ and let f̃ be the
associated lift of f to Γ̃. Let ẽ0 be a lift of an edge e0 of Γ. Let (X, Y ) be a
leaf in Cee0

and let σ = ρee0
(X, Y ) be its prefix-suffix representation.

The leaf (X, Y ) is periodic under the action of ∂2ϕ if and only if its prefix-

suffix representation σ and the sequence (σ(ẽ0, f̃ , n))n∈N are pre-periodic.

Proof. Let n be such that ∂ϕn(X) = X and ∂ϕn(Y ) = Y then f̃n restricts
to an orientation preserving homeomorphism of the geometric realisation
of the leaf (X, Y ). For each edge e of Γ, the length of the path fk(e) in-

creases to infinity with k. Thus either f̃n fixes a vertex of the bi-infinite
path [∂π(X), ∂π(Y )] or there exists a unique edge ẽ1 of [∂π(X), ∂π(Y )] such

that ẽ1 is a non-extremal edge of f̃n(ẽ1). In the first case we choose for ẽ1
the edge of [∂π(X), ∂π(Y )] which starts from the fixed vertex and lies in the

same direction as ẽ0. In both cases f̃n(ẽ1) contains ẽ1 and there exists k0

such that f̃nk0(ẽ1) contains ẽ0.
Let e0 and e1 be the images of ẽ0 and ẽ1 (respectively) in Γ. Let σ0 be

the finite e0-path finishing at e1 which corresponds to the fact that ẽ0 is an

16



edge of f̃nk0(ẽ1). Let σ1 be the finite e1-loop in Σe1
which corresponds to the

fact that ẽ1 is an edge of f̃n(ẽ1). Then

σ = ρee0
(X, Y ) = σ0 · σ1 · σ1 · σ1 · · ·

Moreover σ0(ẽ0, f̃ , nk0) = ẽ1 and σ1(ẽ1, f̃ , n) = ẽ1, which proves that the

sequence (σ(ẽ0, f̃ , n))n∈N is pre-periodic.
Conversely, assume that the prefix-suffix representation of the leaf (X, Y )

is pre-periodic:
σ = ρee0

(X, Y ) = σ0 · σ1 · σ1 · σ1 · · ·

where σ0 is a finite reduced path in Σe0
finishing at e1 and σ1 is a finite loop

in Σe1
. Assume that σ0(ẽ0, f̃ , |σ0|) = ẽ1 and σ1(ẽ1, f̃ , |σ1|) = ẽ1.

Then, applying Lemma 1.4 we get that for all n

ρee1
(∂2ϕ|σ0|(X, Y )) = σ1 · σ1 · σ1 · · · = ρee1

(∂2ϕ|σ0|+n|σ|(X, Y ))

From Proposition 1.5, the set Cee1,σ′ , with σ′ = σ1 ·σ1 ·σ1 · · · , is finite and we
get that there exists m 6= n such that

∂2ϕ|σ0|+m|σ1|(X, Y ) = ∂2ϕ|σ0|+n|σ1|(X, Y ).

This proves that (X, Y ) is periodic under the action of ∂2ϕ.

2 Repelling tree

We refer to K. Vogtmann [Vog02] for a survey and further references on Outer
Space and actions of the free group on R-trees.

2.1 Definition

Let Φ be an irreducible (with irreducible powers) outer automorphism of FN .
The action of Φ on the compactification of the projectivized Culler-Vogtman
Outer Space CVN has exactly two fixed points [TΦ] and [TΦ−1 ], one attracting
and one repelling. The action of Φ on CVN has North-South dynamic (see
[LL03]). The R-trees TΦ and TΦ−1 have been described in [GJLL98]. The
isometric actions of FN on the R-trees TΦ and TΦ−1 are both minimal, very
small and with dense orbits.
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We will focus in this article on the repelling fixed point TΦ−1 of Φ. We note
that (the metric of) this tree is only defined up to a multiplicative constant.
But in this paper, we pick-up a particular tree TΦ−1 in the projective class
[TΦ−1 ]

If we choose an automorphism ϕ in the outer class Φ, there exists a
homothety, H on TΦ−1 which is associated to ϕ (see [GJLL98]):

∀P ∈ TΦ−1 , ∀u ∈ FN , H(uP ) = ϕ(u)H(P ).

The fixed point of the homothety H may be in the metric completion TΦ−1

rather than in TΦ−1 , and we regard H as defined on this metric completion.
With this convention, as TΦ−1 is the repelling tree of Φ, H is a contracting

homothety of ratio

λ =
1

λΦ−1

< 1

where λΦ−1 is the expansion factor of the irreducible (with irreducible powers)
outer automorphism Φ−1.

2.2 The map Q

Under the hypothesis of the previous section, TΦ−1 is an R-tree with a mini-
mal, very small action of FN by isometries with dense orbits. We denote by
T̂Φ−1 = TΦ−1 ∪ ∂TΦ−1 the union of its metric completion and of its Gromov
boundary. The space T̂Φ−1 comes with the topology induced by the metric on
TΦ−1 . However, we consider the weaker observers’ topology on T̂Φ−1 . We
refer to [CHL07] for details on this topology. A basis of open sets is given by

the directions: a direction is a connected component of T̂Φ−1 r {P} where

P is any point of T̂Φ−1 . We denote by T̂ obs
Φ−1 the set T̂Φ−1 equipped with the

observers’ topology. The space T̂ obs
Φ−1 is Hausdorff, compact and has the same

connected components than T̂Φ−1 . Indeed it is a dendrite in B. Bowditch
[Bow99] terminology.

Theorem 2.1 ([CHL07]). For any point P ∈ TΦ−1, the map QP : FN →

T̂ obs

Φ−1 , u 7→ uP has a unique equivariant continuous extension to a map Q :

∂FN → T̂ obs

Φ−1. This extension is independent of the choice of the point P .

