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In this paper, we show how concentration inequalities for Gaussian quadratic form can be used to propose exact confidence intervals of the Hurst index parametrizing a fractional Brownian motion. Both cases where the scaling parameter of the fractional Brownian motion is known or unknown are investigated. These intervals are obtained by observing a single discretized sample path of a fractional Brownian motion and without any assumption on the parameter H.

Introduction

Since the pioneer work of [START_REF] Mandelbrot | Fractional brownian motions, fractional noises and applications[END_REF], the fractional Brownian motion (fBm) has become widely popular as well as in a theoretical context as in applications. Fractional Brownian motion can be defined as the only centered Gaussian process, denoted by (B H (t)) t∈R , with stationary increments and with variance function v(•), given by v(t) = C 2 |t| 2H for all t ∈ R. The parameter H ∈ (0, 1) (resp. C > 0) is referred to as the Hurst parameter (resp. the scaling coefficient). In particular, when H = 1/2, it is the standard Brownian motion. In general, the fractional Brownian motion is an H-self-similar process, that is for all δ > 0, (B H (δt)) t∈R d = δ H (B H (t)) t∈R (where d = means equal in finite-dimensional distributions) with autocovariance function behaving like O(|k| 2H-2 ) as |k| → +∞. Thus, the discretized increments of the fractional Brownian motion (called the fractional Gaussian noise) constitute a shortrange dependent process, when H < 1/2, and a long-range dependent process, when H > 1/2. The index H characterizes also the path regularity since the fractal dimension of the fractional Brownian motion is equal to D = 2 -H. General references on self-similar processes and longmemory processes are given in [START_REF] Beran | Statistics for long-memory processes[END_REF] or [START_REF] Doukhan | Theory and applications of long-range dependence[END_REF].

The aim of this paper is to propose confidence intervals for the Hurst parameter based on a single observation of a discretized sample path of the interval [0, 1] of a fractional Brownian motion. To do so, the most popular strategy consists in using the asymptotic normality of some estimators of the Hurst parameter, see [START_REF] Coeurjolly | Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study[END_REF] for a survey on the estimation of the self-similarity or [START_REF] Shen | Robust estimation of the self-similarity parameter in network traffic using wavelet transform[END_REF] and [START_REF] Coeurjolly | Hurst exponent estimation of locally self-similar gaussian processes using sample quantiles[END_REF] for more recent discussions in a robust context. Recently, a new strategy based on concentration inequalities for Gaussian processes obtained by [START_REF] Nourdin | Density formula and concentration inequalities with malliavin calculus[END_REF] has been proposed by [START_REF] Breton | Exact confidence intervals for the hurst parameter of a fractional brownian motion[END_REF]. In this case, the confidence intervals are non-asymptotic and they appear to be very interesting when the sample size is moderate. Our contribution is to improve this direction both from a theoretical and practical point of view. In order to present our different contributions, let us first recall the confidence interval proposed by [START_REF] Breton | Exact confidence intervals for the hurst parameter of a fractional brownian motion[END_REF].

Proposition 1 Assume that one observes a fractional Brownian motion at times i/n for i = 0, . . . , n + 1 with scaling coefficient C = 1 and with Hurst parameter satisfying H ≤ H ⋆ for some known H ⋆ ∈ (0, 1). Fix α ∈ (0, 1), then for all n large enough satisfying q n (α) < (4 -4 H ⋆ ) √ n,

where q n (α) := 1 2 b(α) + b(α) 2 + 852 log 2 α with b(α) := 71 √ n log 2 α , we have

P H ∈ max 0, H inf n (q n (α)) , H sup n (q n (α)) ≥ 1 -α, (1) 
where for t > 0

g n H inf n (t) := 1 2 - log(S n ) 2 log(n) + log 1 - t (4-4 H ⋆ ) √ n 2 log(n) g n H sup n (t) := 1 2 - log(S n ) 2 log(n) + log 1 + t (4-4 H ⋆ ) √ n 2 log(n)
where g n is the function defined by g n (x) = x -log(4-4 x ) 2 log(n) and S n is the following statistic

S n := 1 n n i=1 B H i + 1 n -2B H i n + B H i -1 n 2 . ( 2 
)
Let us give some general comments on this result. First, note that this procedure cannot be applied to a fractional Brownian motion whose scaling coefficient C is unknown. Secondly, important drawbacks of this procedure rely upon the assumptions made on H ⋆ and n, which exclude the possibility to use this confidence interval when the sample size is small:

• Given α and H ⋆ , the following table presents the minimal value of the sample size n in order to ensure that q n (α) < (4 -4 H ⋆ ) √ n.

H ⋆ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 α = 1% 271 298 335 388 471 611 886 1592 4936 α = 5% 189 208 233 270 328 425 617 1108 3437 α = 10% 154 169 190 220 266 346 501 900 2791

• The following table exhibits the maximal value of H ⋆ , denoted by H ⋆ , required in order to ensure q n (α) < (4-4 H ⋆ ) √ n in terms of α and n. Note that H ⋆ = log (max (1, 4q n (α)/ √ n)) / log(4), which means that, given α and n, a confidence interval is only available for H ∈ (0, H ⋆ ). n 50 100 200 500 10000 10000 α = 1% 0.00 0.00 0.00 0.53 0.93 0.93 α = 5% 0.00 0.00 0.17 0.65 0.94 0.94 α = 10% 0.00 0.00 0.34 0.70 0.95 0.95

We are now in position to specify our different contributions:

• We slightly improve the bounds of the concentration inequality obtained by [START_REF] Nourdin | Density formula and concentration inequalities with malliavin calculus[END_REF], see Section 2 and Proposition 2 for more details. Note in particular that, in contrast to [START_REF] Nourdin | Density formula and concentration inequalities with malliavin calculus[END_REF] and [START_REF] Breton | Exact confidence intervals for the hurst parameter of a fractional brownian motion[END_REF], we are tracing the constant to optimize numerically our bounds.

• In the case where the scaling parameter C is known, we propose a new confidence interval without any preliminary assumption on the Hurst parameter H (in contrast to [START_REF] Breton | Exact confidence intervals for the hurst parameter of a fractional brownian motion[END_REF]) and with a very slight condition on the sample size. For instance, in comparison to the previous tables, our confidence interval is computable as soon as n ≥ 3. Furthermore, by using ideas similar in [START_REF] Coeurjolly | Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths[END_REF] for the problem of the estimation of the Hurst parameter, we also propose a confidence interval when the scaling parameter C is unknown. This new confidence interval has the nice property to be independent of C and independent of the discretization step. It is remarkable that, in the both cases (C known or unknown), the lengths of the confidence intervals we propose behave asymptotically like the ones derived in an asymptotic approach, that is they behave like 1/ √ n log(n) when C is known and 1/ √ n when C is unknown.

