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Abstract. The Camassa-Holm equation possesses well-known peaked soli-
tary waves that can travel to both directions. The positive ones travel to
the right and are called peakon whereas the negative ones travel to the left
and are called antipeakons. Their orbital stability has been established by
Constantin and Strauss in [20]. In [28] we have proven the stability of trains
of peakons. Here, we continue this study by extending the stability result
to the case of ordered trains of anti-peakons and peakons.

1 Introduction

The Camassa-Holm equation (C-H),

ut − utxx = −3uux + 2uxuxx + uuxxx, (t, x) ∈ IR2, (1)

can be derived as a model for the propagation of unidirectional shalow wa-
ter waves over a flat bottom by writing the Green-Naghdi equations in Lie-
Poisson Hamiltonian form and then making an asymptotic expansion which
keeps the Hamiltonian structure ([7], [31]). Note that the Green-Naghdi
equations arise as approximations to the governing equations for shallow-
water medium-amplitude regime which captures more nonlinear effects than
the classical shallow-water small amplitude KdV regime and thus can accom-
modate models for breaking waves (cf. [1], [16], [12]). The Camassa-Holm
equation was also found independently by Dai [22] as a model for nonlinear
waves in cylindrical hyperelastic rods and was, actually, first discovered by
the method of recursive operator by Fokas and Fuchsteiner [29] as an exam-
ple of bi-Hamiltonian equation. Let us also mention that it has also a geo-
metric derivation as a re-expression of geodesic flow on the diffeomorphism
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group on the line (cf. [32], [33]) and that this framework is instrumental
in showing that the Least Action Principle holds for this equation (cf. [9],
[17]).

(C-H) is completely integrable (see [7],[8], [10] and [15]). It possesses
among others the following invariants

E(v) =

∫

IR
v2(x) + v2

x(x) dx and F (v) =

∫

IR
v3(x) + v(x)v2

x(x) dx (2)

and can be written in Hamiltonian form as

∂tE
′(u) = −∂xF ′(u) . (3)

Camassa and Holm [7] exhibited peaked solitary waves solutions to (C-H)
that are given by

u(t, x) = ϕc(x − ct) = cϕ(x − ct) = ce−|x−ct|, c ∈ IR.

They are called peakon whenever c > 0 and antipeakon whenever c < 0.
Let us point out here that the feature of the peakons that their profile is
smooth, except at the crest where it is continuous but the lateral tangents
differ, is similar to that of the waves of greatest height, i.e. traveling waves
of largest possible amplitude which are solutions to the governing equations
for water waves (cf. [11], [14] and [37]). Note that (C-H) has to be rewriten
as

ut + uux + (1 − ∂2
x)−1∂x(u2 + u2

x/2) = 0 . (4)

to give a meaning to these solutions. Their stability seems not to enter the
general framework developed for instance in [4], [30]. However, Constantin
and Strauss [20] succeeded in proving their orbital stability by a direct ap-
proach. In [28] we combined the general strategy initiated in [34](note that
due to the reasons mentioned above, the general method of [34] is not di-
rectly applicable here ), a monotonicity result proved in [27] on the part of
the energy E(·) at the right of a localized solution traveling to the right and
localized versions of the estimates established in [20] to derive the stability
of ordered trains of peakons. In this work we pursue this study by proving
the stability of ordered trains of anti-peakons and peakons. The main new
ingredient is a monotonicity result on the part of the functional E(·)−λF (·),
λ ≥ 0, at the right of a localized solution traveling to the right. It is worth
noticing that the sign of λ plays a crucial role in our analysis.

Before stating the main result let us introduce the function space where
we will define the flow of the equation. For I a finite or infinite interval of
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IR, we denote by Y (I) the function space1

Y (I) :=
{

u ∈ C(I;H1(IR))∩L∞(I;W 1,1(IR)), ux ∈ L∞(I;BV (IR))
}

. (5)

In [18], [23] and [36] (see also [35]) the following existence and uniqueness
result for this class of initial data is derived.

