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Introduction

The Camassa-Holm equation (C-H),

u t -u txx = -3uu x + 2u x u xx + uu xxx , (t, x) ∈ IR 2 , (1) 
can be derived as a model for the propagation of unidirectional shalow water waves over a flat bottom by writing the Green-Naghdi equations in Lie-Poisson Hamiltonian form and then making an asymptotic expansion which keeps the Hamiltonian structure ( [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF], [START_REF] Johnson | Camassa-Holm, Korteweg-de Vries and related models for water waves[END_REF]). Note that the Green-Naghdi equations arise as approximations to the governing equations for shallowwater medium-amplitude regime which captures more nonlinear effects than the classical shallow-water small amplitude KdV regime and thus can accommodate models for breaking waves (cf. [START_REF] Alvarez-Samaniego | Large time existence for 3D water-waves and asymptotics[END_REF], [START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi Equations Arch[END_REF], [START_REF] Constantin | Wave breaking for nonlinear nonlocal shallow water equations[END_REF]). The Camassa-Holm equation was also found independently by Dai [START_REF] Dai | Model equations for nonlinear dispersive waves in compressible Mooney-Rivlin rod[END_REF] as a model for nonlinear waves in cylindrical hyperelastic rods and was, actually, first discovered by the method of recursive operator by Fokas and Fuchsteiner [START_REF] Fokas | Symplectic structures, their Bäcklund transformation and hereditary symmetries[END_REF] as an example of bi-Hamiltonian equation. Let us also mention that it has also a geometric derivation as a re-expression of geodesic flow on the diffeomorphism group on the line (cf. [START_REF] Kolev | Lie groups and mechanics: an introduction[END_REF], [START_REF] Kolev | Poisson brackets in hydrodynamics[END_REF]) and that this framework is instrumental in showing that the Least Action Principle holds for this equation (cf. [START_REF] Constantin | Existence of permanent and breaking waves for a shallow water equations: a geometric approach[END_REF], [START_REF] Constantin | Geodesic flow on the diffeomorphism group of the circle[END_REF]).

(C-H) is completely integrable (see [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF], [START_REF] Camassa | An new integrable shallow water equation[END_REF], [START_REF] Constantin | On the scattering problem for the Camassa-Holm equation[END_REF] and [START_REF] Constantin | Inverse scattering transform for the Camassa-Holm equation[END_REF]). It possesses among others the following invariants

E(v) = IR v 2 (x) + v 2 x (x) dx and F (v) = IR v 3 (x) + v(x)v 2 x (x) dx (2) 
and can be written in Hamiltonian form as

∂ t E ′ (u) = -∂ x F ′ (u) . (3) 
Camassa and Holm [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] exhibited peaked solitary waves solutions to (C-H) that are given by

u(t, x) = ϕ c (x -ct) = cϕ(x -ct) = ce -|x-ct| , c ∈ IR.
They are called peakon whenever c > 0 and antipeakon whenever c < 0. Let us point out here that the feature of the peakons that their profile is smooth, except at the crest where it is continuous but the lateral tangents differ, is similar to that of the waves of greatest height, i.e. traveling waves of largest possible amplitude which are solutions to the governing equations for water waves (cf. [START_REF] Constantin | The trajectories of particles in Stolkes waves[END_REF], [START_REF] Constantin | Particle trajectories in solitary waves[END_REF] and [37]). Note that (C-H) has to be rewriten as

u t + uu x + (1 -∂ 2 x ) -1 ∂ x (u 2 + u 2 x /2) = 0 . (4) 
to give a meaning to these solutions. Their stability seems not to enter the general framework developed for instance in [START_REF] Benjamin | The stability of solitary waves[END_REF], [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]. However, Constantin and Strauss [START_REF] Constantin | Stability of peakons[END_REF] succeeded in proving their orbital stability by a direct approach. In [START_REF] Dika | Stability of multipeakons[END_REF] we combined the general strategy initiated in [START_REF] Martel | Tsai Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF](note that due to the reasons mentioned above, the general method of [START_REF] Martel | Tsai Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] is not directly applicable here ), a monotonicity result proved in [START_REF] Dika | Exponential decay of H 1 -localized solutions and stability of the train of N solitary waves for the Camassa-Holm equation[END_REF] on the part of the energy E(•) at the right of a localized solution traveling to the right and localized versions of the estimates established in [START_REF] Constantin | Stability of peakons[END_REF] to derive the stability of ordered trains of peakons. In this work we pursue this study by proving the stability of ordered trains of anti-peakons and peakons. The main new ingredient is a monotonicity result on the part of the functional E(•)-λF (•), λ ≥ 0, at the right of a localized solution traveling to the right. It is worth noticing that the sign of λ plays a crucial role in our analysis. Before stating the main result let us introduce the function space where we will define the flow of the equation. For I a finite or infinite interval of IR, we denote by Y (I) the function space 1

Y (I) := u ∈ C(I; H 1 (IR)) ∩ L ∞ (I; W 1,1 (IR)), u x ∈ L ∞ (I; BV (IR)) . (5)
In [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF], [START_REF] Danchin | A few remarks on the Camassa-Holm equation[END_REF] and [START_REF] Wahlén | Global existence of weak solutions to the Camassa-Holm equation[END_REF] (see also [START_REF] Molinet | On well-posedness results for Camassa-Holm equation on the line: a survey[END_REF]) the following existence and uniqueness result for this class of initial data is derived.