The map Q was first introduced in [LL03, LL08] with a slightly different
approach.
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Note that the map Q fails to be continuous if we replace the observers’
topology by the stronger metric topology.

Let P be a point in TΦ−1 and let X be in ∂FN . Let (un)n∈N be a
sequence of elements of FN such that un converges to X. For each n,
H(unP ) = ϕ(un)H(P ). From Theorem 2.1, and for the observers’ topology
unP converge towards Q(X) while ϕ(un)H(P ) converge towards Q(∂ϕ(X)).
Thus we have proved

Lemma 2.2. For any element X ∈ ∂FN , Q(∂ϕ(X)) = H(Q(X)).

2.3 Dual lamination and the map Q2

Using the map Q, in [CHL08b], a lamination L(TΦ−1) dual to the tree TΦ−1

was defined.

L(TΦ−1) = {(X, Y ) ∈ ∂2FN | Q(X) = Q(Y )}.

From this definition, the map Q naturally induces an equivariant map Q2 :
L(TΦ−1) → T̂Φ−1. It is proven in [CHL08b] that the map Q2 is continuous

(for the metric topology on T̂Φ−1). The image Ω of Q2 is the limit set of
TΦ−1 . It is contained in TΦ−1 (equivalently, points of the boundary ∂TΦ−1

have exactly one pre-image by Q) but Ω may be strictly smaller than TΦ−1 ,
in particular it may fail to be connected.

From Lemma 2.2, the dual lamination L(TΦ−1) is invariant by Φ and we
deduce

Lemma 2.3. For any leaf (X, Y ) of the dual lamination L(TΦ−1), we have
Q2(∂2ϕ(X, Y )) = H(Q2(X, Y )).

2.4 Dual and attracting laminations

The dual lamination is sometime called the zero-length lamination and it is
clear to the experts that it contains the attracting lamination. This is for
example proven in [HM06].

Proposition 2.4. The attracting lamination LΦ of an irreducible (with irre-
ducible powers) outer automorphism Φ is a sublamination of the lamination
L(TΦ−1) dual to the repelling tree TΦ−1 of Φ:

LΦ ⊂ L(TΦ−1).
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Proof. Let τ = (Γ, ∗, π, f) be a train-track representative of Φ. Let f̃ be a
lift of f which is associated to the automorphism ϕ in the outer class Φ.

Let (X, Y ) be a leaf in LΦ. Then by definition there exists an edge e of the

universal cover Γ̃ of Γ and a sequence un of elements of FN such that unf̃
n(e)

converges to (X, Y ). Fix two base points in Γ̃ and TΦ−1 (both denoted by ∗)

and consider an equivariant map q : Γ̃ → TΦ−1 such that q(∗) = ∗ and which

is affine on edges of Γ̃. Then for any vertex P of Γ̃,

q(f̃(P )) = H(P ).

We deduce that the length of q(unf̃
n(e)) is λn times the length of q(e) and

as λ < 1 this length converges to 0 when n goes to infinity.
Let now P0 be the start-point of e and P1 be its end-point. Then unf̃

n(P0)

converges to ∂π(X) and unf̃
n(P1) converges to ∂π(Y ). The map Q is contin-

uous for the weaker observers’ topology on T̂ (see [CHL07]), so that for this

observers’ topology q(unf̃
n(P0)) converges to Q(X) and q(unf̃

n(P1)) con-

verges to Q(Y ). The distance d(q(unf̃
n(P0)), q(unf̃

n(P1))) converges to 0.
The metric topology is stronger than the observers’ topology, thus the se-
quence q(unf̃

n(P1)) converges to Q(X). As the observers’ topology is Haus-
dorff we conclude that Q(X) = Q(Y ). This proves that the leaf (X, Y ) is in
the dual lamination L(TΦ−1) of TΦ−1 .

2.5 Self-similar structure

Let Φ be an irreducible (with irreducible powers) outer automorphism of FN .
Let τ = (Γ, ∗, π, f) be an irreducible train track representative for Φ. Let

ϕ ∈ Φ be an automorphism in the outer class Φ and f̃ be the corresponding
lift of f to the universal cover Γ̃ of Γ.

Recall from Section 1.5 that for an edge ẽ of Γ̃ we denote by Cee the set
of lines:

Cee = CΓ(ẽ) ∩ LΦ.

Using the map Q2 of Section 2.3 and Proposition 2.4, we denote by Ωee the
subset of TΦ−1:

Ωee = Q2(Cee) = Q2(CΓ(ẽ) ∩ LΦ).

As Q2 is continuous, Ωee is compact.
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Using the irreducibility of the train-track τ , eadge leaf of the attracting
lamination contains a translate of the edge ẽ, thus LΦ = FN .Cee and Ω =
FN .Ωee.

Of course, the map Q2 is invariant by the flip map. If ẽ′ is the reversed
edge of ẽ, the cylinders Cee and Cee′ are homeomorphic by the flip map, and
the correponding sets of TΦ−1 are equal: Ωee = Ωee′ .

We now apply Q2 to Proposition 1.1.

Proposition 2.5. Let ϕ ∈ Φ be an irreducible (with irreducible powers)
automorphism of FN and Φ be its outer class. Let τ = (Γ, ∗, π, f) be a train-

track representative for Φ and f̃ a lift of f to the universal cover Γ̃ associated
to ϕ.

For each edge ẽ which is a lift of the edge e of Γ

Ωee =
⋃

(ee′,ep,es)

H(Ωee′)

where the finite union is taken over all triples (ẽ′, p̃, s̃) such that ẽ′ is an edge

of Γ̃, p̃.ẽ.s̃ is a reduced path in Γ̃ and f̃(ẽ′) = p̃.ẽ.s̃.
The above decomposition of Ωee does not depend on the choice of a partic-

ular automorphism ϕ in the outer class Φ, of the associated lift f̃ of f and
of the associated homothety H.