Theorem 1.1 Let u0 ∈ H1(IR) with m0 := u0 − u0,xx ∈ M(IR) then there
exists T = T (‖m0‖M) > 0 and a unique solution u ∈ Y ([−T, T ]) to (C-H)
with initial data u0. The functionals E(·) and F (·) are constant along the
trajectory and if m0 is such that 2 supp m−

0 ⊂] − ∞, x0] and supp m+
0 ⊂

[x0,+∞[ for some x0 ∈ IR then u exists for all positive times and belongs to
Y ([0, T ]) for all T > 0.
Moreover, let {u0,n} ⊂ H1(IR) such that u0,n → u0 in H1(IR) with {m0,n :=
u0,n − ∂2

xu0,n} bounded in M(IR), supp m−
0,n ⊂]−∞, x0,n] and supp m+

0,n ⊂
[x0,n,+∞[ for some sequence {x0,n} ⊂ IR. Then, for all T > 0,

un −→ u in C([0, T ];H1(IR)) . (6)

Let us emphasize that the global existence result when the negative part of
m0 lies completely to the left of its positive part is proven in [36] and that
the last assertion of the above theorem is not explicitly contained in this
paper. However, following the same arguments as those developed in these
works (see for instance Section 5 of [35]), one can prove that there exists
a subsequence {unk

} of solutions of (1) that converges in C([0, T ];H1(IR))
to some solution v of (1) belonging to Y ([0, T [). Since u0,nk

converges to
u0 in H1, it follows that v(0) = u0 and thus v = u by uniqueness. This
ensures that the whole sequence {un} converges to u in C([0, T ];H1(IR))
and concludes the proof of the last assertion.

Remark 1.1 It is worth pointing out that recently, in [5] and [6], Bressan
and Constantin have constructed global conservative and dissipative solu-
tions of the Camassa-Holm equation for any initial data in H1(IR). How-
ever, even if for the conservative solutions, E(·) and F (·) are conserved
quantities, these solutions are not known to be continuous with values in
H1(IR). Therefore even one single peakon is not known to be orbitally sta-
ble in this class of solutions. For this reason we will work in the class of
solutions constructed in Theorem 1.1.

1
W

1,1(IR) is the space of L
1(IR) functions with derivatives in L

1(IR) and BV (IR) is
the space of function with bounded variation

2
M(IR) is the space of Radon measures on IR with bounded total variation. For

m0 ∈ M(IR) we denote respectively by m
−

0 and m
+

0 its positive and negative part.
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We are now ready to state our main result.

Theorem 1.2 Let be given N non vanishing velocities c1 < .. < ck < 0 <
ck+1 < .. < cN . There exist γ0, A > 0, L0 > 0 and ε0 > 0 such that if
u ∈ Y ([0, T [), with 0 < T ≤ ∞, is a solution of (C-H) with initial data u0

satisfying

‖u0 −
N

∑

j=1

ϕcj (· − z0
j )‖H1 ≤ ε2 (7)

for some 0 < ε < ε0 and z0
j − z0

j−1 ≥ L, with L > L0, then there exist
x1(t), .., xN (t) such that

sup
[0,T [

‖u(t, ·) −
N

∑

j=1

ϕcj(· − xj(t))‖H1 ≤ A(
√

ε + L−1/8) . (8)

Moreover there exists C1-functions x̃1, .., x̃N such that, ∀j ∈ {1, .., N},

|xj(t)−x̃j(t)| = O(1) and
d

dt
x̃j(t) = cj+O(ε1/4)+O(L− 1

16 ),∀t ∈ [0, T [ . (9)

Remark 1.2 We do not know how to prove the monotonicity result in
Lemma 3.1, and thus Theorem 1.2, for solutions that are only in C([0, T [;H1(IR))
which is the hypothesis required for the stability of a single peakon (cf.
[20]). Note anyway that there exists no well-posedness result in the class
C([0, T [;H1(IR)) for general initial data in H1(IR). On the other hand, ac-
cording to Theorem 1.1 above, u ∈ Y ([0, T [) as soon as u0 ∈ H1(IR) and
(1 − ∂2

x)u0 is a Radon measure with bounded variations.