Theorem 1.1 Let u 0 ∈ H 1 (IR) with m 0 := u 0 -u 0,xx ∈ M(IR) then there exists T = T ( m 0 M ) > 0 and a unique solution u ∈ Y ([-T, T ]) to (C-H)
with initial data u 0 . The functionals E(•) and F (•) are constant along the trajectory and if m 0 is such that 2 supp m - 0 ⊂] -∞, x 0 ] and supp m + 0 ⊂ [x 0 , +∞[ for some x 0 ∈ IR then u exists for all positive times and belongs to

Y ([0, T ]) for all T > 0. Moreover, let {u 0,n } ⊂ H 1 (IR) such that u 0,n → u 0 in H 1 (IR) with {m 0,n := u 0,n -∂ 2 x u 0,n } bounded in M(IR), supp m - 0,n ⊂] -∞, x 0,n ] and supp m + 0,n ⊂ [x 0,n , +∞[ for some sequence {x 0,n } ⊂ IR. Then, for all T > 0, u n -→ u in C([0, T ]; H 1 (IR)) . (6) 
Let us emphasize that the global existence result when the negative part of m 0 lies completely to the left of its positive part is proven in [START_REF] Wahlén | Global existence of weak solutions to the Camassa-Holm equation[END_REF] and that the last assertion of the above theorem is not explicitly contained in this paper. However, following the same arguments as those developed in these works (see for instance Section 5 of [START_REF] Molinet | On well-posedness results for Camassa-Holm equation on the line: a survey[END_REF]), one can prove that there exists a subsequence {u n k } of solutions of (1) that converges in C([0, T ]; H 1 (IR)) to some solution v of (1) belonging to Y ([0, T [). Since u 0,n k converges to u 0 in H 1 , it follows that v(0) = u 0 and thus v = u by uniqueness. This ensures that the whole sequence {u n } converges to u in C([0, T ]; H 1 (IR)) and concludes the proof of the last assertion.

Remark 1.1 It is worth pointing out that recently, in [START_REF] Bressan | Global conservative solutions of the Camassa-Holm equation[END_REF] and [START_REF] Bressan | Global dissipative solutions of the Camassa-Holm equation[END_REF], Bressan and Constantin have constructed global conservative and dissipative solutions of the Camassa-Holm equation for any initial data in H 1 (IR). However, even if for the conservative solutions, E(•) and F (•) are conserved quantities, these solutions are not known to be continuous with values in H 1 (IR). Therefore even one single peakon is not known to be orbitally stable in this class of solutions. For this reason we will work in the class of solutions constructed in Theorem 1.1.

1 W 1,1 (IR) is the space of L 1 (IR) functions with derivatives in L 1 (IR) and BV (IR) is the space of function with bounded variation 2 M(IR) is the space of Radon measures on IR with bounded total variation. For m0 ∈ M(IR) we denote respectively by m - 0 and m + 0 its positive and negative part.

We are now ready to state our main result.

Theorem 1.2 Let be given N non vanishing velocities c 1 < .. < c k < 0 < c k+1 < .. < c N . There exist γ 0 , A > 0, L 0 > 0 and

ε 0 > 0 such that if u ∈ Y ([0, T [), with 0 < T ≤ ∞, is a solution of (C-H) with initial data u 0 satisfying u 0 - N j=1 ϕ c j (• -z 0 j ) H 1 ≤ ε 2 (7) 
for some 0 < ε < ε 0 and z 0 jz 0 j-1 ≥ L, with L > L 0 , then there exist

x 1 (t), .., x N (t) such that sup [0,T [ u(t, •) - N j=1 ϕ c j (• -x j (t)) H 1 ≤ A( √ ε + L -1/8 ) . (8) 
Moreover there exists C 1 -functions x1 , .., xN such that, ∀j ∈ {1, .., N }, 

|x j (t)-x j (t)| = O(1) and d dt xj (t) = c j +O(ε 1/4 )+O(L -1 16 ), ∀t ∈ [0, T [ . (9 
ϕ c j (• -z 0 j ) belongs to the class v ∈ H 1 (IR)with m := v -v xx ∈ M(IR), supp m -⊂ ] -∞,
x 0 ] and supp m + ⊂ [x 0 , +∞[ for some x 0 ∈ IR. Therefore, in view of Theorem 1.1, Theorem 1.2 leads to the orbital stability (for positive times) of such ordered sum of antipeakons and peakons with respect to H 1 -perturbations that keep the initial data in this same class.

As discovered by Camassa and Holm [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF], (C-H) possesses also special solutions called multipeakons given by

u(t, x) = N i=1 p j (t)e -|x-q j (t)| ,
where (p j (t), q j (t)) satisfy the differential system :

qi = N j=1 p j e -|q i -q j | ṗi = N j=1 p i p j sgn(q i -q j )e -|q i -q j | . (10) 
In [START_REF] Beals | Multipeakons and a theorem of Stieltjes[END_REF] (see also [START_REF] Beals | Multi-peakons and the classical moment problem[END_REF] and [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF]), the asymptotic behavior of the multipeakons is studied. In particular, the limits as t tends to +∞ and -∞ of p i (t) and qi (t) are determined. Combining these asymptotics with the preceding theorem and the continuity with respect to initial data stated in Theorem 1.1 we get the following result on the stability for positive times of the variety

N N,k of H 1 (IR) defined for N ≥ 1 and 0 ≤ k ≤ N by N N,k := v = N i=1 p j e -|•-q j | , (p 1 , .., p N ) ∈ (IR * -) k ×(IR * + ) N -k , q 1 < q 2 < .. < q N .
Corollary 1.1 Let be given k negative real numbers p 0 1 , .., p 0 k , Nk positive real numbers p 0 k+1 , .., p 0 N and N real numbers q 0 1 < .. < q 0 N . For any B > 0 and any γ > 0 there exists α > 0 such that if

u 0 ∈ H 1 (IR) is such that m 0 := u 0 -u 0,xx ∈ M(IR) with supp m - 0 ⊂] -∞,
x 0 ] and supp m + 0 ⊂ [x 0 , +∞[ for some x 0 ∈ IR, and satisfies

m 0 M ≤ B and u 0 - N j=1 p 0 j exp(• -q 0 j ) H 1 ≤ α (11) then ∀t ∈ IR + , inf P ∈IR k -×IR N-k + ,Q∈IR N u(t, •) - N j=1 p j exp(• -q j ) H 1 ≤ γ . ( 12 
)
Moreover, there exists T > 0 such that