Proof. The equality follows directly by applying Q2 to Proposition 1.1:

Ωee = Q2(Cee)

= Q2(⊎ϕ(Cee′))

= ∪Q2(ϕ(Cee′))

= ∪H(Q2(Cee′))

= ∪H(Ωee′)

This self-similar structure of the compact subsets Ωee takes place in the
metric space TΦ−1 . Thus, this is exactly that of a directed graph construction
(see [MW88]) with similarity ratios equal to the ratio 1

λ
Φ−1

of the homothety

H .
But we lose the disjointness of the pieces in the self-similar decomposition.

Indeed, the Ωee′ involved in the decomposion may fail to be disjoint. We will
address this key issue for the computation of the Hausdorff dimension in
section 2.8.
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2.6 The maps Q
ẽ

Exactly as for cylinders of the attracting lamination, we can iterate the de-
composition. Let ẽ be an edge of Γ̃ that is a lift of the edge e of Γ. For any
e-path σ in Σe ∪ ∂Σe we consider

Ωee,σ = Q2(Cee,σ).

As above, using Propositions 1.2 and 1.3 we get:

Proposition 2.6. Let Φ be an irreducible (with irreducible powers) automor-
phism of FN and Φ be its outer class. Let τ = (Γ, ∗, π, f) be a train-track

representative for Φ. Let ẽ be an edge of Γ̃. Let ϕ be an automorphism in
the outer class Φ and let f̃ be the associated lift of f . Let H be the associated
homothety of the attracting tree TΦ−1 of Φ.

1. For any e-path σ of length n, Ωee,σ = Hn(Ω
σ(ee, ef,n))

2. ∀n ∈ N ∪ {∞}, Ωee =
⋃

σ∈Σe,|σ|=n

Ωee,σ

3. The map Q2 factors through the map ρee: there exists a continuous map
Qee : ∂Σe → Ωee that makes the following diagram commutes:

Cee

ρee
//

Q2
  

AA
AA

AA
AA

∂Σe

Qee}}{{
{{

{{
{{

Ωee

In the purpose of describing the self-similar structure of Ωee the choice of
an orientation of each edge of Γ̃ is irrelevant as the map Q2 is flip-invariant.
Thus we could consider the smaller unoriented prefix-suffix automaton
Σu which is obtained from the prefix-suffix automaton Σ by identifying two
vertices e1 and e2 if they are the same edge of Γ with reverse orientations
and by identifying to edges e1

p1,s1
−→ e′1 and e2

p2,s2
−→ e′2 if the edges e1, e2 and e′1

,e′2 are the same edge of Γ with reverse orientation and if p1, s2 and s1, p2 are
the same paths in Γ with reverse orientations.

In the classical context of substitutions the prefix-suffix automaton has
two symmetric connected components (one with positive letters and one with
inverses) and only the first one is usually considered.
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2.7 Attracting current

A current for the free group FN is a Radon measure (recall that a Radon
measure is a Borel measure which is finite on compact sets) on the double
boundary ∂2FN that is FN -invariant and flip-invariant.

As currents are FN -invariant the action of the automorphism group fac-
tors modulo inner automorphisms to a get an action of the outer automor-
phism group Out(FN) on the space of currents.

The irreducible (with irreducible powers) outer automorphism Φ has an
attracting projectivized current [µΦ] which was introduced by R. Martin
[Mar95]. Exactly as for the attracting tree (and the repelling tree) we pick
one current µΦ in this projetivized class.

This current satisfies
Φ.µΦ = λΦµΦ

where λΦ is the expansion factor of Φ. That is to say, for every measurable
set A ⊆ ∂2FN ,

(Φ.µΦ)(A) = µΦ(ϕ−1(A)) = λΦµΦ(A)

where ϕ is any automorphism in the outer class Φ.
We refer to I. Kapovich [Kap06] for background, definitions and state-

ments on currents.
R. Martin [Mar95] proved that the support of µΦ is exactly the attracting

lamination LΦ of Φ. It is proven in [CHL08c] that the lamination L(TΦ−1),
and thus its sublamination LΦ is uniquely ergodic.

This (projectivized) attracting current is better described if we use the
prefix suffix-automaton. Let τ = (Γ, ∗, π, f) be a train-track representative
of Φ. Recall from Section 1.4 that we denote by (µe)e a Perron-Frobenius
eigen-vector of the transition matrix of τ . From the definition of Cee,σ we get

Lemma 2.7. For any edge ẽ of Γ̃ that lies above the edge e of Γ

µΦ(Cee) = µe.

Let σ be a finite e-path in Σe that ends at the edge e′ of Γ. Then

µΦ(Cee,σ) =
µe′

(λΦ)|σ|
.

(There is some fuzzyness in these equalities as both the eigen-vector and
the attracting current are only defined up to a mulitplicative constant. The
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Lemma has to be understood as: there is a choice of µΦ and of (µe)e such
that...).

We consider νΦ the push-forward of the attracting current µΦ by the con-
tinuous map Q2 to the repelling tree TΦ−1 : That is to say for any measurable
set A in TΦ−1

νΦ(A) = µΦ(Q2−1
(A)).

From Lemma 2.7 we get

Lemma 2.8. For any edge ẽ of Γ̃ that lies above the edge e of Γ

νΦ(Ωee) = 2µe.

Let σ be a finite e-path in Σe that ends at the edge e′ of Γ. Then

νΦ(Ωee,σ) = 2
µe′

(λΦ)|σ|
.