Remark 1.3 Note that under the hypotheses of Theorem 1.2,

N
∑

j=1

ϕcj (· − z0
j )

belongs to the class v ∈ H1(IR)with m := v − vxx ∈ M(IR), supp m− ⊂
] − ∞, x0] and supp m+ ⊂ [x0,+∞[ for some x0 ∈ IR. Therefore, in
view of Theorem 1.1, Theorem 1.2 leads to the orbital stability (for posi-
tive times) of such ordered sum of antipeakons and peakons with respect to
H1-perturbations that keep the initial data in this same class.
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As discovered by Camassa and Holm [7], (C-H) possesses also special solu-
tions called multipeakons given by

u(t, x) =
N

∑

i=1

pj(t)e
−|x−qj(t)| ,

where (pj(t), qj(t)) satisfy the differential system :

{ q̇i =
∑N

j=1 pje
−|qi−qj |

ṗi =
∑N

j=1 pipjsgn(qi − qj)e
−|qi−qj | .

(10)

In [3] (see also [2] and [7]), the asymptotic behavior of the multipeakons is
studied. In particular, the limits as t tends to +∞ and −∞ of pi(t) and q̇i(t)
are determined. Combining these asymptotics with the preceding theorem
and the continuity with respect to initial data stated in Theorem 1.1 we get
the following result on the stability for positive times of the variety NN,k of
H1(IR) defined for N ≥ 1 and 0 ≤ k ≤ N by

NN,k :=
{

v =

N
∑

i=1

pje
−|·−qj|, (p1, .., pN ) ∈ (IR∗

−)k×(IR∗
+)N−k, q1 < q2 < .. < qN

}

.

Corollary 1.1 Let be given k negative real numbers p0
1, .., p

0
k, N −k positive

real numbers p0
k+1, .., p

0
N and N real numbers q0

1 < .. < q0
N . For any B > 0

and any γ > 0 there exists α > 0 such that if u0 ∈ H1(IR) is such that m0 :=
u0 − u0,xx ∈ M(IR) with supp m−

0 ⊂]−∞, x0] and supp m+
0 ⊂ [x0,+∞[ for

some x0 ∈ IR, and satisfies

‖m0‖M ≤ B and ‖u0 −
N

∑

j=1

p0
j exp(· − q0

j )‖H1 ≤ α (11)

then

∀t ∈ IR+, inf
P∈IRk

−
×IRN−k

+
,Q∈IRN

‖u(t, ·) −
N

∑

j=1

pj exp(· − qj)‖H1 ≤ γ . (12)

Moreover, there exists T > 0 such that

∀t ≥ T, inf
Q∈G

‖u(t, ·) −
N

∑

j=1

λj exp(· − qj)‖H1 ≤ γ (13)

where G := {Q ∈ IRN , q1 < q2 < .. < qN} and λ1 < .. < λN are the

eigenvalues of the matrix
(

p0
je

−|q0
i −q0

j |/2
)

1≤i,j≤N
.
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Remark 1.4 Again, note that for (p0
1, .., p

0
N ) ∈ (IR∗

−)k×(IR∗
+)N−k and q0

1 <
.. < q0

N ,
N

∑

j=1

p0
j exp(· − q0

j )

belongs to the class v ∈ H1(IR)with m := v − vxx ∈ M(IR), supp m− ⊂
] − ∞, x0] and supp m+ ⊂ [x0,+∞[ for some x0 ∈ IR. Corollary 1.1 thus
ensures that the variety NN,k is stable with respect to H1-perturbations that
keeps the initial data in this same class.

This paper is organized as follows. In the next section we sketch the main
points of the proof of Theorem 1.2 whereas the complete proof is given in
Section 3. After having controlled the distance between the different bumps
of the solution we establish the new monotonicity result and state local
versions of estimates involved in the stability of a single peakon. Finally,
the proof of Theorem 1.2 is completed in Subsection 3.4.

2 Sketch of the proof

Our proof as in [34] combined the stability of a single peakon and a mono-
tonicity result for functionals related to the conservation laws. Recall that
the stability proof of Constantin and Strauss (cf. [20]) is principally based
on the following lemma of [20].