∀t ≥ T, inf Q∈G u(t, •) - N j=1 λ j exp(• -q j ) H 1 ≤ γ ( 13 
)
where G := {Q ∈ IR N , q 1 < q 2 < .. < q N } and λ 1 < .. < λ N are the eigenvalues of the matrix p 0 j e -|q 0

i -q 0 j |/2 1≤i,j≤N . Remark 1.4 Again, note that for (p 0 1 , .., p 0 N ) ∈ (IR * -) k ×(IR * + ) N -k and q 0 1 < .. < q 0 N , N j=1 p 0 j exp(• -q 0 j ) belongs to the class v ∈ H 1 (IR)with m := v -v xx ∈ M(IR), supp m -⊂ ] -∞, x 0 ] and supp m + ⊂ [x 0 , +∞[ for some x 0 ∈ IR. Corollary 1.
1 thus ensures that the variety N N,k is stable with respect to H 1 -perturbations that keeps the initial data in this same class.

This paper is organized as follows. In the next section we sketch the main points of the proof of Theorem 1.2 whereas the complete proof is given in Section 3. After having controlled the distance between the different bumps of the solution we establish the new monotonicity result and state local versions of estimates involved in the stability of a single peakon. Finally, the proof of Theorem 1.2 is completed in Subsection 3.4.

Sketch of the proof

Our proof as in [START_REF] Martel | Tsai Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] combined the stability of a single peakon and a monotonicity result for functionals related to the conservation laws. Recall that the stability proof of Constantin and Strauss (cf. [START_REF] Constantin | Stability of peakons[END_REF]) is principally based on the following lemma of [START_REF] Constantin | Stability of peakons[END_REF].

Lemma 2.1 For any u ∈ H 1 (IR), c ∈ IR and ξ ∈ IR, E(u) -E(ϕ c ) = u -ϕ c (• -ξ) 2 H 1 + 4c(u(ξ) -c). ( 14 
)
For any u ∈ H 1 (IR), let M = max x∈IR {u(x)}, then M E(u) -F (u) ≥ 2 3 M 3 . (15) 
Indeed, with this lemma at hand, let

u ∈ C([0, T [; H 1 (IR)) be a solution of (1) with u(0) -ϕ c H 1 ε 2 and let ξ(t) ∈ IR be such that u(t, ξ(t)) = max IR u(t, •). Assuming that u(t) is sufficiently H 1 -close to {r ∈ IR, ϕ(•-r)}, setting δ = c -u(t, ξ(t)), and using that E(u(t)) = E(u 0 ) = 2c 2 + O(ε 2 ) and F (u(t)) = F (u 0 ) = 4 3 c 3 + O(ε 2 ), ( 15 
) leads to δ 2 (c -δ/3) ≤ O(ε 2 )) =⇒ δ ε
and then [START_REF] Constantin | Particle trajectories in solitary waves[END_REF] yields

u(t) -ϕ c (• -ξ(t)) H 1 √ ε . (16) 
This proves the stability result. At this point, a crucial remark is that, instead of using the conservation of E and F , we can only use that, for any fixed λ ≥ 0, E(•)-λF (•) is non increasing. Indeed, for M = max x∈IR {u(t, x)} = u(t, ξ(t)) and λ = 1/M , ( 15) then implies

M E(u 0 ) -F (u 0 ) ≥ 2 3 M 3
and, for λ = 0, ( 14) implies

E(u 0 ) -E(ϕ c ) ≥ u -ϕ c (• -ξ(t)) 2 H 1 + 4c(u(ξ(t)) -c).
This leads to (16) exactly as above. Now, in [START_REF] Dika | Stability of multipeakons[END_REF] it is established that ( 14) and ( 15) almost still hold if one replaces E(•) and F (•) by their localized version, E j (•) and F j (•), around the jth bump. Therefore to prove our result it will somehow suffices to prove that the functionals E j (•) + λF j (•) are almost decreasing. One of the very important discovering of the works of Martel-Merle is that for one dimensional dispersive equations with a linear group that travels to the left, the part of the energy at the right of a localized solution traveling to the right is almost decreasing. In [START_REF] Martel | Tsai Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] it is noticed that this holds also for the part of the energy at the right of each bump for solutions that are close to the sum of solitary waves traveling to the right. In this paper we will use that, for a fixed λ ≥ 0 and j ≥ k + 1, if we call by I j = N q=j (E q -λF q ) the part of the functionals E(•) -λF (•) that is at the right of the (j-1)th bumps, then I j (•) is almost decreasing in time. Since I N = E N -λF N , we infer from above that the N th bump of the solution stays H 1 -close to a translation of ϕ c N . Then, since I N -1 = E N -1 -λF N -1 +I N and I N -1 is almost decreasing, we obtain that E N -1 -λF N -1 is also almost decreasing which leads to the stability result for the (N -1)th bump. Iterating this process until j = k +1, we obtain that each bump moving to the right remains close to the orbit of the suitable peakon. Finally, since (C-H) is invariant by the change of unknown u(t, x) → -u(t, -x), this also ensures that each bump moving to the left remains close to the orbit of the suitable antipeakon. This leads to the desired result since the total energy is conserved.

Actually we will not proceed exactly that way since by using such iterative process one loses some power of ε at each step. More precisely this iterative scheme would prove Theorem 1.2 but with ε β with β = 4 1/2-max(q,N -q) instead of ε 1/2 in (8). To derive the desired power of ε we will rather sum all the contributions of bumps that are traveling in the same direction and use Abel's summation argument to get the stability of all these bumps in the same time.