• As suggested by the expression of the statistic in (2), the procedure described in Proposition 1 is based on the increments of order 2 of the discretized sample path of the fractional Brownian motion. Taking the increments of order 2 is a special case of filter to work with and it is known that discrete filtering has been proposed and used in an estimation context, see [START_REF] Istas | Quadratic variations and estimation of the hölder index of a gaussian process[END_REF], [START_REF] Kent | Estimating the fractal dimension of a locally self-similar gaussian process using increments[END_REF] and [START_REF] Coeurjolly | Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths[END_REF]. Recall that the main interest in filtering the fractional Browian motion is that the action of filtering changes the correlation so that, for instance, the increments of order 2 of the fractional Brownian motion constitute a short-range dependent process (i.e. its correlation function is absolutely summable). Such a behaviour is required to obtain an efficient concentration inequality. In this paper, we propose to construct confidence intervals not only based on the increments of order 2 but on more general filters such as, for instance, increments of larger order or the Daubechies wavelet filters. . . Finally, let us also underline that a crucial step consists in obtaining an upper-bound of the supremum on the interval (0, 1) of the ℓ 1 -norm of the correlation function of the discrete filtered series of the fractional Brownian motion. When considering the increments of order 2, [START_REF] Breton | Exact confidence intervals for the hurst parameter of a fractional brownian motion[END_REF] have obtained the bound 17.75/(4-4 H ⋆ ). We have widely improved this point since we compute explicitly this supremum for a large class of filters (including increments of order 2). As an example, for the increments of order 2, this gives the explicit value 8/3.

• Based on a large simulation study, we assess the efficiency of the different procedures that we propose and we compare them with ones based on an asymptotic scheme. We discuss and comment these results.

The rest of this paper is organized as follows. In Section 2, we give the concentration inequalities specially designed for our purposes. The filtering setting is introduced in Section 3 where the bounds for the ℓ 1 -norm of the correlation function of the filtered series are also obtained. Our confidence intervals for the Hurst parameter are proposed and proved in Section 4, both when the scaling parameter is known or unknown. Our results are discussed and compared to the literature in Section 5. Finally, computations expliciting some bounds for some special filters are given in Appendix A.

Concentration inequalities

Proposition 1 above is based on concentration inequalities proposed by [START_REF] Nourdin | Density formula and concentration inequalities with malliavin calculus[END_REF] (see Proposition 3) for smooth enough random variables with respect to Malliavin calculus (see Theorem 4.1-i)). By applying such inequalities to the random variables √ nV n where

V n = 1 n n i=1 H 2 (X i ), H 2 (t) = t 2
-1 is the second Hermite polynomial, and X = {X i } 1≤i≤n is a stationary Gaussian process with variance 1 and correlation function ρ, we obtain concentration inequalities for H 2 -variations of stationary Gaussian processes. In the sequel, for a sequence

(u i ) i∈Z , we set u ℓ 1 n := |i|≤n |u i |. Proposition 2 Let κ n = 2 ρ ℓ 1 n .
Then, for all t > 0, we have:

P √ nV n ≥ t ≤ ϕ r,n (t; κ n ) := e -t √ n κn 1 + t √ n n κn
(3)

P √ nV n ≤ -t ≤ ϕ l,n (t; κ n ) := e t √ n κn 1 - t √ n n κn 1 [0, √ n] (t). ( 4 
)
Note that Proposition 2 can be applied to short-memory as well as to long-memory stationary Gaussian processes (as soon as n remains finite). In order to derive Proposition 2 below, we shall briefly use some notions of Malliavin calculus. We just recall the only necessary for our argument and we refer to [START_REF] Breton | Exact confidence intervals for the hurst parameter of a fractional brownian motion[END_REF] and references therein for any further details. We stress that, once Proposition 2 is derived, only basic probability tools will be used. Without restriction, we assume the Gaussian random variables X i have the form X i = X(h i ) where X(ℵ) = {X(h) : h ∈ ℵ} is an isonormal Gaussian process over a real separable Hilbert space ℵ and {h i : i = 0, . . . , n} is a finite subset of

ℵ verifying E[X(h i )X(h j )] = ρ(i-j) = h i , h j ℵ . With
such a representation, V n can be seen as a double Wiener-Itô integral with respect to X, i.e.

V n = I 2 1 n n i=0 h i ⊗ h i .
In the sequel, to make easier the presentation, we rewrite Th. 4.1 of [START_REF] Nourdin | Density formula and concentration inequalities with malliavin calculus[END_REF] only for such random variables, see Proposition 3. Actually, in order to optimize our forthcoming results, Proposition 3 is a slight improvement of Th. 4.1. Before, recall that multiple Wiener-Itô integrals I q (f ) are well defined for f ∈ ℵ ⊙q , the qth symmetric tensor product of ℵ, q ∈ N \ {0}; the Malliavin derivatives D transforms random variables (in its domain) into random elements with values in ℵ; multiple Wiener-Itô integrals are in the domain of D and we have D t (I q (h)) = qI q-1 (h(•, t)). Recall also that the Hermite polynomials H q are related to multiple Wiener-Itô integrals by H q (I 1 (h)) = I q (h ⊗q ) when h ℵ = 1; in particular, for q = 2, we obtain

I 1 (h) 2 -1 = I 2 (h ⊗2 ). Proposition 3 Let Z = I 2 (f ) satisfying DZ 2 ℵ ≤ aZ + b (5)
for some constants a ≥ 0 and b > 0. Then, for all t > 0

P(Z ≥ t) ≤ ϕ r (t; a, b) := e -2t a 1 + at b 2b a 2 P(Z ≤ -t) ≤ ϕ l (t; a, b) := e 2t a 1 - at b 2b a 2 1 [0,b/a] (t).
Proof: The proof is a slight improvement of the bounds in (Nourdin and Viens, 2009, Theorem 4.1) obtained by a careful reading of the proof (with the following correspondance with the notation therein:

g Z (Z) = 1 2 DZ 2 ℵ , α = a/2 and β = b/2).
Denoting by h the density of Z, the argument of (Nourdin and Viens, 2009, Theorem 4.1) is based on the following key formula (see (3.16) in [START_REF] Nourdin | Density formula and concentration inequalities with malliavin calculus[END_REF])

DZ 2 ℵ = 2 +∞ Z yh(y)dy h(Z) . ( 6 
)
For the sake of self-containess, we sketch the main steps of the argument. For any A > 0, define m A : [0, +∞) → R by m A (θ) = E e θZ 1 {Z≤A} . We have m ′ A (θ) = E Ze θZ 1 {Z≤A} and integration by part yields

m ′ A (θ) = A -∞ xe θx h(x)dx ≤ θ A -∞ e θx +∞ x yh(y)dy dx (7) ≤ θ 2 E DZ 2 ℵ e θZ 1 {Z≤A} . (8) 
where (7) comes from +∞ A yh(y)dy ≥ 0 since E[Z] = 0, and (8) comes from (6). Because of (5), we obtain for any θ ∈ (0, 2/a):

m ′ A (θ) ≤ θb 2 -θa m A (θ). (9) 
Solving (9), using m A (0) = P(Z ≤ A) ≤ 1 and applying Fatou's Lemma (A → +∞) yield the following bound for the Laplace transform and any θ ∈ (0, 2/a):

E[e θZ ] ≤ exp - b a θ - 2b a 2 ln 1 - aθ 2 .
The Chebychev inequality together with a standard minimization entail:

P(Z ≥ t) ≤ exp min θ∈(0,2/a) -t + b a θ - 2b a 2 ln 1 - aθ 2
The minimization is achieved in θ = (2t)/(at + b) and gives the first bound in Proposition 3.

Applying the same argument to Y = -Z, satisfying DY 2 ℵ ≤ -aY + b, we derive similarly the second bound. Note in particular that condition 5 implies that Z ≥ -b/a so that the left tail only makes sense for t ∈ (-b/a, 0).