Lemma 2.1 For any u ∈ H1(IR), c ∈ IR and ξ ∈ IR,

E(u) − E(ϕc) = ‖u − ϕc(· − ξ)‖2
H1 + 4c(u(ξ) − c). (14)

For any u ∈ H1(IR), let M = maxx∈IR{u(x)}, then

ME(u) − F (u) ≥ 2

3
M3. (15)

Indeed, with this lemma at hand, let u ∈ C([0, T [;H1(IR)) be a solution
of (1) with ‖u(0) − ϕc‖H1 6 ε2 and let ξ(t) ∈ IR be such that u(t, ξ(t)) =
maxIR u(t, ·). Assuming that u(t) is sufficiently H1-close to {r ∈ IR,ϕ(·−r)},
setting δ = c−u(t, ξ(t)), and using that E(u(t)) = E(u0) = 2c2 +O(ε2) and
F (u(t)) = F (u0) = 4

3c3 + O(ε2), (15) leads to

δ2(c − δ/3) ≤ O(ε2)) =⇒ δ . ε
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and then (14) yields

‖u(t) − ϕc(· − ξ(t))‖H1 .
√

ε . (16)

This proves the stability result. At this point, a crucial remark is that, in-
stead of using the conservation of E and F , we can only use that, for any
fixed λ ≥ 0, E(·)−λF (·) is non increasing. Indeed, for M = maxx∈IR{u(t, x)} =
u(t, ξ(t)) and λ = 1/M , (15) then implies

ME(u0) − F (u0) ≥
2

3
M3

and, for λ = 0, (14) implies

E(u0) − E(ϕc) ≥ ‖u − ϕc(· − ξ(t))‖2
H1 + 4c(u(ξ(t)) − c).

This leads to (16) exactly as above.
Now, in [28] it is established that (14) and (15) almost still hold if one
replaces E(·) and F (·) by their localized version, Ej(·) and Fj(·), around
the jth bump. Therefore to prove our result it will somehow suffices to
prove that the functionals Ej(·) + λFj(·) are almost decreasing.

One of the very important discovering of the works of Martel-Merle is
that for one dimensional dispersive equations with a linear group that travels
to the left, the part of the energy at the right of a localized solution traveling
to the right is almost decreasing. In [34] it is noticed that this holds also for
the part of the energy at the right of each bump for solutions that are close
to the sum of solitary waves traveling to the right. In this paper we will use
that, for a fixed λ ≥ 0 and j ≥ k + 1, if we call by Ij =

∑N
q=j(Eq − λFq) the

part of the functionals E(·)−λF (·) that is at the right of the (j-1)th bumps,
then Ij(·) is almost decreasing in time. Since IN = EN −λFN , we infer from
above that the Nth bump of the solution stays H1-close to a translation of
ϕcN

. Then, since IN−1 = EN−1−λFN−1+IN and IN−1 is almost decreasing,
we obtain that EN−1 − λFN−1 is also almost decreasing which leads to the
stability result for the (N−1)th bump. Iterating this process until j = k+1,
we obtain that each bump moving to the right remains close to the orbit
of the suitable peakon. Finally, since (C-H) is invariant by the change of
unknown u(t, x) → −u(t,−x), this also ensures that each bump moving to
the left remains close to the orbit of the suitable antipeakon. This leads to
the desired result since the total energy is conserved.

Actually we will not proceed exactly that way since by using such itera-
tive process one loses some power of ε at each step. More precisely this iter-
ative scheme would prove Theorem 1.2 but with εβ with β = 41/2−max(q,N−q)
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instead of ε1/2 in (8). To derive the desired power of ε we will rather sum
all the contributions of bumps that are traveling in the same direction and
use Abel’s summation argument to get the stability of all these bumps in
the same time.

3 Stability of multipeakons

For α > 0 and L > 0 we define the following neighborhood of all the sums
of N antipeakons and peakons of speed c1, .., cN with spatial shifts xj that
satisfied xj − xj−1 ≥ L.

U(α,L) =
{

u ∈ H1(IR), inf
xj−xj−1>L

‖u −
N

∑

j=1

ϕcj (· − xj)‖H1 < α
}

. (17)

By the continuity of the map t 7→ u(t) from [0, T [ into H1(IR), to prove
the first part of Theorem 1.2 it suffices to prove that there exist A > 0,
ε0 > 0 and L0 > 0 such that ∀L > L0 and 0 < ε < ε0, if u0 satisfies (7) and
if for some 0 < t0 < T ,

u(t) ∈ U
(

A(
√

ε + L−1/8), L/2
)

for all t ∈ [0, t0] (18)

then

u(t0) ∈ U

(

A

2
(
√

ε + L−1/8),
2L

3

)

. (19)

Therefore, in the sequel of this section we will assume (18) for some 0 < ε <
ε0 and L > L0, with A, ε0 and L0 to be specified later, and we will prove
(19).