Stability of multipeakons

For α > 0 and L > 0 we define the following neighborhood of all the sums of N antipeakons and peakons of speed c 1 , .., c N with spatial shifts x j that satisfied

x j -x j-1 ≥ L. U (α, L) = u ∈ H 1 (IR), inf x j -x j-1 >L u - N j=1 ϕ c j (• -x j ) H 1 < α . ( 17 
)
By the continuity of the map t → u(t) from [0, T [ into H 1 (IR), to prove the first part of Theorem 1.2 it suffices to prove that there exist A > 0, ε 0 > 0 and L 0 > 0 such that ∀L > L 0 and 0 < ε < ε 0 , if u 0 satisfies [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] and if for some 0 < t 0 < T ,

u(t) ∈ U A( √ ε + L -1/8 ), L/2 for all t ∈ [0, t 0 ] (18) 
then

u(t 0 ) ∈ U A 2 ( √ ε + L -1/8 ), 2L 3 . ( 19 
)
Therefore, in the sequel of this section we will assume [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF] for some 0 < ε < ε 0 and L > L 0 , with A, ε 0 and L 0 to be specified later, and we will prove [START_REF] Constantin | Orbital stability of solitary waves for a shallow water equation[END_REF].

Control of the distance between the peakons

In this subsection we want to prove that the different bumps of u that are individualy close to a peakon or an antipeakon get away from each others as time is increasing. This is crucial in our analysis since we do not know how to manage strong interactions. The following lemma is principally proven in [START_REF] Dika | Stability of multipeakons[END_REF].

Lemma 3.1 Let u 0 satisfying [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF]. There exist α 0 > 0, L 0 > 0 and C 0 > 0 such that for all 0 < α < α 0 and 0 < L 0 < L if u ∈ U (α, L/2) on [0, t 0 ] for some 0 < t 0 < T then there exist C 1 -functions x1 , .., xN defined on [0, t 0 ] such that ∀t ∈ [0, t 0 ],

d dt xi (t) = c i + O( √ α) + O(L -1 ), i = 1, .., N , (20) 
u(t) - N i=1 ϕ c i (• -xi (t)) H 1 = O( √ α) , (21) xi 
(t) -xi-1 (t) ≥ 3L/4 + (c i -c i-1 )t/2, i = 2, .., N. (22) 
Moreover, for i = 1, .., N , it holds

|x i (t) -xi (t)| = O(1), (23) 
where

x i (t) ∈ [x i (t) -L/4, xi (t) + L/4] is any point such that |u(t, x i (t))| = max [x i (t)-L/4,x i (t)+L/4] |u(t)|. (24) 
Proof. We only sketch the proof and refer to [START_REF] Dika | Stability of multipeakons[END_REF] for details. The strategy is to use a modulation argument to construct N C 1 -functions t → xi (t), i = 1, .., N on [0, t 0 ] satisfying the following orthogonality conditions :

IR u(t, •) - N j=1 ϕ c j (• -xj (t)) ∂ x ϕ c i (• -xi (t)) dx = 0 . (25) 
Moreover, setting

R Z (•) = N i=1 ϕ c i (• -z i ) (26) 
for any Z = (z 1 , .., z N ) ∈ IR N , one can check that

u(t) -R X(t) H 1 C 0 √ α , ∀t ∈ [0, t 0 ] . (27) 
To prove that the speed of xi stays close to c i , we set

R j (t) = ϕ c j (• -xj (t)) and v(t) = u(t) - N i=1 R j (t) = u(t, •) -R X(t) .
and differentiate [START_REF] Dika | Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony[END_REF] with respect to time to get

IR v t ∂ x R i = ẋi ∂ 2 x R i , v H -1 ,H 1 ,
and thus

IR v t ∂ x R i ≤ | ẋi |O( v H 1 ) ≤ | ẋi -c i |O( v H 1 ) + O( v H 1 ) . (28) 
Substituting u by v + N j=1 R j in (4) and using that R j satisfies

∂ t R j + ( ẋj -c j )∂ x R j + R j ∂ x R j + (1 -∂ 2 x ) -1 ∂ x [R 2 j + (∂ x R j ) 2 /2] = 0 ,
we infer that v satisfies on [0, t 0 ],

v t - N j=1 ( ẋj -c j )∂ x R j = - 1 2 ∂ x (v + N j=1 R j ) 2 - N j=1 R 2 j -(1 -∂ 2 x ) -1 ∂ x (v + N j=1 R j ) 2 - N j=1 R 2 j + 1 2 (v x + N j=1 ∂ x R j ) 2 - 1 2 N j=1 (∂ x R j ) 2 .
Taking the L 2 -scalar product with ∂ x R i , integrating by parts, using the decay of R j and its first derivative, ( 27) and ( 28), we find

| ẋi -c i | ∂ x R i 2 L 2 + O( √ α) ≤ O( √ α) + O(e -L/8 ) . (29) 
Taking α 0 small enough and L 0 large enough we get | ẋic i | ≤ (c ic i-1 )/4 and thus, for all 0 < α < α 0 and L ≥ L 0 > 3C 0 ε, it follows from ( 7), ( 27) and ( 29) that

xj (t) -xj-1 (t) > L -C 0 ε + (c j -c j-1 )t/2, ∀t ∈ [0, t 0 ] . (30) 
which yields [START_REF] Dai | Model equations for nonlinear dispersive waves in compressible Mooney-Rivlin rod[END_REF]. Finally from [START_REF] Dika | Exponential decay of H 1 -localized solutions and stability of the train of N solitary waves for the Camassa-Holm equation[END_REF] and the continuous embedding of

H 1 (IR) into L ∞ (IR), we infer that u(t, x) = R X(t) (x) + O( √ α), ∀x ∈ IR .
Applying this formula with x = xi and taking advantage of ( 22), we obtain

|u(t, xi )| = |c i | + O( √ α) + O(e -L/4 ) ≥ 3|c i |/4 .
On the other hand, for

x ∈ [x i (t) -L/4, xi (t) + L/4]\]x i (t) -2, xi (t) + 2[, we get |u(t, x)| ≤ |c i |e -2 + O( √ α) + O(e -L/4 ) ≤ |c i |/2 .
This ensures that x i belongs to [x i -2, xi + 2].