The 2 factor comes from the fact that we considered currents as being
invariant by the flip-map and that Q2 is flip-invariant. As both the attract-
ing current and the metric of the repelling tree are only defined up to a
multiplicative constant this is totally unsignificant.

2.8 (Non-)Injectivity of Q

To get the Hausdorff dimension and measure of a self-similar metric space
a key feature is to know how much the self-similar pieces are disjoint. In
this purpose we collect results on the (non-)injectivity of Q, Q2 and Qee and
we complete Proposition 2.5 by stating that the pieces in the self-similar
decomposition intersect in at most finitely many points.

Those results are much easier to state and prove in the case of non-
geometric outer automorphisms of the free group. Recall that an outer auto-
morphism Φ of the free group is geometric if it is induced by a homeomor-
phism h of a surface S with boundary such that π1(S) = FN . In this case h
fixes the boundary components of the fundamental group of S and the action
of FN of the repelling and attracting trees TΦ−1 and TΦ are not free. In this
geometric case we have to deal with stabilizers of points and fixed subgroups
of the automorphisms in the outer class Φ. However the two trees TΦ−1 and
TΦ are surface (they are transverse to the lifts of the stable and unstable
foliations of h on S), their limit sets Ωee are intervals (or multi-interval) and
the Hausdorff dimensions are 1 which is not really striking.
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On the opposite, if we assume that Φ is non-geometric then the action of
FN on the repelling and attracting trees are free and automorphisms in the
outer class Φ have trivial fixed subgroups. This simplifies our work. Thus
from now on we assume that Φ is non-geometric.

The following result is proven in [CH08].

Proposition 2.9 ([CH08]). Let Φ be an irreducible (with irreducible powers)
non-geometric outer automorphism of FN . Let TΦ−1 be its repelling tree in
the boundary of outer space.

Then Q is finite-to-one and there are finitely many orbits of points in
T̂Φ−1 with strictly more than two pre-images by Q.

From the definitions of Q2 and, if we fix a train-track representative
τ = (Γ, ∗, π, f) and an edge ẽ of the universal cover Γ̃, from the definition of
Qee, we deduce

Corollary 2.10. Q2 and Qee are finite-to-one.
There are finitely many orbits of points in T̂Φ−1 with strictly more than

two pre-images by Q2 or with stricly more than one pre-image by Qee.

From this corollary we can complete Proposition 2.5 by stating that the
decomposition obtained there is not a partition (as in Proposition 1.1) but
nevertheless intersections are finite.

Proposition 2.11. Let Φ be an irreducible (with irreducible powers) non-
geometric outer automorphism of FN . Let TΦ−1 be its repelling tree in the
boundary of outer space. Let τ = (Γ, ∗, π, f) be a train-track representative
for Φ.

Let ẽ be an edge of the universal cover Γ̃ lying above the edge e of Γ. Let
σ and σ′ be two distinct e-paths of length n.

Then the intersection Ωee,σ ∩ Ωee,σ′ is a finite set.

Proof. By Proposition 1.1, Cee,σ and Cee,σ′ are disjoint.
Assume by contradiction that there are infinitely many distinct elements

(Pn)n∈N in the intersection. For each n, Pn has at least two pre-images by
Qee (one starting by σ and one starting by σ′). Applying Corollary 2.10, up
to passing to a subsequence, all the points Pn are in the same orbit under
the action of FN : There exist elements un ∈ FN such that Pn = unP0.
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From the commutative diagram in Proposition 2.6, for each n, there exists
elements Zn ∈ Cee,σ and Z ′

n ∈ Cee,σ′ such that Q2(Zn) = Q2(Z ′
n) = Pn. As Q2

is equivariant we get

Q2(un
−1Zn) = Q2(un

−1Z ′
n) = P0,

and as Q2 is finite-to-one, up to passing to a subsequence we assume that for
all n Zn = unZ0 and Z ′

n = unZ
′
0.

Again, up to passing to a subsequence we assume that the sequences
(un)n∈N and (un

−1)n∈N converge to elements U and V respectively in ∂FN and,
as Cee,σ and Cee,σ′ are compact, that the sequences (unZ0)n∈N and (unZ

′
0)n∈N

converge to elements Z and Z ′. We also assume that (unV )n∈N converges to
an element W ∈ ∂FN .

The action of FN on ∂FN is that of a convergence group, in particular,

∀X ∈ ∂FN r {V } lim
n→∞

unX = U.

As the two ends of Z (resp. Z ′) are distinct, one of the two ends of Z0 (resp.
Z ′

0) is V . Thus Z and Z ′ are equal to (U,W ) or (W,U). As Cee,σ and Cee,σ′

are disjoint, Z and Z ′ have the same geometric realisation in reverse order.
But Cee does not contain two paths in reverse order. A contradiction.

We now describe precisely the points with strictly more than one pre-
image by Qee. For that we need to assume that the outer automorphism Φ is
forward rotationless.

An irreducible (with irreducible powers), non-geometric, outer automor-
phism Φ ∈ ∂FN is forward rotationless (see [FH06]) if for any integer n,
for any automorphism ψ in the outer class Φn with strictly more than two
attracting fixed points in ∂FN , there exists an automorphism ϕ in the outer
class Φ such that ϕn = ψ and such that each fixed point of ψ is a fixed point
of ϕ.

From the following Proposition, we see that this extra hypothesis will not
restrict the scope of our results.

Proposition 2.12 ([GJLL98]). There exists a constant KN depending only
on N such that for any irreducible (with irreducible powers), non-geometric
outer automorphism Φ, the power ΦKN is forward rotationless.

This Proposition is true for any outer automorphism but we restricted
ourself to the easier case of irreducible non-geometric automorphisms.