3.1 Control of the distance between the peakons

In this subsection we want to prove that the different bumps of u that are
individualy close to a peakon or an antipeakon get away from each others as
time is increasing. This is crucial in our analysis since we do not know how
to manage strong interactions. The following lemma is principally proven
in [28].

Lemma 3.1 Let u0 satisfying (7). There exist α0 > 0, L0 > 0 and C0 > 0
such that for all 0 < α < α0 and 0 < L0 < L if u ∈ U(α,L/2) on [0, t0] for
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some 0 < t0 < T then there exist C1-functions x̃1, .., x̃N defined on [0, t0]
such that ∀t ∈ [0, t0],

d

dt
x̃i(t) = ci + O(

√
α) + O(L−1), i = 1, .., N , (20)

‖u(t) −
N

∑

i=1

ϕci(· − x̃i(t))‖H1 = O(
√

α) , (21)

x̃i(t) − x̃i−1(t) ≥ 3L/4 + (ci − ci−1)t/2, i = 2, .., N. (22)

Moreover, for i = 1, .., N , it holds

|xi(t) − x̃i(t)| = O(1), (23)

where xi(t) ∈ [x̃i(t) − L/4, x̃i(t) + L/4] is any point such that

|u(t, xi(t))| = max
[x̃i(t)−L/4,x̃i(t)+L/4]

|u(t)|. (24)

Proof. We only sketch the proof and refer to [28] for details. The strategy
is to use a modulation argument to construct N C1-functions t 7→ x̃i(t),
i = 1, .., N on [0, t0] satisfying the following orthogonality conditions :

∫

IR

(

u(t, ·) −
N

∑

j=1

ϕcj(· − x̃j(t))
)

∂xϕci(· − x̃i(t)) dx = 0 . (25)

Moreover, setting

RZ(·) =
N

∑

i=1

ϕci(· − zi) (26)

for any Z = (z1, .., zN ) ∈ IRN , one can check that

‖u(t) − RX̃(t)‖H1 . C0

√
α , ∀t ∈ [0, t0] . (27)

To prove that the speed of x̃i stays close to ci, we set

Rj(t) = ϕcj (· − x̃j(t)) and v(t) = u(t) −
N

∑

i=1

Rj(t) = u(t, ·) − RX̃(t) .

and differentiate (25) with respect to time to get

∫

IR
vt∂xRi = ˙̃xi 〈∂2

xRi , v〉H−1,H1 ,

9



and thus

∣

∣

∣

∫

IR
vt∂xRi

∣

∣

∣
≤ | ˙̃xi|O(‖v‖H1) ≤ | ˙̃xi − ci|O(‖v‖H1) + O(‖v‖H1) . (28)

Substituting u by v +
∑N

j=1 Rj in (4) and using that Rj satisfies

∂tRj + ( ˙̃xj − cj)∂xRj + Rj∂xRj + (1 − ∂2
x)−1∂x[R2

j + (∂xRj)
2/2] = 0 ,

we infer that v satisfies on [0, t0],

vt −
N

∑

j=1

( ˙̃xj − cj)∂xRj = −1

2
∂x

[

(v +

N
∑

j=1

Rj)
2 −

N
∑

j=1

R2
j

]

−(1 − ∂2
x)−1∂x

[

(v +
N

∑

j=1

Rj)
2 −

N
∑

j=1

R2
j +

1

2
(vx +

N
∑

j=1

∂xRj)
2 − 1

2

N
∑

j=1

(∂xRj)
2
]

.