Monotonicity property

Thanks to the preceding lemma, for ε 0 > 0 small enough and L 0 > 0 large enough, one can construct C 1 -functions x1 , .., xN defined on [0, t 0 ] such that (20)-( 23) are satisfied. In this subsection we state the almost monotonicity of functionals that are very close to the E(•) -λF (•) at the right of the ith bump, i = k, .., N -1 of u. The proof follows the same lines as in Lemma 4.2 in [START_REF] Dika | Exponential decay of H 1 -localized solutions and stability of the train of N solitary waves for the Camassa-Holm equation[END_REF] but is more delicate since we have also to deal with the functional F . Moreover, F generates a term ( J 4 in ( 41)) that we are not able to estimate in a suitable way but which fortunately is of the good sign.

Let Ψ be a

C ∞ function such that 0 < Ψ ≤ 1, Ψ ′ > 0 on IR, |Ψ ′′′ | ≤ 10|Ψ ′ | on [-1, 1], Ψ(x) = e -|x| x < -1 1 -e -|x| x > 1 . ( 31 
)
Setting Ψ K = Ψ(•/K), we introduce for j ∈ {q, .., N } and λ ≥ 0,

I j,λ (t) = I j,λ,K (t, u(t)) = IR (u 2 (t) + u 2 x (t)) -λ(u 3 (t) + uu 2 x (t)) Ψ j,K (t) dx ,
where Ψ j,K (t, x) = Ψ K (xy j (t)) with y j (t), j = k + 1, .., N , defined by

y k+1 (t) = xk+1 (0) + c k+1 t/2 -L/4
and

y i (t) = xi-1 (t) + xi (t) 2 , i = k + 2, .., N. (32) 
Finally, we set

σ 0 = 1 4 min c k+1 , c k+2 -c k+1 , .., c N -c N -1 . ( 33 
)
Proposition 3.1 Let u ∈ Y ([0, T [) be a solution of (C-H) satisfying ( 21) on [0, t 0 ]. There exist α 0 > 0 and L 0 > 0 only depending on c k+1 and c N such that if 0 < α < α 0 and L ≥ L 0 then for any 4 ≤ K L 1/2 and 0 ≤ λ ≤ 2/c k+1 ,

I j,λ,K (t) -I j,λ,K (0) ≤ O(e -σ 0 L 8K ), ∀j ∈ {k + 1, .., N }, ∀t ∈ [0, t 0 ] . ( 34 
)
Proof. Let us assume that u is smooth since the case u ∈ Y ([0, T [) follows by modifying slightly the arguments (see Remark 3.2 of [START_REF] Dika | Stability of N solitary waves for the generalized BBM equations[END_REF]).

Lemma 3.2

d dt IR (u 2 + u 2 x )g dx = IR (u 3 + 4uu 2 x )g ′ dx - IR u 3 g ′′′ dx -2 IR uhg ′ dx. ( 35 
)
and

d dt IR (u 3 + uu 2 x )g dx = IR (u 4 /4 + u 2 u 2 x )g ′ dx + IR u 2 hg ′ dx + IR (h 2 -h 2 x )g ′ dx. ( 36 
)
where

h := (1 -∂ 2 x ) -1 (u 2 + u 2 x /2).
Proof. Since ( 35) is proven in [START_REF] Dika | Stability of multipeakons[END_REF] we concentrate on the proof of [START_REF] Wahlén | Global existence of weak solutions to the Camassa-Holm equation[END_REF].

d dt IR (u 3 + uu 2 x )g = 3 IR u t u 2 g + 2 IR u tx u x ug + IR u t u 2 x g = 2 IR u t (u 2 + u 2 x /2)g + IR u t u 2 g - IR u txx u 2 g - IR u tx u 2 g ′ = 2 IR u t (u 2 + u 2 x /2)g + IR (u t -u txx )u 2 g - IR u tx u 2 g ′ = I 1 + I 2 + I 3 . ( 37 
)
Setting

h := (1 -∂ 2 x ) -1 (u 2 + u 2
x /2) and using the equation we get

I 1 = -2 IR uu x (u 2 + u 2 x /2)g -2 IR gh x (1 -∂ 2 x )h = -2 IR u 3 u x g - IR uu 3 x g -2 IR hh x g + 2 IR h x h xx g = 1 2 IR u 4 g ′ - IR uu 3 x g + IR (h 2 -h 2 x )g ′ . ( 38 
)
In the same way,

I 2 = -3 IR u 3 u x g - 1 2 IR ∂ x (u 2 x )u 2 g + 1 2 IR ∂ 3 x (u 2 )u 2 g = 3 4 IR u 4 g ′ - 1 2 IR ∂ x (u 2 x )u 2 g - 1 2 IR ∂ 2 x (u 2 )∂ x (u 2 )g - 1 2 IR ∂ 2 x (u 2 )u 2 g ′ = 3 4 IR u 4 g ′ + IR uu 3 x g + 1 2 IR u 2 x u 2 g ′ + 1 4 IR [∂ x (u 2 )] 2 g ′ + IR ∂ x (u 2 )uu x g ′ + 1 2 IR ∂ x (u 2 )u 2 g ′′ = 3 4 IR u 4 g ′ + IR uu 3 x g + 1 2 IR u 2 x u 2 g ′ + IR u 2 u 2 x g ′ + 2 IR u 2 x u 2 g ′ + IR u 3 u x g ′′ = 3 4 IR u 4 g ′ - 1 4 IR u 4 g ′′′ + 7 2 IR u 2 x u 2 g ′ + IR uu 3 x g . (39) 
At this stage it is worth noticing that the terms IR uu 3 x g cancels with the one in I 1 . Finally,