26



Proposition 2.13. Let Φ be an irreducible (with irreducible powers) non-
geometric forward rotationless outer automorphism of FN . Let TΦ−1 be its
repelling tree in the boundary of outer space. Let τ = (Γ, ∗, π, f) be a train

track representative for Φ and let ẽ be an edge of the universal cover Γ̃ of Γ.
Let P be a point in Ωee with stricly more than one pre-image by Qee. Then

any prefix-suffix representation σ ∈ Q−1
ee (P ) is pre-periodic.

Moreover, there exists a homothety H of TΦ−1 associated to an automor-
phism ϕ ∈ Φ and to a lift f̃ of f such that H(P ) = P and for any pre-image

σ ∈ Q−1
ee (P ) the sequence (σ(ẽ, f̃ , n))n∈N is pre-periodic.

Proof. As P has stricly more than one pre-image by Qee, it has at least three
different pre-images by Q. Let ϕ ∈ Φ be an automorphism in the outer class
Φ and let H be the associated homothety of TΦ−1 . For each integer n, by
Lemma 2.2, Q−1(Hn(P )) = ϕn(Q−1(P )) and by Proposition 2.9, there exists
an integer n ≥ 1 and an element u of FN such that uHn(P ) = P .

Let σ be a pre-image by Qee of P . For any line Z ∈ Cee,σ, by Lemma 2.3,
and for any k ∈ N, (u(∂2ϕ)n)k(Z) is also in the Q2 fiber of P . By Corol-
lary 2.10, Cee,σ is finite and thus there exists k ≥ 1 such that

∀Z ∈ Cee,Q
2(Z) = P ⇒ (u(∂2ϕ)n)k(Z) = Z.

Thus, elements Z ∈ Cee in the Q2 fiber of P are fixed points of the automor-
phism ψ = (iu ◦ ϕn)k of the outer class Φnk. Moreover as Q2(Z) = P , they
are in the attracting lamination LΦ and thus there two ends are attracting
fixed points of ψ. As Φ was assumed to be forward rotationless, there exists
an automorphism ϕ′ in the outer class Φ that fixes all the elements Z ∈ Cee

such that Q2(Z) = P . Let now H ′ be the homothety associated to ϕ′, then
H ′(P ) = P and applying Proposition 1.6 we proved the Proposition.

A point P in Ωee is first-singular, if there exists two distinct e-paths σ
and σ′ of length 1 such that P ∈ Ωee,σ ∩ Ωee,σ′ . As there are finitely many
e-path of length 1, from Proposition 2.11 we get that there are finitely many
first-singular points in Ωee.

We prove the following technical result that we will use in the sequel.

Lemma 2.14. Let ẽ be an edge of Γ̃ that lies above an edge e of Γ. Let n be
an integer. Let N be a set of e-paths of length n such that

∀σ, σ′ ∈ N,Ωee,σ ∩ Ωee,σ′ 6= ∅.
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The cardinality of N is bounded above by a constant C1 depending only on
Φ.

Proof. Let σ0 be the common prefix of all the elements of N . By self-
similarity, we can replace Ωee by Ωee,σ0

and N by the set N ′ of suffixes σ′

of elements σ = σ0.σ
′ of N . Thus we assume that σ0 has zero-length and

that N has strictly more than 1 element.
For each σ in N , the set Ωee,σ contains a first-singular point P and thus

σ is the prefix of length n of one of the finitely many pre-images by Qee of
P .

2.9 Hausdorff dimension and measure

We refer to the book of K. Falconer [Fal90] for definitions of the Hausdorff
dimension and measure.

For a metric space (A, d), for any ε > 0, and k > 0, let

Hk
ε (A) = inf

∑

i∈N

|Ai|
k ∈ R

+ ∪ {∞}

where the infimum is taken over all coverings (Ai)i∈N of A such that the
diameter |Ai| of each Ai is smaller than ε. If A is compact, there are finite
coverings of A with closed balls of diameter ε, therefore Hk

ε (A) is finite.
For a homothety H of ratio λ, one has

Hk
ε(H(A)) = λkHk

λε(A).

For a fixed k > 0, ε 7→ Hk
ε (A) is decreasing and the Hausdorff measure

in dimension k of A is

Hk(A) = lim
ε→0

Hk
ε (A) = sup

ε>0
Hk

ε(A) ∈ R
+ ∪ {∞}.

Again, for a homothety H of ratio λ, one has

Hk(H(A)) = λkHk(A).

The map k 7→ Hk(A) is decreasing and takes values in {0,∞} except in
at most one point. The Hausdorff dimension of A is

Hdim(A) = inf{k | Hk(A) = 0} = sup{k | Hk(A) = ∞} ∈ R
+ ∪ {∞}.
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From these definitions it is classical to deduce that the Hausdorff dimen-
sion of a countable union ∪i∈NXi of subspaces of A is the supremum of the
dimensions of the Xi. In particular the Hausdorff dimension of the limit set
Ω is the maximum of the Hausdorff dimension of the compact subsets Ωee, for
all edges ẽ of Γ̃.

2.10 Main Theorem

The usual context to compute the Hausdorff dimension of a self-similar set (or
of a graph directed construction) is inside R

n which is not the case here. Also,
the classical hypothesis to get the lower bound on the Hausdorff dimension
is by using the open set condition, of which we need to use a non-classic
version. We refer to [MW88] and [Edg08] for computation of the Hausdorff
dimension of graph directed constructions and before them to the original
article of J. Hutchinson [Hut81] in the case of an iterated function system.

We are now ready to state and prove our main theorem.

Theorem 2.15. Let Φ be an irreducible (with irreducible powers) outer au-
tomorphism of the free group FN . Let τ = (Γ, ∗, π, f) be an irreducible train-
track representative for Φ and let TΦ−1 be the repelling tree of Φ.