Remark 1 [START_REF] Nourdin | Density formula and concentration inequalities with malliavin calculus[END_REF] have obtained the bounds

φ l (t; a, b) = exp - t 2 b and φ r (t; a, b) = exp - t 2 at + b .
Table 1 proposes a comparison of these bounds with ours through the comparisons of the values of their reciprocal functions since these quantities are of great interest for the considered problem.

Observe that the most important differences occur when n is moderate. The example a = 4/ √ n and b = 4 corresponds approximately to the choices of parameters that will be used in the next sections. 1: Computations of the quantities ϕ -1 l (α) and ϕ -1 r (α) for the bounds obtained by [START_REF] Nourdin | Density formula and concentration inequalities with malliavin calculus[END_REF] (NV) and ours (BC) (see Remark 1 and Proposition 3) for different values of n and α and for the particular case where a = 4/ √ n and b = 4.

α = 1% α = 2.5% α = 5% α = 10% ϕ -1 l (α) ϕ -1 r (α) ϕ -1 l (α) ϕ -1 r (α) ϕ -1 l (α) ϕ -1 r (α) ϕ -1 l (α) ϕ -1 r (α) n =
Remark 2 Note that ϕ r (•; a, b) (resp. ϕ l (•; a, b)) is a bijective function from (0, +∞) (resp. (0, b/a)) to (0, 1).
Obviously, the index l in ϕ l (resp. r in ϕ r ) indicates we consider the left (resp. right) tails.

We explain now how Proposition 2 derives from Proposition 3: standard Malliavin calculus shows that, for [START_REF] Breton | Exact confidence intervals for the hurst parameter of a fractional brownian motion[END_REF]. The following lemma ensures that condition (5) in Proposition 3 holds true with a = 2κ n / √ n and b = 2κ n .

Z = √ nV n , DZ 2 ℵ = 1 n n i,j=1 X(i)X(j)ρ(j-i), see Theorem 2.1 in
Lemma 4 For Z = √ nV n , we have DZ 2 ℵ ≤ κ n 1 √ n Z + 1 .
The proof of Lemma 4 is a very slight modification of the first part of the proof of Theorem 3.1 in [START_REF] Breton | Exact confidence intervals for the hurst parameter of a fractional brownian motion[END_REF] to which we refer. Finally, Proposition 3 applies and entails Proposition 2.

3 Applications to quadratic variations of fractional Brownian motion

Notation

From now on, B H stands for a fBm with Hurst parameter H ∈ (0, 1) and with scaling coefficient C > 0 and B H is the vector of observations at times i/n for i = 0, . . . , n -1. We consider a filter a of length ℓ + 1 and order p, that is a vector with ℓ + 1 real components a i , 0 ≤ i ≤ ℓ, satisfying ℓ q=0 q j a q = 0 for j = 0, . . . , p -1 and

ℓ q=0 q p a q = 0. ( 10 
)
For instance, we shall consider the following filters: Increments 1 (a = {-1, 1} with ℓ = 1, p = 1), Increments 2 (a = {1, -2, 1} with ℓ = 2, p = 2), Daublets 4 (a = {-0.09150635, -0.15849365, 0.59150635, -0.34150635} with ℓ = 3, p = 2), Coiflets 6 (a = {-0.05142973, -0.23892973, 0.60285946, -0.27214054, -0.05142973, 0.01107027} with ℓ = 5, p = 2), see e.g. [START_REF] Daubechies | Orthonormal bases of compactly supported wavelets[END_REF] and [START_REF] Percival | Wavelet Methods for Time Series Analysis[END_REF] for more details. Let V a denote the vector B H filtered with a and given for i = ℓ, . . . , n -1 by

V a i n := ℓ q=0 a q B H i -q n .
Let us denote by π a H (•) and ρ a H (•) the covariance and the correlation functions of the filtered series given by (see [START_REF] Coeurjolly | Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths[END_REF])

E[V a (k)V a (k + j)] = C 2 × π a H (j) with π a H (j) = - 1 2 ℓ q,r=0 a q a r |q -r + j| 2H (11) 
and ρ a H (•) := π a H (•)/π a H (0) which is independent of C. Finally, define S a n and V a n as

S a n := 1 n -ℓ n-1 i=ℓ V a i n 2 and V a n := n 2H C 2 π a H (0) S a n -1 = 1 n -ℓ n-1 i=ℓ n 2H C 2 π a H (0) × V a i n 2 -1 . Note that V a n d = 1 n-ℓ n-1 i=ℓ H 2 (X a i )
where H 2 (t) = t 2 -1 is the second Hermite polynomial and X a is a stationary Gaussian process with variance 1 and with correlation function ρ a H . Observe that V a n , n ≥ 1, satisfy a law of large number (LLN) and a central limit theorem (CLT)

V a n → 0 a.s., √ nV a n ⇒ N (0, σ 2 H,a ) (12) 
with explicit variance σ 2 H,a , see Proposition 1 in [START_REF] Coeurjolly | Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths[END_REF], used to derive standard confidence interval for H. In contrast, our argument relies on concentration inequalities: applying Proposition 2 with these notation, we obtain fo all s, t ≥ 0:

P -s ≤ √ n -ℓV a n ≤ t ≥ 1 -ϕ r,n-ℓ (t; κ a n,H ) -ϕ l,n-ℓ (s; κ a n,H ) (13) 
where κ a n,H = 2 |i|≤n |ρ a H (i)|. As previously explained, the action of filtering a discretized sample path of a fBm changes the correlations into summable correlations for the increments. More precisely, it is proved that, for some explicit k H , ρ a H (i) ∼ k H |i| 2H-2p , see e.g. [START_REF] Coeurjolly | Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths[END_REF]. Thus,

ρ a H (•) is summable if p > H + 1/2, i.e. ρ a H (•) is summable for all H ∈ (0, 1) for p ≥ 2 and only for H ∈ (0, 1/2] if p = 1 (in the case H = 1/2, observe that ρ a 1/2 (k) = 0 for all |k| ≥ ℓ).
One of the aim is to obtain bounds in (13) independently of H and easily computable. Since ϕ l,n (t, •) and ϕ r,n (t, •) are non-decreasing, the bound (13) remains true with κ a := 2 sup H∈(0,τ ) ρ a H ℓ 1 (Z) replacing κ n,H . Here, and in the sequel, we set τ = 1/2 when p = 1 and τ = 1 when p ≥ 2. The following section will prove (among other things) that this quantity is finite.

Bounds of ρ a

H ℓ 1 (Z) independent of H

In this section, we show that κ a = sup H∈(0,τ ) κ a H is finite for a large class of filters, including the collection of dilated filters (a m ) m≥1 of a filter a that will be used in the next section. Recall that a m is the filter of length mℓ + 1 with same order p as a and defined for i = 0, . . . , mℓ by

a m i = a i/m if i/m is an integer 0 otherwise. ( 14 
)
As a typical example, if a := a 1 = {1, -2, 1}, then a 2 := {1, 0, -2, 0, 1}. Since π a H (0) = 0, observe that, for a fixed i ∈ Z, the functions H → π a H (i) and H → ρ a H (i) are continuous respectively on [0, 1] and on (0, 1). Moreover, since for any filter a,

π a 0 (0) = - 1 2 ℓ q,r=0,q =r a q a r = - 1 2 ℓ q,r=0 a q a r + 1 2 ℓ q=0 a 2 q = 1 2 ℓ q=0 a 2 q > 0, (15) 
the function H → ρ a H (i) is continuous in 0. In particular, this ensures that for p = 1, ρ a

• ℓ 1 (Z)
is continuous on [0, 1/2). Actually, this may be not continuous in 1/2 but nevertheless κ a = 2 sup H∈[0,1/2] ρ a H ℓ 1 (Z) < +∞ for instance κ {-1,1} = 4 and κ {-1,1} 2 = 8. We refer to Appendix A for the computation of the exact values and to Table 3 for the estimation of some other similar constants.