Taking the L2-scalar product with ∂xRi, integrating by parts, using the
decay of Rj and its first derivative, (27) and (28), we find

| ˙̃xi − ci|
(

‖∂xRi‖2
L2 + O(

√
α)

)

≤ O(
√

α) + O(e−L/8) . (29)

Taking α0 small enough and L0 large enough we get | ˙̃xi − ci| ≤ (ci − ci−1)/4
and thus, for all 0 < α < α0 and L ≥ L0 > 3C0ε, it follows from (7), (27)
and (29) that

x̃j(t) − x̃j−1(t) > L − C0ε + (cj − cj−1)t/2, ∀t ∈ [0, t0] . (30)

which yields (22).
Finally from (27) and the continuous embedding of H1(IR) into L∞(IR), we
infer that

u(t, x) = RX̃(t)(x) + O(
√

α), ∀x ∈ IR .

Applying this formula with x = x̃i and taking advantage of (22), we obtain

|u(t, x̃i)| = |ci| + O(
√

α) + O(e−L/4) ≥ 3|ci|/4 .

On the other hand, for x ∈ [x̃i(t) − L/4, x̃i(t) + L/4]\]x̃i(t) − 2, x̃i(t) + 2[,
we get

|u(t, x)| ≤ |ci|e−2 + O(
√

α) + O(e−L/4) ≤ |ci|/2 .

This ensures that xi belongs to [x̃i − 2, x̃i + 2].
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3.2 Monotonicity property

Thanks to the preceding lemma, for ε0 > 0 small enough and L0 > 0 large
enough, one can construct C1-functions x̃1, .., x̃N defined on [0, t0] such that
(20)-(23) are satisfied. In this subsection we state the almost monotonicity
of functionals that are very close to the E(·) − λF (·) at the right of the ith
bump, i = k, ..,N −1 of u. The proof follows the same lines as in Lemma 4.2
in [27] but is more delicate since we have also to deal with the functional F .
Moreover, F generates a term ( J4 in (41)) that we are not able to estimate
in a suitable way but which fortunately is of the good sign.

Let Ψ be a C∞ function such that 0 < Ψ ≤ 1, Ψ′ > 0 on IR, |Ψ′′′| ≤
10|Ψ′| on [−1, 1],

Ψ(x) =

{

e−|x| x < −1

1 − e−|x| x > 1
. (31)

Setting ΨK = Ψ(·/K), we introduce for j ∈ {q, ..,N} and λ ≥ 0,

Ij,λ(t) = Ij,λ,K(t, u(t)) =

∫

IR

(

(u2(t)+u2
x(t))−λ(u3(t)+uu2

x(t))
)

Ψj,K(t) dx ,

where Ψj,K(t, x) = ΨK(x − yj(t)) with yj(t), j = k + 1, .., N , defined by

yk+1(t) = x̃k+1(0) + ck+1t/2 − L/4

and yi(t) =
x̃i−1(t) + x̃i(t)

2
, i = k + 2, .., N. (32)

Finally, we set

σ0 =
1

4
min

(

ck+1, ck+2 − ck+1, .., cN − cN−1

)

. (33)

Proposition 3.1 Let u ∈ Y ([0, T [) be a solution of (C-H) satisfying (21)
on [0, t0]. There exist α0 > 0 and L0 > 0 only depending on ck+1 and cN

such that if 0 < α < α0 and L ≥ L0 then for any 4 ≤ K . L1/2 and
0 ≤ λ ≤ 2/ck+1,

Ij,λ,K(t) − Ij,λ,K(0) ≤ O(e−
σ0L
8K ), ∀j ∈ {k + 1, .., N}, ∀t ∈ [0, t0] . (34)

Proof. Let us assume that u is smooth since the case u ∈ Y ([0, T [) follows
by modifying slightly the arguments (see Remark 3.2 of [26]).
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Lemma 3.2

d

dt

∫

IR
(u2 + u2

x)g dx =

∫

IR
(u3 + 4uu2

x)g
′

dx

−
∫

IR
u3g

′′′

dx − 2

∫

IR
uhg

′

dx. (35)

and

d

dt

∫

IR
(u3 + uu2

x)g dx =

∫

IR
(u4/4 + u2u2

x)g
′

dx

+

∫

IR
u2hg

′

dx +

∫

IR
(h2 − h2

x)g
′

dx. (36)

where h := (1 − ∂2
x)−1(u2 + u2

x/2).