The limit set Ω ⊆ TΦ−1, and for each edge ẽ of Γ̃, the set Ωee ⊆ TΦ−1 have
Hausdorff dimension

δ = Hdim(Ω) =
lnλΦ

lnλΦ−1

where λΦ and λΦ−1 are the expansion factors of Φ and Φ−1 respectively.

Proof. The limit set Ω is the union of translates by elements of FN of any
Ωee. Thus the Hausdorff dimensions of these sets are all equal.

The repelling tree TΦ−1 and the attracting lamination LΦ do not change
if we replace Φ by a power. Also, the expansion factor of a power Φn is λn

Φ.
Thus by Proposition 2.12, up to replacing Φ by a suitable power, we assume
that Φ is forward rotationless.

For each edge e of Γ we choose one of its lifts in the universal cover Γ̃ and
we denote by Ωe the corresponding subset of TΦ−1 . We denote by E(Γ) the
set of edges of Γ.

From Proposition 2.5, we see that each of the pieces Ωe is covered by
finitely many translates of homothetic copies of the Ωe′ . The number of
copies used is given by the corresponding row in the transition matrix M
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of the train-track τ . From the definition of the Hausdorff dimension it is
straightforward to deduce for any ε > 0 and any k > 0

(Hk
ε

λ
Φ−1

(Ωe))e∈E(Γ) ≤M(Hk
ε

λ
Φ−1

(H(Ωe′)))e′∈E(Γ) =
1

(λΦ−1)k
M(Hk

ε (Ωe′))e′∈E(Γ)

where the comparison between these positive vectors is made coordinatewise.
As the Perron-Frobenius eigen-value of M is the expansion factor λΦ of

Φ, we get by iteration that if k > δ = ln λΦ

lnλ
Φ−1

for any edge ẽ of Γ̃, Hk(Ωee) = 0.

Also, if k = δ we get that (Hδ(Ωe))e∈E(Γ) is bounded above by the Perron-
Frobenius eigen-vector of M . In particular, for any edge ẽ of Γ, Hδ(Ωee) <∞.

This gives an upper bound for the Hausdorff dimension of each of the Ωee

and an upper bound for the Hausdorff measure in dimension δ.
We now proceed to get the lower bound of the Hausdorff dimension and

measure. This involves describing quantitatively how much the maps Qee fails
to be injective and to evaluate how much they contract the distances.

For two subsets C and C ′ of TΦ−1 we denote by g(C,C ′) the size of the
gap between them:

g(C,C ′) = inf{d(P, P ′) | P ∈ C, P ′ ∈ C ′}.

We decompose the proof into three Lemmas.

Lemma 2.16. Let σ and σ′ be two e-paths of length n in Σe such that Ωee,σ ∩
Ωee,σ′ = ∅.

There exists a constant C2 > 0 depending only on Φ such that the gap
between Ωee,σ and Ωee,σ′ is bigger than C2

(λ
Φ−1 )n :

g(Ωee,σ,Ωee,σ′) >
C2

(λΦ−1)n
.

Proof. By self-similarity, up to removing a common prefix to σ and σ′ and
applying a homothety H , we assume that σ and σ′ have different first edges
σ1 and σ′

1.
Let 0 ≤ p < n be the maximal length of prefixes σp and σ′

p of σ and σ′

respectively such that Ωee,σp
∩Ωee,σ′

p
6= ∅. As Ωee,σ ⊆ Ωee,σp+1

and Ωee,σ′ ⊆ Ωee,σ′

p+1

we get that
g(Ωee,σ,Ωee,σ′) ≥ g(Ωee,σp+1

,Ωee,σ′

p+1
) > 0.

Thus, replacing σ and σ′ by their prefixes of length p + 1, we assume that
p+ 1 = n = |σ| = |σ′|.
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If n = 1 (that is to say p = 0) then there are only finitely many choices
of paths σ and σ′ and C2 has to be smaller than the minimum of the gaps
between all such possible choices of Ωee,σ and Ωee,σ′ .

Thus we assume that n > 1 (and that p = n− 1 > 0).
Let P be a point in Ωee,σn−1

∩Ωee,σ′

n−1
. As σ and σ′ does not have common

prefixes, P is one of the finitely many first-singular points in Ωee. Let Z and
Z ′ be pre-images of P by Q2 in Cee,σn−1

and Cee,σ′

n−1
respectively. The point P

has at least two different pre-images by Qee, thus we can use Proposition 2.13
to get that the pre-images by Qee of Z and Z ′ are pre-periodic. σn−1 and
σ′

n−1 are prefixes of two of these pre-images. We also get a homothety H of

TΦ−1 and an associated automorphisms ϕ ∈ Φ and lift f̃ of f such that the
sequences (σn−1(ẽ, f̃ , k))0≤k≤n−1 and (σ′

n−1(ẽ, f̃ , k))0≤k≤n−1 only takes finitely
many values. As the prefix-suffix automaton Σ is finite the terminal edges
ẽn = σ(ẽ, f̃ , n) and ẽ′n = σ′(ẽ, f̃ , n) takes only finitely possible values.

From our definitions

Ωee,σ = Hn(Ωeen
) and Ωee,σ′ = Hn(Ωee′n

),

thus, the lower bound of the gap is now given by:

g(Ωee,σ,Ωee,σ′) =
1

(λΦ−1)n
g(Ωeen

,Ωee′n
).

The existence of the constant C2 follows from the finiteness of the number
of possible choices for ẽn and ẽ′n.