For any filter of order p ≥ 2, observe that π a 1 (i) = 0 for all i. Let us consider the following assumption on the filter a, denoted H a :

τ a := ℓ q,r=0 a q a r (q -r) 2 log(|q -r|) = 0, (16) 
with the convention 0 log(0) = 0. Tab. 2 below shows that Assumption H a is satisfied for a large class of filters. Then, from the rule of l'Hospital, lim

H→1 -ρ a H (i) = ℓ q,r=0 a q a r (q -r + i) 2 log(|q -r + i|) ℓ q,r=0 a q a r (q -r) 2 log(|q -r|) < +∞. Therefore, under H a , ρ a H (i) is a continuous function of H ∈ [0, 1].
Actually, the same is true for the ℓ 1 -norm of a filter of order p ≥ 2 as stated in Proposition 5 below. Proof: From (11), we have

ρ a H (j) = |j| 2H ℓ q,r=0 a q a r |q -r| 2H ℓ q,r=0
a q a r 1 + qr j

2H

.

For |j| ≥ ℓ + 1, we have qr + j ≥ 0 for 0 ≤ q, r ≤ ℓ, so that:

ρ a H (j) = |j| 2H ℓ q,r=0 a q a r |q -r| 2H ℓ q,r=0 a q a r 1 + q -r j 2H = |j| 2H ℓ q,r=0 a q a r |q -r| 2H ℓ q,r=0 a q a r +∞ k=0 (2H)(2H -1) . . . (2H -k + 1) k! q -r j k = |j| 2H ℓ q,r=0 a q a r |q -r| 2H +∞ k=2p (2H)(2H -1) . . . (2H -k + 1) k!j k ℓ q,r=0 a q a r (q -r) k . (17)
Observe that in (17), the outer sum starts at k = 2p. This is due to the property (10) of the filter a of order p which implies the following remark:

ℓ q,r=0 a q a r (q -r) k = ℓ q,r=0 a q a r k i=0 k i q i (-r) k-i = k i=0 (-1) k-i k i ℓ q=0 a q q i ℓ r=0 a r r k-i = 0 if k ≤ 2p -1.
As a consequence, for p ≥ 2, each summand in the outer sum (17) contains the factor 2H -2 in the product (2H)(2H -1) . . . (2Hk + 1). Observe that under H a in ( 16), the rule of l'Hospital ensures that the function θ a (H) = (2 -2H)/( q =r a q a r |q -r| 2H ) is bounded at H = 1 -. Since moreover this function is continuous in H, we derive, under H a , that θ a ∞ := sup H∈[0,1) |θ a (H)| < +∞. Now, from (17), we have

|ρ a H (j)| = θ a (H)|j| 2H-2p +∞ k=0 (2H)(2H -1)(2H -3) . . . (2H -2p -k + 1) (2p + k)!j k ℓ q,r=0 a q a r (q -r) k+2p ≤ |θ a (H)||j| 2H-2p +∞ k=0 (2p + k -1)! (2p + k)!j k ℓ q,r=0 |a q ||a r ||q -r| k+2p ≤ θ a ∞ |j| 2H-2p ℓ q,r=0 |a q ||a r ||q -r| 2p +∞ k=0 1 (k + 1) |q -r| ℓ + 1 k ≤ C(a)|j| 2H-2p (18) 
where

C(a) = θ a ∞ ℓ q,r=0
|a q ||a r ||q -r| 2p (ℓ + 1) ln(ℓ + 1) ℓ < +∞.

When p ≥ 2, the bound (18) ensures that the convergence of the series

i∈Z |ρ a H (i)| is uniform in H ∈ [0, 1] and thus H → ρ a H ℓ 1 (Z) is continuous on [0, 1]
. Proposition 5 proves the following bound is finite for a filter a of order p ≥ 2 satisfying H a :

κ a = 2 sup H∈(0,1) κ a H = 2 sup H∈(0,1) ρ a H ℓ 1 (Z) = 2 sup H∈[0,1] ρ a H ℓ 1 (Z) < +∞. ( 19 
)
As a consequence of this result, this means that the constant κ a can be obtained by optimizing the function H → ρ a H ℓ 1 (Z) on the interval [0, 1]. See Tab. 3 below for the computation of such constants for different typical filters.

For dilated increment-type filters, we manage to compute the exact value of ρ a H ℓ 1 (Z) (see Appendix A for more details)

ρ a H ℓ 1 (Z) = 1 + ℓ-1 k=1 ℓ j=-ℓ α j |j + k| 2H - ℓ j=1 α j j 2H + (-1) p+1 ǫ(2H -1) ℓ k=-ℓ+1 α k S H ℓ+k-1 - ℓ j=1 α j j 2H
, where α j = ℓ q,r=0 q-r=j a q a r , ǫ(2H -1) := sign(2H -1) and where S H k = k j=0 j 2H . For the dilated double increments filter a = {1, -2, 1} m for example, this leads to κ {1,-2,1} = 2 × 8/3 = 16/3 and κ {1,-2,1} 2 = 2 × 2 + 25 log(5)-27 log(3) 8 log( 2 H ℓ 1 for different filters a and for m = 1, . . . , 5. Note that I = [0, 0.5] for p = 1 and I = [0, 1] for p > 1.

Confidence intervals of the Hurst parameter

For any α ∈ (0, 1), denote by q a

•,n (α) := (ϕ •,n ) -1 (α; κ a ) for • = l, r. In order to make easier the presentation, define also

x a l,n-ℓ (α) := 1 - q a l,n-ℓ (α) √ n -ℓ and x a r,n-ℓ (α) := 1 + q a r,n-ℓ (α) √ n -ℓ .
Note that Remark 2 above ensures that for any α ∈ (0, 1) and for all n > ℓ, x a l,n-ℓ (α) > 0. For further reference, observe that for • = l, r and n → +∞:

q a •,n-ℓ (α) ∼ q a (α) := 2κ a log(1/α). ( 20 
)
In the sequel, we restrict ourselves, to filters of order p ≥ 2 which allows us to make no assumption on H. Taking a filter of order p = 1 would have constrained us to assume that H ≤ 1/2.

Scaling parameter C known

In this section, we assume, without loss of generality, that C = 1. Our confidence interval in Proposition 6 below is expressed in terms of the reciprocal function of g n (x) := 2x log(n)log (π a x (0)), x ∈ (0, 1). In order to ensure that g n is indeed invertible, we assume that

n ≥ exp sup x∈(0,1) ℓ q,r=0 a q a r log(|q -r|)|q -r| 2x ℓ q,r=0 a q a r |q -r| 2x . ( 21 
)
In this case, the function g n is a strictly increasing bijection from (0, 1) tolog(π a 0 (0)), +∞ . Moreover recall that a filter of length ℓ + 1 requires a sample size n ≥ ℓ + 1. Obviously, condition (21) only makes sense if the filter a satisfies: sup x∈(0,1) ℓ q,r=0 a q a r log(|q -r|)|q -r| 2x ℓ q,r=0 a q a r |q -r| 2x Since lim x→1 -ℓ q,r=0 a q a r |q -r| 2x = 0 -(we stress that this function vanishes with non-positive values of because it is continuous, negative in x = 0, see (15), and does not vanish), the previous condition is equivalent to the more explicit following one ℓ q,r=0 a q a r log(|q -r|)(qr) 2 ≥ 0.