Proof. Since (35) is proven in [28] we concentrate on the proof of (36).

d

dt

∫

IR
(u3 + uu2

x)g = 3

∫

IR
utu

2g + 2

∫

IR
utxuxug +

∫

IR
utu

2
xg

= 2

∫

IR
ut(u

2 + u2
x/2)g +

∫

IR
utu

2g −
∫

IR
utxxu2g −

∫

IR
utxu2g′

= 2

∫

IR
ut(u

2 + u2
x/2)g +

∫

IR
(ut − utxx)u2g −

∫

IR
utxu2g′

= I1 + I2 + I3 . (37)

Setting h := (1 − ∂2
x)−1(u2 + u2

x/2) and using the equation we get

I1 = −2

∫

IR
uux(u2 + u2

x/2)g − 2

∫

IR
ghx(1 − ∂2

x)h

= −2

∫

IR
u3uxg −

∫

IR
uu3

xg − 2

∫

IR
hhxg + 2

∫

IR
hxhxxg

=
1

2

∫

IR
u4g′ −

∫

IR
uu3

xg +

∫

IR
(h2 − h2

x)g′ . (38)

In the same way,

I2 = −3

∫

IR
u3uxg − 1

2

∫

IR
∂x(u2

x)u2g +
1

2

∫

IR
∂3

x(u2)u2g

=
3

4

∫

IR
u4g′ − 1

2

∫

IR
∂x(u2

x)u2g − 1

2

∫

IR
∂2

x(u2)∂x(u2)g − 1

2

∫

IR
∂2

x(u2)u2g′

=
3

4

∫

IR
u4g′ +

∫

IR
uu3

xg +
1

2

∫

IR
u2

xu2g′ +
1

4

∫

IR
[∂x(u2)]2g′ +

∫

IR
∂x(u2)uuxg′

12



+
1

2

∫

IR
∂x(u2)u2g

′′

=
3

4

∫

IR
u4g′ +

∫

IR
uu3

xg +
1

2

∫

IR
u2

xu2g′ +
∫

IR
u2u2

xg′ + 2

∫

IR
u2

xu2g′ +
∫

IR
u3uxg

′′

=
3

4

∫

IR
u4g′ − 1

4

∫

IR
u4g

′′′

+
7

2

∫

IR
u2

xu2g′ +
∫

IR
uu3

xg . (39)

At this stage it is worth noticing that the terms
∫

IR uu3
xg cancels with the

one in I1. Finally,

I3 =

∫

IR
∂x(uux)u2g′ +

∫

IR
g′u2∂2

xh

= −2

∫

IR
u2u2

xg′ −
∫

IR
u3uxg

′′ −
∫

IR
u2(u2 + u2

x/2)g′ +
∫

IR
u2hg′

= −2

∫

IR
u2u2

xg′ +
1

4

∫

IR
u4g

′′′ −
∫

IR
u4g′ − 1

2

∫

IR
u2u2

xg′ +
∫

IR
u2hg′

= −5

2

∫

IR
u2u2

xg′ +
1

4

∫

IR
u4g

′′′ −
∫

IR
u4g′ +

∫

IR
u2hg′ (40)

where we used that ∂2
x(I − ∂2

x)−1 = −I + (I − ∂2
x)−1. Gathering (37)-(40),

(36) follows. �

Applying (35)-(36) with g = Ψj,K, j ≥ k + 1, one gets

d

dt
Ij,λ,K :=

d

dt

∫

IR
Ψj,K[(u2 + u2

x) − λ(u3 + uu2
x)] dx

= −ẏj

∫

IR
Ψ′

j,K(u2 + u2
x)

+

∫

IR
Ψ′

j,K

[

[(u3 + 4uu2
x) − λ

(

ẏj(u
3 + uu2

x) − (u4/4 + u2u2
x)

)]

dx

−
∫

IR
Ψ

′′′

j,Ku3 dx −
∫

IR
Ψ′

j,K(2u + λu2)hdx

−λ

∫

IR
Ψ′

j,K(h2 − h2
x) dx

= −ẏj

∫

IR
Ψ′

j,K(u2 + u2
x) + J1 + J2 + J3 + J4

≤ −ck+1

2

∫

IR
Ψ′

j,K(u2 + u2
x) + J1 + J2 + J3 + J4 . (41)