For the sake of clarity, let us review this finiteness again. Using the action
of FN by isometries, we only need to consider one choice of a lift ẽ of each
edge e of Γ. For each of these ẽ we consider the finitely many first-singular
points P in Ωee. For each of these first-singular points P we consider the
associated lift f̃ of f as given by Proposition 2.13 and their finitely many
pre-periodic pre-images σ by Qee. Proposition 2.13 states that the sequence
(σ(ẽ, f̃ , k))k∈N is contained in a finite set Eee,P of edges of Γ̃. Finally the edges

ẽn and ẽ′n are among the finitely many edges of Γ̃ such that f̃(ẽn) and f̃(ẽ′n)
contain one of the edges of Eee,P .

Let P be a point in Ωee and let n be an integer. We consider the following
subset of Σe:

N(P, n) = {σ ∈ Σe | |σ| = n, g(P,Ωee,σ) ≤ (
1

λΦ−1

)n}.

31



The use of the set N(P, n) is classical while proving lower bounds for Haus-
dorff dimension and measure.

Lemma 2.17. There exists a constant C3 depending only on the outer au-
tomorphism Φ such that for any point P in Ωee and any integer n, the set
N(P, n) has at most C3 elements.

Proof. Let k = ⌈
ln 2

C2

ln λ
Φ−1

⌉. For any elements σ and σ′ in N(P, n), by definition

g(Ωee,σ,Ωee,σ′) ≤ 2
λ
Φ−1

n . We consider the prefixes, σn−k and σ′
n−k of σ and σ′

of length n−k. The sets Ωee,σn−k
and Ωee,σ′

n−k
contains the sets Ωee,σ and Ωee,σ′ ,

thus

g(Ωee,σn−k
,Ωee,σ′

n−k
) ≤ g(Ωee,σ,Ωee,σ′) ≤

2

(λΦ−1)n
≤

C2

(λΦ−1)n−k
.

From Lemma 2.16 we get that these two sets are not disjoints:

Ωee,σn−k
∩ Ωee,σ′

n−k
6= ∅.

From Lemma 2.14 the number of prefixes of length n−k ofN(P, n) is bounded
above by C1. Thus the cardinality of N(P, n) is bounded above by C3 =
C1.(E)k, where E is the number of edges of the prefix-suffix automaton Σ.

For a point P in Ωee and r > 0 we denote by B(P, r) the ball of radius r
in Ωee.

Lemma 2.18. There exists a constant C4 depending only on Φ such that

νΦ(B(P, r)) ≤ C4r
δ.

Proof. Let n = ⌊
ln 1

r

ln λ
Φ−1

⌋. For any point Q in B(P, r), let σ be the prefix of

length n of some pre-image by Qee of Q. Then Q ∈ Ωee,σ and

g(P,Ωee,σ) ≤ d(P,Q) ≤ r ≤ (
1

λΦ−1

)n.

Thus we have proved that

B(P, r) ⊆
⋃

σ∈N(P,n)

Ωee,σ.

Applying the push-forward νΦ of the attracting current µΦ we get

νΦ(B(P, r)) ≤
∑

σ∈N(P,n)

νΦ(Ωee,σ)
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For each σ ∈ N(P, n)

νΦ(Ωee,σ) =
νΦ(Ω

σ(ee, ef,n))

λΦ
n ≤ rδ νΦ(Ω

σ(ee, ef,n)),

and thus
νΦ(B(P, r)) ≤ C3 r

δ max{νΦ(Ωee′) | ẽ
′}

which proves the Lemma.

From Lemma 2.18 we deduce that the Hausdorff measure in dimension
δ is bounded below by the push forward of the attracting current µΦ. This
proves that the Hausdorff dimension of Ω is bounded below by δ.

From the above proof we get that the Hausdorff measure in dimension δ

on the limit set Ω is not constant. Pulling back this measure to the attracting
lamination by the map Q2 we get another current supported by the attracting
lamination LΦ. But we know that the attracting lamination is uniquely
ergodic thus we have proved:

Theorem 2.19. The pushforward νΦ of the attracting current µΦ to the limit
set Ω is equal to the Hausdorff measure in dimension δ.

Once again this equality is to be understood up to a multiplicative con-
stant.

2.11 Compact heart of trees

In this section we relate the sets Ω and Ωee of the previous section to the
compact heart of TΦ−1 as defined in [CHL09].

We fix a basis A of FN . This is equivalent to fixing a chart (RA, ∗, π) where
RA is the rose with N petals and π the corresponding marking isomorphism.
Elements ∂FN are identified with infinite reduced words in A±1.

The unit-cylinder CA(1) of ∂2FN is the set of lines that goes through the
origin, or equivalently, it is the set of pairs of infinite reduced words (X, Y )
with distinct first letters. This is a compact subset of ∂2FN whose translates
cover the double boundary: FN .CA(1) = ∂2FN .

For a basis A of FN the compact limit set of the repelling tree TΦ−1 is
defined in [CHL09] by

ΩA = Q2(L(TΦ−1) ∩ CA(1)).
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It is a compact subset of TΦ−1 .
From [CHK+08] we know that the dual lamination L(TΦ−1) is the diagonal

closure of the attracting lamination LΦ. In particular

Ω = Q2(LΦ) = Q2(L(TΦ−1))

ΩA = Q2(L(TΦ−1) ∩ CA(1)) = Q2(LΦ ∩ CA(1)).

The translates of the compact limit set ΩA cover the limit set Ω: FN .ΩA =
Ω.

As the Hausdorff dimension does not increase by taking countable unions
we get that the Hausdorff dimension of ΩA is δ.

The compact heart, KA of TΦ−1 is the convex hull ΩA. Recall that the tree
TΦ−1 can be covered by countably many intervals (thus TΦ−1 has Hausdorff
dimension 1), and note that this is not the case of its metric completion TΦ−1 .
The compact heart KA is a subset of the union ΩA ∪ TΦ−1. We get

Theorem 2.20. Let Φ be an irreducible (with irreducible powers) outer au-
tomorphism of FN . Let A be a basis of FN . Let TΦ−1 be the repelling tree
of Φ. Let ΩA be the compact limit set and KA be the compact heart of TΦ−1

with respect to A. Then

Hdim(ΩA) = δ =
lnλΦ

lnλΦ−1

and Hdim(KA) = max{1,
lnλΦ

lnλΦ−1

}.