I 3 = IR ∂ x (uu x )u 2 g ′ + IR g ′ u 2 ∂ 2 x h = -2 IR u 2 u 2 x g ′ - IR u 3 u x g ′′ - IR u 2 (u 2 + u 2 x /2)g ′ + IR u 2 hg ′ = -2 IR u 2 u 2 x g ′ + 1 4 IR u 4 g ′′′ - IR u 4 g ′ - 1 2 IR u 2 u 2 x g ′ + IR u 2 hg ′ = - 5 2 IR u 2 u 2 x g ′ + 1 4 IR u 4 g ′′′ - IR u 4 g ′ + IR u 2 hg ′ (40) 
where we used that

∂ 2 x (I -∂ 2 x ) -1 = -I + (I -∂ 2 x ) -1 . Gathering (37)-(40), (36) follows. 
Applying ( 35)-( 36) with g = Ψ j,K , j ≥ k + 1, one gets

d dt I j,λ,K := d dt IR Ψ j,K [(u 2 + u 2 x ) -λ(u 3 + uu 2 x )] dx = -ẏj IR Ψ ′ j,K (u 2 + u 2 x ) + IR Ψ ′ j,K [(u 3 + 4uu 2 x ) -λ ẏj (u 3 + uu 2 x ) -(u 4 /4 + u 2 u 2 x ) dx - IR Ψ ′′′ j,K u 3 dx - IR Ψ ′ j,K (2u + λu 2 )h dx -λ IR Ψ ′ j,K (h 2 -h 2 x ) dx = -ẏj IR Ψ ′ j,K (u 2 + u 2 x ) + J 1 + J 2 + J 3 + J 4 ≤ - c k+1 2 IR Ψ ′ j,K (u 2 + u 2 x ) + J 1 + J 2 + J 3 + J 4 . (41) 
We claim that J 4 ≤ 0 and that for i ∈ {1, 2, 3}, it holds

J i ≤ c k+1 8 IR Ψ ′ j,K (u 2 + u 2 x ) + C K e -1 K (σ 0 t+L/8) . (42) 
To handle with J 1 we divide IR into two regions D j and D c j with

D j = [x j-1 (t) + L/4, xj (t) -L/4] First since from (22), for x ∈ D c j , |x -y j (t)| ≥ xj (t) -xj-1 (t) 2 -L/4 ≥ c j -c j-1 2 t + L/8 ,
we infer from the definition of Ψ in Section 3.2 that

D c j Ψ ′ j,K [(u 3 + 4uu 2 x ) -λ ẏj (u 3 + uu 2 x ) -(u 4 /4 + u 2 u 2 x ) dx ≤ C K (1 + 2λc N )( u 0 3 H 1 + u 0 4 H 1 )e -1 K (σ 0 t+L/8) .
On the other hand, on D j we notice, according to [START_REF] Constantin | Stability of the Camassa-Holm solitons[END_REF], that

u(t) L ∞ D j ≤ N i=1 ϕ c i (• -xi (t)) L ∞ (D j ) + u - N i=1 ϕ c i (• -xi (t)) L ∞ (D j ) ≤ C e -L/8 + O( √ α) . (43) 
Therefore, for α small enough and L large enough it holds

J 1 ≤ c k+1 8 IR Ψ ′ j,K (u 2 + u 2 x ) + C K e -1 K (σ 0 t+L/8) .
Since J 2 can be handled in exactly the same way, it remains to treat J 3 . For this, we first notice as above that

- D c j (2u + λu 2 )Ψ ′ j,K (1 -∂ 2 x ) -1 (u 2 + u 2 x /2) ≤ (2 + λ u ∞ ) u ∞ sup x∈D c j |Ψ ′ j,K (x -y j (t))| IR e -|x| * (u 2 + u 2 x /2) dx ≤ C K u 0 3 H 1 e -1 K (σ 0 t+L/8) , (44) 
since ∀f ∈ L 1 (IR), (1 -∂ 2 x ) -1 f = 1 2 e -|x| * f . (45) 
Now in the region D j , noticing that Ψ ′ j,K and u 2 + u 2 x /2 are non-negative, we get

- D j (2 + λu)uΨ ′ j,K (1 -∂ 2 x ) -1 (u 2 + u 2 x /2) ≤ (2 + λ u(t) L ∞ (D j ) ) u(t) L ∞ (D j ) D j Ψ ′ j,K ((1 -∂ 2 x ) -1 (2u 2 + u 2 x ) ≤ (2 + λ u(t) L ∞ (D j ) ) u(t) L ∞ (D j ) IR (2u 2 + u 2 x )(1 -∂ 2 x ) -1 Ψ ′ j,K . (46) 
On the other hand, from the definition of Ψ in Section 3.2 and (45) we infer that for K ≥ 4,

(1 -∂ 2 x )Ψ ′ j,K ≥ (1 - 10 K 2 )Ψ ′ j,K ⇒ (1 -∂ 2 x ) -1 Ψ ′ j,K ≤ (1 - 10 K 2 ) -1 Ψ ′ j,K .
Therefore, taking K ≥ 4 and using (43) we deduce for α small enough and L large enough that

- D j (2u + λu 2 )Ψ ′ K (1 -∂ 2 x ) -1 (u 2 + u 2 x /2) ≤ c q 8 IR (u 2 + u 2 x /2)Ψ ′ K . (47) 
This completes the proof of (42). It remains to prove that J 4 is non positive.

Recall that h = (I -∂ 2 x ) -1 v with v := u 2 + u 2 x /2 ≥ 0. Therefore, following [START_REF] Constantin | Global existence and blow-up for a shallow water equation[END_REF], it holds e -y v(y) dy which clearly ensures that h 2 ≥ h 2 x . Since Ψ ′ j,K ≥ 0 and λ ≥ 0, this leads to the non positivity of 41) and (42) we infer that

h(x) = 1 2 e -|•| * v(•) = 1 2 e -x
J 4 = -λ IR Ψ ′ j,K (h 2 -h 2 x ) dx. Gathering (
d dt IR Ψ j,K [u 2 +u 2 x -λ(u 3 +uu 2 x )] dx ≤ - c 1 8 IR Ψ ′ j,K (u 2 +u 2 x )+ C K (1+ u 0 4 H 1 ) e -1 K (σ 0 t+L/8) .
Integrating this inequality between 0 and t, (34) follows.