(

) 22 
Table 4 exhibits the minimal sample size n required to satisfy (21) for different filters a m (for m = 1, . . . , 5) with different order p = 2, 3, 4. Obviously, condition ( 22) is in force for all these filters.

We state now our main result when the scaling parameter is known:

Proposition 6 Let α ∈ (0, 1) be fixed and a be a filter satisfying H a in (16)

1. For n ≥ ℓ + 1, we have:

P log x a l,n-ℓ (α/2) -log (S a n ) ≤ g n (H) ≤ log x a r,n-ℓ (α/2) -log (S a n ) ≥ 1 -α. ( 23 
)
2. Moreover if the filter a satisfies (22) and n ≥ ℓ + 1 satisfies (21), we have:

P H ∈ H inf n (α), H sup n (α) ≥ 1 -α, (24) 
where

H inf n (α) := max 0, g -1 n log x a l,n-ℓ (α/2) -log (S a n ) H sup n (α) := min τ, g -1 n log x a r,n-ℓ (α/2) -log (S a n ) .
3. As n → +∞, the proposed confidence interval in (24) satisfies almost surely

H inf n (α), H sup n (α) → {H}
and the length µ n of the confidence interval satisfies

µ n ∼ 2q a (α/2) √ n 1 g ′ n (H) ∼ q a (α/2) √ n log(n) ,
where q a is defined above in (20).

Remark 3 Proposition 6 generalizes Proposition 1 derived from [START_REF] Breton | Exact confidence intervals for the hurst parameter of a fractional brownian motion[END_REF]. The scaling parameter is still assumed to be known. However, we do not need to know an upper-bound of H and our condition on n is much sharper than the one required in Proposition 1. As an example, for a = (1, -2, 1), condition (21) is satisfied for all n ≥ 3, whereas the minimal sample size allowing to derive a confidence interval from Proposition 1 is 1108 for α = 5% and H ⋆ = 0.8.

Proof: Consider the set

A := -q a l,n-ℓ (α/2) ≤ √ n -ℓV a n ≤ q a r,n-ℓ (α/2) .
The bound (13) entails

P(A) ≥ 1 -α 2 -α 2 = 1 -α. It is now sufficient to notice that A = x a l,n-ℓ (α/2) ≤ 1 + V a n ≤ x a r,n-ℓ (α/2) = x a l,n-ℓ (α/2) ≤ n 2H π a H (0) S a n ≤ x a r,n-ℓ (α/2) = log x a l,n-ℓ (α/2) S a n ≤ g n (H) ≤ log x a r,n-ℓ (α/2) S a n
which proves (23). Next, since under ( 21) and ( 22), g n is an increasing bijection, (24) comes immediately from (23). Finally, from (20), we have log x a l,n-ℓ (α/2) ∼ -q a (α/2) √ n and log x a r,n-ℓ (α/2) ∼ q a (α/2) √ n

as n → +∞. Moreover, since 1 + V a n = n 2H π a H (0) S a n = S a n e gn(H) , using the LLN in (12), we have almost surely

-log (S a n ) = -log (1 + V a n ) + g n (H) = g n (H) -V a n (1 + o(1)) ∼ g n (H).
It is proved in [START_REF] Coeurjolly | Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths[END_REF] (Proposition 1) that V a n converges almost surely towards 0 for any filter and for all H ∈ (0, 1) which implies the almost sure convergence of the confidence interval and the asymptotic behavior of the length µ n of the confidence interval.

Scaling parameter C unknown

The idea to construct confidence intervals when the scaling coefficient C is unknown consists in using the collection of the dilated filters a m defined in ( 14).

Let us first introduce some specific notation: let M ≥ 2 and consider a vector d = (d 1 , . . . , d M ) T with non zero real components such that M i=1 d i = 0 and such that d T L M > 0, where L M = (log(m)) m=1,...,M . Denote by I -and I + the subsets of {1, . . . , M } defined by

I -= {i ∈ {1, . . . , M } : d i < 0} and I + = {i ∈ {1, . . . , M } : d i > 0} .
The following confidence interval is expressed in terms of L Sn := log S a m n m=1,...,M .

Proposition 7 Let α ∈ (0, 1) be fixed and denote by L X inf n and L X sup n the two following vectors with components

L X inf n m =    log x a m l,n-mℓ (α/2M ) if m ∈ I - log x a m r,n-mℓ (α/2M ) if m ∈ I + , L X sup n m =    log x a m r,n-mℓ (α/2M ) if m ∈ I - log x a m l,n-mℓ (α/2M ) if m ∈ I + .
1. Let n ≥ M ℓ + 1. Then we have

P H ∈ H inf n (α), H sup n (α) ≥ 1 -α (25)
where

H inf n (α) = max 0, 1 2d T L M d T L Sn -d T L X inf n H sup n (α) = min 1, 1 2d T L M d T L Sn -d T L X sup n .
2. As n → +∞, the proposed confidence interval in (25) satisfies almost surely

H inf n (α), H sup n (α) → {H}
and its length µ n satisfies

µ n := d T L X inf n -L X sup n 2d T L M ∼ 1 √ n d T q M (α/2M ) d T L M
where q M (α/2M ) is the vector of length M with components defined by

(q M (α/2M )) m := -q a m (α/2M ) if m ∈ I - q a m (α/2M ) if m ∈ I +
with q a m defined in (20).

Remark 4 Proposition 7 generalizes Proposition 6 since this new confidence interval does not assume that the scaling parameter, C is known. More specifically, note that the definition of the interval does not depend on C. Note also, that if B H were not observed on [0, 1) but with a dilatation factor, then the confidence interval would remain unchanged.

Proof: For m = 1, . . . , M , we consider the following event

A m := x a m l,n-mℓ (α/2M ) ≤ 1 + V a m n ≤ x a m r,n-mℓ (α/2M ) .
The bounds (13) entails that

P(A m ) ≥ 1 -α 2M -α 2M = 1 -α M . First, recall that V a m n = n 2H C 2 π a m H (0) S a m n -1 = γ × 1 m 2H S a m n -1 with γ := γ C,H,n = n 2H C 2 π a H (0) 
.