3 Examples

In this section, we illustrate our result with two examples of irreducible (with
irreducible powers) automorphisms.

3.1 Boshernitzan-Kornfeld example

In [BK95] the following automorphism of F3 is studied:

ϕ : a 7→ b

b 7→ caaa

c 7→ caa

Let Φ be its outer class. We regard ϕ as a homeomorphism of the rose
with 3 petals to get a train-track representative of Φ and the corresponding
prefix-suffix automaton Σ, see Figure 1.
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ca, ε

a

c

b

ε, aa

c, aa

ca, a

c, a

ε, aaa

caa, ε

ε, ε

Figure 1: Prefix-suffix automaton Σ for Boshernitzan-Kornfeld automor-
phism

The transition matrix MΦ and the expansion factor λΦ (which is the
Perron-Frobenius eigen-value of MΦ) are

MΦ =




0 3 2
1 0 0
0 1 1


 and λΦ ≈ 2.170.

The inverse automorphism

ϕ−1 : a 7→ c−1b

b 7→ a

c 7→ cb−1cb−1c

also defines on the rose with 3 petals a train-track representative of Φ−1. The
transition matrix and the expansion factor of Φ−1 are

MΦ−1 =




0 1 0
1 0 2
1 0 3


 and λΦ−1 ≈ 3.214.

(note that positive and negative letters are both counted as one in the tran-
sition matrix).
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c

0 11 − α

0 α2 α 1

T

1 − α+ α2

1 − α2

b

a

Figure 2: Interval translation of Boshernitzan-Kornfeld

M. Boshernitzan and I. Kornfeld associate this automorphism to an in-
terval translation map.

Let I = [0; 1] be the unit interval and let α = 1
λ
Φ−1

≈ 0.311 be the positive

root of α3 − α2 − 3α + 1 = 0. The piecewise translation T : [0; 1] → [0; 1]
restricts to a translation on each of the three intervals Ia = [0; 1 − α], Ib =
[1 − α; 1 − α2] and Ic = [1 − α2; 1] of translation vector α, α2 and α2 − 1
respectively.

The fact that ϕ and T are associated can be seen by looking at the first
return map on the interval [1 − α; 1].

The repelling tree TΦ−1 of Φ is the tree dual to (the lift to the universal
cover of) the vertical foliation of the mapping torus of this interval trans-
lation. See [GL95] and [CHL09] for a precise construction of TΦ−1 starting
from the interval translation T .

The compact heart KA of TΦ−1 is the interval I. The restriction of the
action of the elements a, b and c of the basis of F3 to this interval KA = I

are exactly the piecewise exchange of the interval translation map, T . The
compact limit set ΩA is the limit set of the interval translation map:

ΩA =
⋂

n≥0

T n(I).

This is a Cantor set with Hausdorff dimension lnλΦ

ln λ
Φ−1

≈ 0, 664.
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ε, ε

a, ε

ε, c

c

b

a, ε

aε, b

Figure 3: Prefix-suffix automaton Σ for Tribonacci automorphism

3.2 Tribonacci example

The following Tribonacci automorphism of F3 has long been studied

ϕ : a 7→ ab

b 7→ ac

c 7→ a

It is associated to what is known as the Rauzy fractal, and X. Bressaud
studied its repelling tree (see [Bre07]).

Let Φ be its outer class. We regard ϕ as a homeomorphism of the rose
with 3 petals to get a train-track representative of Φ and the associated
prefix-suffix automaton Σ, see Figure 3.

The transition matrix and the expansion factor are

MΦ =




1 1 1
1 0 0
0 1 0


 and λΦ ≈ 1.839.

A train-track representative of Φ−1 is given by the graph Γ of Figure 4,
the homeomorphism f and the marking π:

f :

A 7→ DC

B 7→ D−1A

C 7→ B

D 7→ C−1

π :
a 7→ A

b 7→ DB

c 7→ DC

The prefix-suffix automaton is given in Figure 5.
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A

C

D

B

Figure 4: Graph Γ of a train-track representative of the inverse of Tribonacci
automorphism

ε,D−1

A D−1

C−1

C−1, ε

ε, ε

ε, ε

ε,D

ε, C

D−1, ε
B

ε, A

A−1

B−1
A−1, ε

D

ε, ε

ε, ε

C

D, ε

Figure 5: Prefix-suffix automaton Σ for the inverse of tribonacci automor-
phism
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The outer automorphism Φ−1 has transition matrix and expansion factor

MΦ−1 =




0 1 0 0
0 0 1 0
1 0 0 1
1 1 0 0


 and λΦ−1 ≈ 1.395.

The repelling tree TΦ−1 has a connected limit set ΩA = KA which is of
Hausdorff dimension δ = ln λΦ

lnλ
Φ−1

≈ 1.829. The R-tree KA, although compact,

has Hausdorff dimension strictly bigger than 1.
X. Bressaud has drawn nice pictures of (approximations of) the fractal

tree KA inside the Rauzy fractal (see [BC07]).
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38(6):847–888, 2005.

[HM06] Michael Handel and Lee Mosher. Axes in outer space. 2006.
arXiv:math/0605355.

[Hut81] John E. Hutchinson. Fractals and self-similarity. Indiana Univ.
Math. J., 30(5):713–747, 1981.

[Jul09] Yann Jullian. Reprsentations gomtriques des systmes dynamiques
substitutifs par substitutions d’arbre. PhD thesis, Université Aix-
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