Localized estimates

We define the function Φ i = Φ i (t, x), i = k + 1, .., N , by Φ N = Ψ N,K = Ψ K (•y N (t)) and for i = k + 1, .., N -1

Φ i = Ψ i,K -Ψ i+1,K = Ψ K (• -y i (t)) -Ψ K (• -y i+1 (t)) , (48) 
where Ψ i,K and the y i 's are defined in Section 3.2. It is easy to check that the Φ i 's are positive functions and that N i=k+1

Φ i ≡ Ψ k+1,K . We will take L/K > 4 so that [START_REF] Johnson | Camassa-Holm, Korteweg-de Vries and related models for water waves[END_REF] ensures that Φ i satisfies for i ∈ {k + 1, .., N },

|1 -Φ i | ≤ 2e -L 8K on ]y i + L/8, y i+1 -L/8[ (49) 
and

|Φ i | ≤ 2e -L 8K on ]y i -L/8, y i+1 + L/8[ c , (50) 
where we set y N +1 := +∞. It is worth noticing that, somehow, Φ i (t) takes care of only the ith bump of u(t). We will use the following localized version of E and F defined for i ∈ {k + 1, .., N }, by

E t i (u) = IR Φ i (t)(u 2 + u 2 x ) and F t i (u) = IR Φ i (t)(u 3 + uu 2 x ) . (51) 
Please note that henceforth we take K = L 1/2 /8.

The following lemma gives a localized version of [START_REF] Constantin | Inverse scattering transform for the Camassa-Holm equation[END_REF]. Note that the functionals E i and F i do not depend on time in the statement below since we fix y k+1 < .. < y N +1 = +∞.

Lemma 3.3 Let be given u ∈ H 1 (IR) with u H 1 = u 0 H 1 and Nk real numbers y k+1 < .. < y N with y iy i-1 ≥ 2L/3. For i = k + 1, .., N , set J i :=]y i -L/4, y i+1 + L/4[ with y N +1 = +∞, and assume that there exist

x i ∈]y i +L/4, y i+1 -L/4[ such that u(x i ) = max J i u := M i > 0. Then, defining
the functional E i 's and F i 's as in (48)-(51), it holds

F i (u) M i E i (u) - 2 3 M 3 i + u 0 3 H 1 O(L -1/2 ), i ∈ {k + 1, .., N } . ( 52 
)
and for any x 1 < .. < x k with x k < y k+1 -L/4, setting X := (x 1 , .., x N ) ∈ IR N , it holds

E i (u)-E(ϕ c i ) = E i (u-R X )+4c i (M i -c i )+ u 0 2 H 1 O(L -1/2 ), i ∈ {k+1, .., N }, (53 
) where R X is defined in [START_REF] Dika | Stability of N solitary waves for the generalized BBM equations[END_REF].

Proof. Let i ∈ {k + 1, .., N } be fixed. Following [START_REF] Constantin | Stability of peakons[END_REF], we introduce the function g defined by

g(x) = u(x) -u x (x) for x < x i u(x) + u x (x) for x > x i .
Integrating by parts we compute

ug 2 Φ i = x i -∞ (u 3 + uu 2 x -2u 2 u x )Φ i + +∞ x i (u 3 + uu 2 x + 2u 2 u x )Φ i = F i (u) - 4 3 u(x i ) 3 Φ i (x i ) + 2 3 x i -∞ u 3 Φ ′ i - 2 3 +∞ x i u 3 Φ ′ i . ( 54 
)
Recall that we take K = √ L/8 and thus

|Φ ′ | ≤ C/K = O(L -1/2 ). Moreover, since x i ∈]y i + L/4, y i+1 -L/4[, it follows from (49) that Φ i (x i ) = 1 + O(e -L 1/2 ) and thus ug 2 Φ i = F i (u) - 4 3 M 3 i + u 3 H 1 O(L -1/2 ) . (55) 
On the other hand, with (50) at hand,

ug 2 Φ i ≤ M i J i g 2 Φ i + J c i |u|g 2 Φ i ≤ M i +∞ -∞ g 2 Φ i + u L ∞ (IR) J c i g 2 Φ i ≤ M i E i (u) -2 x i -∞ uu x Φ i + 2 +∞ x i uu x Φ i + u 3 H 1 sup x∈J c i |Φ i (x)| ≤ M i E i (u) -2M 3 i + u 3 H 1 O(L -1/2 ) . (56) 
This proves (52). To prove (53), we use the relation between ϕ an its derivative and integrate by parts, to get

E i (u -R X ) = E i (u) + E i (R X ) -2 Φ i u ϕ c i (• -x i ) + u x ∂ x ϕ c i (• -x i ) = E i (u) + E i (R X ) -2 Φ i u ϕ c i (• -x i ) +2 +∞ x i Φ i u x ϕ c i (• -x i ) -2 x i -∞ Φ i u x ϕ c i (• -x i ) = E i (u) + E i (R X ) -2 Φ i u ϕ c i (• -x i ) + 2 Φ ′ i u ϕ c i (• -x i ) +2 +∞ z i Φ i u x ϕ c i (• -x i ) -2 z i -∞ Φ i u x ϕ c i (• -x i ) = E i (u) + E i (R X ) -4c i u(x i )Φ i (x i ) + 2 Φ ′ i u ϕ c i (• -x i ) -2 +∞ x i Φ ′ i u ϕ c i (• -x i ) + 2 x i -∞ Φ ′ i u ϕ c i (• -x i ) .
From ( 49)-(50), it is easy to check that E i (R X ) = E(ϕ c i )+O(e - √ L/8 ). Since

C/K = O(L -1/2 ) and, in view of (49), Φ i (x i ) = 1 + O(e -L 1/2 ), it follows that

E i (u) + E i (ϕ c i ) = E i (u -R X ) + 4c i M i + u 2 H 1 O(L -1/2 ) .
This yields the result by using that E(ϕ c i ) = 2c 2 i .