The crucial point in the definition of the confidence interval relies on the fact that γ is independent of m. Second, note that for m = 1, . . . , M :

A m = log x a m l,n-mℓ (α/2M ) ≤ log 1 + V a m n ≤ log x a m r,n-mℓ (α/2M ) = log x a m l,n-mℓ (α/2M ) -log(γ) ≤ log S a m n -2H log(m) ≤ log (x a m r,n-mℓ (α/2M ) -log(γ) = log S a m n -log x a m r,n-mℓ (α/2M ) + log(γ) ≤ 2H log(m) ≤ log S a m n -log (x a m l,n-mℓ (α/2M ) + log(γ) = d m (L Sn ) m -(L X inf n ) m + log(γ) ≤ 2d m H(L M ) m ≤ d m (L Sn ) m -(L X sup n ) m + log(γ)
. Next, we consider the following event

B := d T L Sn -d T L X inf n + d T 1 log(γ) ≤ 2Hd T L M ≤ d T L Sn -d T L X sup n + d T 1 log(γ) = d T L Sn -d T L X inf n ≤ 2Hd T L M ≤ d T L Sn -d T L X sup n = H ∈ H inf n (α), H sup n (α)
where

1 = (1, . . . , 1) T . Since A 1 ∩ A 2 ∩ . . . ∩ A M ⊂ B, setting A c = Ω \ A, we have P(B) ≥ P(A 1 ∩ . . . ∩ A M ) = 1 -P ((A 1 ∩ . . . ∩ A M ) c ) = 1 -P(A c 1 ∪ . . . ∪ A c M ) ≥ 1 - M m=1 P(A c m ) = M m=1 P(A m ) -(M -1) (26) ≥ M 1 - α M -(M -1) = 1 -α,
which ends the proof of (25). Next with the LLN in ( 12), as n → +∞, the following estimate holds almost surely

log S a m n = 2H log(m) -log(γ) + log 1 + V a m n = 2H log(m) -log(γ) + V a m n (1 + o(1)),
and implies that almost surely, when n → +∞,

d T L Sn = 2Hd T L M -d T 1 log(γ) + d T V a m n m=1,...,M (1 + o(1)) = 2Hd T L M + d T V a m n m=1,...,M (1 + o(1)) → 2Hd T L M .
From ( 20), one has also the following estimates as n → +∞:

L X inf n m ∼ 1 √ n × -q a m (α/2M ) if m ∈ I - q a m (α/2M ) if m ∈ I + , L X sup n m ∼ 1 √ n × q a m (α/2M ) if m ∈ I - -q a m (α/2M ) if m ∈ I + .
These different results imply the almost sure convergence of the confidence interval towards {H}. For the asymptotic of the length µ n of the confidence interval, it is sufficient to note that (L X inf -L X sup ) ∼ 1

√ n q M (α/2M ).

Simulations and discussion

5.1 Confidence intervals based on the central limit theorem

Methodology

There exists a very wide litterature on the estimation of the Hurst parameter, see e.g. [START_REF] Coeurjolly | Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study[END_REF] and references therein. For all of the available procedures, the confidence interval comes from a limit theorem so that it is of asymptotic very nature. In contrast, our confidence intervals in ( 24) and ( 25) are non-asymptotic since they are based on concentration inequalities. In order to compare our procedures, we choose to focus only on one of these procedures which has several similarities with this paper. These procedures are based on discrete filtering and are presented in detail in [START_REF] Coeurjolly | Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths[END_REF]. For the sake of self-containess, we first summarize them:

• Scaling parameter C known. The procedure is based on the fact that almost surely

n 2H π a H (0) S a n → 1, n → +∞.
With the same function g n (x) = 2x log(n)log(π a x (0)) as the one used to derive the confidence interval in Proposition 6, this yields the estimator:

H std n (a) := g -1 n (-log(S a n )
). Note that the confidence interval ( 24) is very close to this estimator. In particular, the middle of the interval (24) behaves asymptotically as H std n (a). • Scaling parameter C unknown. The idea of [START_REF] Coeurjolly | Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study[END_REF] in this context is to use the following property of quadratic variations of dilated filters

E[S a m n ] = m 2H γ with γ := C 2 π a H (0) n 2H
and the almost sure convergence of S a m n /E[S a m n ] towards 1 for all m. The idea is then to estimate H via a simple linear regression of L Sn on 2L M for M dilated filters. Here, the notation L Sn and L M are the same as the ones in Proposition 7. This leads to the estimator

H gen n (a, M ) := A T L Sn 2 A 2 , where A = log(m) -1 M M m=1 log(m) m=1,...,M
. There is again an analogy between this estimator and our confidence interval in Proposition 7. Indeed, with d = A, the interval in (25) rewrites max 0,

A T L Sn -L X inf n 2 A 2 , min 1, A T L Sn -L X sup n 2 A 2 , since d T L M = A T A = A 2 .
Again, the middle of this interval behaves asymptotically as H gen n (a, M ). In the particular case M = 2 the estimator H gen n (a, 2) takes the simple following form

H gen n (a, 2) := 1 2 log 2 log S a 2 n S a 1 n
and the bounds of the interval in ( 25) rewrite as

H inf n (α) := max 0, 1 2 log 2 log S a 2 n S a 1 n -log x a 2 r,n-2ℓ (α/4) x a 1 l,n-ℓ (α/4) H sup n (α) := min 1, 1 2 log 2 log S a 2 n S a 1 n -log x a 2 l,n-2ℓ (α/4)
x a 1 r,n-ℓ (α/4) .

Asymptotic confidence intervals

We refer the reader to [START_REF] Coeurjolly | Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths[END_REF] where the following central limit theorems (CLT) are proved for H std n (a) and H gen n (a, M )

√ n log(n) H std n (a) -H σ std ( H std n ) d -→ N (0, 1), n → +∞ ( 27 
)
where d -→ stands for the convergence in distribution, N (0, 1) is the normal standard distribution and σ 2 std (H) := 1 2 ρ a H ℓ 2 (Z) , and

√ n H gen n (a, M ) -H σ std ( H gen n , M ) d -→ N (0, 1), n → +∞ ( 28 
)
where

σ 2 gen (H, M ) := A T GA 4 A 4 where G is the (M ×M )-matrix defined by G m1,m2 = ρ a m 1 ,a m 2 H 2 ℓ 2 (Z)
for m 1 , m 2 = 1, . . . , M , and for all i ∈ Z

ρ a m 1 ,a m 2 H (i) = -1 2 ℓ q,r=0 a a a r |m 1 q -m 2 r + i| 2H π a m 1 H (0)π a m 2 H (0)
.

Note that in the special case where M = 2, the constant σ 2 gen (H, 2) takes the simple form

σ 2 gen (H, 2) = 1 2(log 2) 2 ρ a 1 H 2 ℓ 2 (Z) + ρ a 2 H 2 ℓ 2 (Z) -2 ρ a 1 ,a 2 H 2 ℓ 2 (Z)
.

Thanks to the CLTs, ( 27) and ( 28) an asymptotic confidence interval to the level 1-α, α ∈ (0, 1), can be easily constructed

IC clt • (α) = max 0, H • n -Φ -1 (1 -α/2) × σ • v • n , min 1, H • n + Φ -1 (1 -α/2) × σ • v • n ( 29 
)
where

• = std, gen, v std n = √ n log(n), v gen n = √
n and Φ is the cumulative distribution function of a standard Gaussian random variable.

Comparisons of approaches

In the following tables, we compare, via Monte-Carlo experiments, the confidence intervals based on concentration inequalities (24), (25) and on central limit theorems (29). The fractional Brownian motions have been generated by using the circulant matrix method (e.g. [START_REF] Kent | Estimating the fractal dimension of a locally self-similar gaussian process using increments[END_REF], [START_REF] Coeurjolly | Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study[END_REF]). We have realized a very large simulation study. The "best" results (in terms of choices of the filters a, of the maximum dilatation factor M ) are summarized in Table 5 for the standard fractional Brownian motion (i.e. C = 1) and in Table 6 for the general one (i.e. C unknown).

In Figure 1, we also compare, in terms of H, the asymptotic lengths of the confidence intervals obtained by each approach. with Hurst parameter H = 0.2, 0.5, 0.8 and scaling coefficient C = 1 (assumed to be unknown), for M = 2, 5 and for different values of the sample size. The filters i2 and d4 denote respectively the filter of Increments of order 2 and the Daublets 4. For these simulations the vector d has been fixed to the vector A.

H = 0.2 H = 0.5 H =

Discussion

We propose non-asymptotic confidence intervals for the Hurst parameter of a standard or nonstandard fBm based on concentration inequalities. They are computable in particular for small sample size and several theoretical improvements are obtained:

• When the scaling parameter C is known, we have refined the confidence interval proposed in [START_REF] Breton | Exact confidence intervals for the hurst parameter of a fractional brownian motion[END_REF]: the upper bound H ≤ H ⋆ < 1 is relaxed, the condition on the sample size n is sharper and our new confidence intervals are valid for a large class of filter a.

• As a by-product in our way to optimize the numeric bounds, we have slightly improved the bounds obtained by [START_REF] Nourdin | Density formula and concentration inequalities with malliavin calculus[END_REF] in the general concentration inequality (see Proposition 2).

• The case where C is unknown has never been considered with concentration inequalities before Proposition 7.

• The asymptotic properties are similar to that of confidence intervals based on central limit theorems. More specifically, the length of the confidence intervals derived by concentration inequalities behaves asymptotically as the ones of confidence intervals based on central limit theorems, that is 1/( √ n log(n)) when C is known and 1/ √ n when C is unknown.

The comparison with confidence interval based on CLT is contrasted: while the Monte-Carlo experiments are correct when C is known (in terms of coverage rate and of lengths of the confidence intervals), they are not good when C is unknown: the lengths equal often 1, i.e. the intervals correspond to (0, 1), when the sample size is small and are about five times larger when n is large. In fact, the confidence intervals derived from concentration inequalities are too much "sympathetic": the coverage rate is rather far from 1α (based on 500 replications, it is even often equal to 100%). From a statistical point of view, this is the main reason why the length of the confidence interval is sometimes much larger than the ones based on central limit theorems. From a mathematical point of view, this is due to the fact that, in Proposition 7, the dilatations of a filter are actually handled separately. As a consequence, the errors induced by each dilatation, and controled by the concentration inequalities (3)-(4), add up, see (26). This explains that the proposed confidence interval based on concentration inequalities are less performing in this case while, in comparison, multivariate CLT are used for standard confidence intervals. Improvements would require to use multivariate concentration inequalities, generalizing Proposition 2, which, at the moment, are not available. This is the aim of future research to obtain such improvements.

As a conclusion, this work is the first attempt to define computable confidence intervals for the Hurst parameter H of a standard and a non-standard fractional Brownian motion with another approach than the classical one based on central limit theorems (at the very exception of [START_REF] Breton | Exact confidence intervals for the hurst parameter of a fractional brownian motion[END_REF] where the first non-asymptotic confidence intervals were derived for the standard fBM with a more theoretical motivation). We did not get around the question of the numerical performances via Monte-Carlo experiments. The conclusion is that, based on concentration inequalities, confidence intervals can be proposed for a large class of filters and without assumption on the Hurst parameter. The performances are comparable to the stantard confidence interval based on CLT when the scale parameter C is known, while the procedure is underperforming when C is unknown. This later case requires preliminary theoretical improvements for multivariate Gaussian quadratic forms that motivate our future studies. In this section, we describe how explicit exact bound can be obtained for the correlation of a filtered fBm. Let a be a filter of order p and length ℓ. Its covariance function is given by

π a H (k) = - 1 2 ℓ q,r=0 a q a r |q -r + k| 2H = - 1 2 ℓ j=-ℓ α j |j + k| 2H
where α j = ℓ q,r=0 q-r=j a q a r . Note that

• α j = α -j , in particular π a H (0) = - ℓ j=1 α j j 2H ; • ℓ j=-ℓ α j = ℓ q,r a q a r = 0, • for all h ≤ 2p -1, we have ℓ j=-ℓ j h α j = ℓ j=-ℓ j h q-r=j a q a r = ℓ j=-ℓ q-r=j (q -r) h a q a r = ℓ q,r=0 (q -r) h a q a r = ℓ q,r=0 h k=0 h k q k (-r) h-k a q a r = h k=0 (-1) h-k h k ℓ q=0 q k a q ℓ q=0 r h-k a r = 0. ( 30 
) • j =0 α j = -α 0 = - ℓ q=0 a 2 q < 0, α ℓ = a 0 a ℓ .
A crucial observation is that, at least for |k| large enough, all the π a H (k), and thus all the ρ a (k), have the same sign. Indeed, using (30), we have for |k| ≥ ℓ:

π a H (k) = - 1 2 ℓ j=1 α j |k + j| 2H + |k -j| 2H -2|k| 2H = - |k| 2H 2 ℓ j=1 α j (1 + j/k) 2H + (1 -j/k) 2H -2 = -|k| 2H +∞ i=p   (2H)(2H -1) . . . (2H -2i + 1) (2i)!k 2i   ℓ j=1 α j j 2i     ∼ -|k| 2H-2p (2H)(2H -1) . . . (2H -2p + 1) (2p)!   ℓ j=1 α j j 2p   .
This observation allows to reduce the computation of the ℓ 1 -norm ρ a H ℓ 1 (Z) , which is an infinite sum with modulus, to an infinite sum of correlations but without modulus plus some finite sum (with modulus remaining). Essentially, it remains to compute the sum of correlation without modulus. This is done below. But observe first that if there exists some k(H, a) ∈ N so that the correlations ρ a H (k) have all the same sign for |k| ≥ k(H, a) large enough. The value k(H, a) is not known in general. However for some family of filters (including increment-type filters in and their dilatations (in) m , n, m ≥ 1), k(H, a) is known and explicit computations are tractable: Proposition 8 For a dilated increment-type filter a ∈ {(in) m : n, m ≥ 1}, we have k(H, a) = ℓ, i.e. the following property holds true: for all |j| ≥ ℓ, π a H (j) is of the same sign as (-1) p+1 (2H -1). ( 31)

Proof: Let θ m (f )(x) = f (x + m) -2f (x) + f (x -m). Observe that if f is a convex (resp. concave) function, then θ m (f )(x) ≥ 0 (resp. θ m (f )(x) ≤ 0). For the i1 filter, we have π i1 H (x) = 1 2 θ 1 (|x| 2H ), for the i2 filter, we have π i2 H (x) = -1 2 θ •2 1 (|x| 2H
) and more generally for the m-dilatation of the in filter, we have π

(in) m H (x) = (-1) n+1 2 θ •n m (|x| 2H ).
Observe also that the function |x| 2H and all its iterated derivatives (|x| 2H ) (2p) of even order are convex if H ≥ 1/2, concave if H ≤ 1/2. By an immediate induction on n, we show that the same holds true for all θ •n m (|x| 2H ). In particular for |j| ≥ ℓm, we obtain that π (in) m H (j) is of the same sign as (-1) n+1 (2H -1).

Obviously, the property (31) does not hold true for any filter (consider for instance {1, -4, 5, -2}).