3.4 End of the proof of Theorem 1.2 Proof.

First it is worth noticing that according to Lemma 3.1, u(t 0 ), (y k+1 (t 0 ), .., y N +1 ), constructed in [START_REF] Kolev | Lie groups and mechanics: an introduction[END_REF], and X(t 0 ) = (x 1 (t 0 ), .., x N (t 0 )), constructed in [START_REF] Dika | Smoothing effect of the generalized BBM equation for localized solutions moving to the right[END_REF], satisfy the hypotheses of Lemma 3. Since E(u(t 0 )) = E(u 0 ) we deduce that 

Proposition 3 . 2

 32 There exists constants C, C ′ > 0 independent of A such thatI k+1,0 t 0 , u(t 0 ) -R X(t 0 ) = 0 ) -R X(t 0 ) ≤ C(ε + L -1/4 ) (57)andI k+1,0 (t 0 ) = c i ) + O(ε + L -1/4 ) . (58)with |O(x)| ≤ C ′ x, ∀x ∈ IR * + .

  [START_REF] Beals | Multipeakons and a theorem of Stieltjes[END_REF]. Indeed, by construction for i ∈ {k + 1, .., N },x i ∈ [x i (t 0 ) -L/4, xi (t 0 ) + L/4, ] ⊂]y i (t 0 ) + L/4, y i+1 (t 0 ) -L/4[ and it is easy to check that |u(t 0 )| ≤ O(e - √ L ) + O(α) < 3c i /4 ≤ |u(x i )| on ]y i (t 0 ) -L/4, y i+1 (t 0 ) + L/4[\[x i (t 0 ) -L/4, xi (t 0 ) + L/4] so that 0 < u(t 0 , x i (t 0 )) = max ]y i (t 0 )-L/4,y i+1 (t 0 )+L/4[ u(t 0 ) .Using (59) and the almost monotonicity of t → I k+1,0 (t), we infer thatN i=k+1 E t 0 i u(t 0 ) -R X(t 0 ) ≤ I k+1,0 (0) -N i=k+1 E(ϕ c i ) + O(ε + L -1/4 )and (61)-(62) then yield (57). Finally, with (57) at hand, (58) follows directly from (62)-(63). Now, it is crucial to note that (C-H) is invariant by the change of unknown u(t, x) → -u(t, -x). Therefore setting, for any v ∈ H 1 (IR),Ĩk,0 (t, v) := IR Ψ(y k (t)x)[v 2 (x) + v 2 x (x)] dx , with y k (t) = xk (0) + c k t/2 + L/4 , we infer from Proposition 3.2 that Ĩk,0 t 0 , u(t 0 ) -R X(t 0 ) ≤ C(ε + L -1/4 )(64)andĨk,0 (t 0 , u(t 0 )) = k i=1 E(ϕ c i ) + O(ε + L -1/4 ) .t 0 , u(t 0 )) + I k+1,0 (t 0 , u(t 0 )) = N i=1 E(ϕ c i ) + O(ε + L -1/4 ) = E(u 0 ) + O(ε + L -1/4 ) .

IR 1 -

 1 Ψ(y k (t 0 )-x)-Ψ(x-y k+1 (t 0 )) [u 2 (t 0 , x)+u 2 x (t 0 , x)] dx = O(ε+L -1/4 ) . Therefore, since |1 -Ψ(y k (t 0 )x) -Ψ(xy k+1 (t 0 ))| ≤ O(e - √ L ) for x ∈ IR\]y k -L/4, y k+1 + L/4[and by the exponentional decay of ϕ, (20) and[START_REF] Dai | Model equations for nonlinear dispersive waves in compressible Mooney-Rivlin rod[END_REF],y k+1 +L/4 y k -L/4 |R X(t 0 ) | 2 + |∂ x R X(t 0 ) )| 2 ≤ O(e - √ L/4 ) ,

  )

	Remark 1.2 We do not know how to prove the monotonicity result in
	Lemma 3.1, and thus Theorem 1.2, for solutions that are only in C([0, T [; H 1 (IR))
	which is the hypothesis required for the stability of a single peakon (cf.
	[20]). Note anyway that there exists no well-posedness result in the class
	C([0, T [; H 1 (IR)) for general initial data in H 1 (IR). On the other hand, ac-
	cording to Theorem 1.1 above, u ∈ Y ([0, T [) as soon as u 0 ∈ H 1 (IR) and (1 -∂ 2 x )u 0 is a Radon measure with bounded variations.
	Remark 1.3 Note that under the hypotheses of Theorem 1.2,
	N
	j=1
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Therefore, setting M i = u(t 0 , x i (t 0 )), δ i = c i -M i and taking the sum over i = k + 1, .., N of (52) one gets :

Note that by [START_REF] Constantin | Stability of the Camassa-Holm solitons[END_REF] and the continuous embedding of

), and thus

We set ∆

Using the Abel transformation and the monotonicity estimate [START_REF] Martel | Tsai Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] 

By [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF], the exponential decay of the ϕ c i 's and the Φ i 's, and the definition of E i and F i , it is easy to check that

), ∀i ∈ {1, .., N } .

(61) Injecting this in (60), taking advantage of (59) and using that E(

On the other hand, summing (53) for i = k + 1, .., N one gets

it follows that

) .

(66) Combining (57), ( 64) and (66) we infer that

which concludes the proof of ( 19) since, according to Proposition 3.2, |O(x)| ≤ C|x| for some constant C > 0 independent of A. This proves (8) whereas [START_REF] Constantin | Existence of permanent and breaking waves for a shallow water equations: a geometric approach[END_REF] follows from [START_REF] Constantin | Stability of peakons[END_REF] and [START_REF] Danchin | A few remarks on the Camassa-Holm equation[END_REF].