In order to make easier our following explicit computation to derive exact value for ρ a ℓ 1 (Z) , we consider a filter a satisfying (31) but we stress that for each particular filter the same strategy applies with some specific k(H, a). First, for all N ≥ ℓ, we have: where we recall that ǫ(2H -1) = sign(2H -1). First, note that the modulus has been removed in the denominator of (33) according to the following observation:

-2 N j=ℓ π a H (j) = N j=ℓ ℓ k=-ℓ α k |j + k| 2H = ℓ k=-ℓ α k N j=ℓ |j + k| 2H = ℓ k=-ℓ α k N +k j=ℓ+k |j| 2H = α -ℓ S H N -ℓ + ℓ k=-ℓ+1 α k S H N +k -S H ℓ+k-1 = α -ℓ S H N -ℓ + ℓ k=-ℓ+1 α k   S H N -l + N +k j=N -ℓ+1 |j| 2H -S H ℓ+k-1   = ℓ k=-ℓ α k S H N -l +   ℓ k=-ℓ+1 α k N +k j=N -ℓ+1 |j| 2H   - ℓ k=-ℓ+1 α k S H ℓ+k-1 = x N - ℓ k=-ℓ+1 α k S H
ℓ j=1 α j j 2H = 1 2 ℓ j=-ℓ α j j 2H → H→0 1 2 j =0 α j = ℓ j=-ℓ α j -α 0 = -α 0 < 0.
Since we assume moreover π a H (0) = 0, this means that π a H (0) > 0 and that ℓ j=1 α j j 2H = -ℓ j=1 α j j 2H . Next, note that ( 33) is an explicit expression involving only finite sums and can be easily explicitely optimized for H ∈ (0, 1) for every given a satisfying H a . Note that, for p ≥ 2, when H → 1, right-hand side of (33) remains well defined. Observe first that since for any fixed k, lim H→1 S H k = S 1 k = k(k+1)(2k-1)

6

, we have using ( 30 α k (ℓ + k -1)(ℓ + k)(2ℓ + 2k -1) = 0.

24

The same holds true for ℓ j=-ℓ α j |j + k| 2H and ℓ j=1 α j j 2H , but under H a in ( 16), the rule of l'Hospital entails lim H→1 -ρ a H ℓ 1 (Z) exists and is finite. Since obviously, ρ a H ℓ 1 (Z) is a continuous function of H ∈ [0, 1), this ensures the continuity of ρ a H ℓ 1 (Z) on [0, 1] and the constant κ a in our confidence interval is obtained by maximazing the explicit function in (33).

Dilated simple increments (i1) m = {-1, 1} m . In this case, ℓ = m, p = 1, α j = 0 for 1 < j < m and α 0 = 2, α ±m = -1 so that (33) rewrites:

ρ {-1,1} m H ℓ 1 (Z) = 1 + m-1 j=1 |j + m| 2H -2|j| 2H + |j -m| 2H m 2H + S H 2m-1 -2S H m-1 m 2H . ( 34 
)
For instance for m = 1, ρ

{-1,1} H ℓ 1 (Z)
= 2 and for m = 2, ρ

{-1,1} H ℓ 1 (Z) = 2 4 H +9 H -1 4 H
, so that κ i1 = 4 and κ (i1) 2 = 8 (recall that in this case, we optimize for H ∈ (0, 1/2]).

In general, since the right-hand side of ( 34) is a continuous function of H, and since for all k ≥ 1, S

1/2 k = k(k+1) 2 , we have lim H→(1/2) -ρ {-1,1} m H ℓ 1 (Z) = 2m while ρ {-1,1} m 1/2 ℓ 1 (Z)
= m, exhibiting a discontinuity of the ℓ 1 -norm for the dilated i 1 filters.

Dilated double increments (i2) m = {1, -2, 1} m . In this case, ℓ = 2m, p = 2 and α 0 = 6, α ±m = -4, α ±2m = 1, α j = 0, j = 0, ±m, ±2m, so that (33) rewrites:

ρ {1,-2,1} m H ℓ 1 (Z) = 1 + 2m-1 k=1 |k -2m| 2H -4|k -m| 2H + 6|k| 2H -4|k + m| 2H + |k + 2m| 2H m 2H (4 -4 H ) +ǫ(1 -2H) -4S H m-1 + 6S H 2m-1 -4S H 3m-1 + S H 4m-1 m 2H (4 -4 H ) .
In order to obtain explicit values, we focus on the cases m = 1 and m = 2. First, for m = 1, (33) reduces to

ρ i2 H ℓ 1 (Z) = 1 + 10-7×4 H +2×9 H 4-4 H , H ≤ 1/2 2,
H ≥ 1/2 and elementary computations entail:

κ i2 = 2 × lim H→0 + ρ i2 H ℓ 1 (Z) = 2 1 + 5 3 = 16 3 .
Next, for m = 2, since 2π (i2) 2 H

(1) = -2 + 3 × 9 H -25 H ≥ 0 ∀H ∈ (0, 1) 2π (i2) 2 H

(2) = -7 × 4 H + 4 × 16 H -36 H ≤ 0 ∀H ∈ (0, 1) 2π (i2) 2 H

(3) = 3 -6 × 9 H + 4 × 25 H -49 H ≤ 0 ∀H ∈ (0, 1) expression (33) reduces to

ρ (i2) 2 H ℓ 1 (Z) = 1 + -6+10×4 H +12×9 H -7×16 H -8×25 H +2×36 H +2×49 H 4 H (4-4 H ) for H ≤ 1/2 1 + -4+4×4 H +6×9 H -16 H -2×25 H 4 H (4-4 H )
for H ≥ 1/2.

An elementary study of this function, together with the rule of l'Hospital, entails that

κ (i2) 2 = 2× sup H∈[0,1] ρ (i2) 2 H ℓ 1 (Z) = 2× lim H→1- ρ (i2) 2 H ℓ 1 (Z)
= 2 1 + 25 log(5) -27 log(3) 8 log(2) ≃ 7.813554.
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 1 Figure 1: Ratio of asymptotic lengths of confidence intervals of procedures derived by concentration inequalities and central limit theorem when the scaling parameter C is known (top) and unknown (bottom). The confidence level equals 1α = 95%. For the general procedure, the vector d has been fixed to d := L M -L M

  30). We obtain x N = O (N + ℓ) 2H-2 → 0, N → +∞. Actually, expanding (1i/(N + ℓ)) 2H to the (2p -1)-th order in (32), and sinceN i=1 i k is a polynomial in N of degree k + 1, (30) shows that x N = O (N + ℓ) 2H-2p+1 .Finally with the property (31), we have: 2 +∞ j=ℓ |π a H (j)| = (-1) p+1 ǫ((2H -1)
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 2 Computations of τ a m for different filters a and its dilatation a m for m = 1, . . . , 5.

	m

Proposition 5 Let a be a filter of order p ≥ 2 satisfying H a in (16). Then

ρ a H ℓ 1 (Z) is a continuous function of H ∈ [0, 1].

Table 3 :

 3 ) Computation of sup H∈I ρ a m

	≃ 7.813554.
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 4 Minimal sample size n required to satisfy (21) for different dilated filters a m of different orders p.

	< +∞.

Table 5 :

 5 Monte-carlo experiments based on 500 replications of a fractional Brownian motion with Hurst parameter H = 0.2, 0.5, 0.8 and scaling coefficient C = 1 (assumed to be known) and for different values of the sample size n. The filters i2 and d4 denote respectively the filter of Increments of order 2 and the Daublets 4.

	0.8
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 6 Monte-carlo experiments based on 500 replications of a fractional Brownian motion