We claim that J4 ≤ 0 and that for i ∈ {1, 2, 3}, it holds

Ji ≤
ck+1

8

∫

IR
Ψ′

j,K(u2 + u2
x) +

C

K
e−

1

K
(σ0t+L/8) . (42)
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To handle with J1 we divide IR into two regions Dj and Dc
j with

Dj = [x̃j−1(t) + L/4, x̃j(t) − L/4]

First since from (22), for x ∈ Dc
j ,

|x − yj(t)| ≥
x̃j(t) − x̃j−1(t)

2
− L/4 ≥ cj − cj−1

2
t + L/8 ,

we infer from the definition of Ψ in Section 3.2 that

∣

∣

∣

∫

Dc
j

Ψ′
j,K

[

[(u3 + 4uu2
x) − λ

(

ẏj(u
3 + uu2

x) − (u4/4 + u2u2
x)

)]

dx
∣

∣

∣

≤ C

K
(1 + 2λcN )(‖u0‖3

H1 + ‖u0‖4
H1)e

− 1

K
(σ0t+L/8) .

On the other hand, on Dj we notice, according to (21), that

‖u(t)‖L∞

Dj
≤

N
∑

i=1

‖ϕci(· − x̃i(t))‖L∞(Dj) + ‖u −
N

∑

i=1

ϕci(· − x̃i(t))‖L∞(Dj)

≤ C e−L/8 + O(
√

α) . (43)

Therefore, for α small enough and L large enough it holds

J1 ≤ ck+1

8

∫

IR
Ψ′

j,K(u2 + u2
x) +

C

K
e−

1

K
(σ0t+L/8) .

Since J2 can be handled in exactly the same way, it remains to treat J3. For
this, we first notice as above that

−
∫

Dc
j

(2u + λu2)Ψ′
j,K(1 − ∂2

x)−1(u2 + u2
x/2)

≤ (2 + λ‖u‖∞)‖u‖∞ sup
x∈Dc

j

|Ψ′
j,K(x − yj(t))|

∫

IR
e−|x| ∗ (u2 + u2

x/2) dx

≤ C

K
‖u0‖3

H1 e−
1

K
(σ0t+L/8) , (44)

since

∀f ∈ L1(IR), (1 − ∂2
x)−1f =

1

2
e−|x| ∗ f . (45)
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Now in the region Dj , noticing that Ψ′
j,K and u2 + u2

x/2 are non-negative,
we get

−
∫

Dj

(2 + λu)uΨ′
j,K(1 − ∂2

x)−1(u2 + u2
x/2)

≤ (2 + λ‖u(t)‖L∞(Dj))‖u(t)‖L∞(Dj)

∫

Dj

Ψ′
j,K((1 − ∂2

x)−1(2u2 + u2
x)

≤ (2 + λ‖u(t)‖L∞(Dj))‖u(t)‖L∞(Dj)

∫

IR
(2u2 + u2

x)(1 − ∂2
x)−1Ψ′

j,K .(46)

On the other hand, from the definition of Ψ in Section 3.2 and (45) we infer
that for K ≥ 4,

(1 − ∂2
x)Ψ′

j,K ≥ (1 − 10

K2
)Ψ′

j,K ⇒ (1 − ∂2
x)−1Ψ′

j,K ≤ (1 − 10

K2
)−1Ψ′

j,K .

Therefore, taking K ≥ 4 and using (43) we deduce for α small enough and
L large enough that

−
∫

Dj

(2u + λu2)Ψ′
K(1 − ∂2

x)−1(u2 + u2
x/2) ≤

cq

8

∫

IR
(u2 + u2

x/2)Ψ′
K . (47)

This completes the proof of (42). It remains to prove that J4 is non positive.
Recall that h = (I − ∂2

x)−1v with v := u2 + u2
x/2 ≥ 0. Therefore, following

[13], it holds

h(x) =
1

2
e−|·| ∗ v(·)

=
1

2
e−x

∫ x

−∞
eyv(y) dy +

1

2
ex

∫ x

−∞
e−yv(y) dy

and

h′(x) = −1

2
e−x

∫ x

−∞
eyv(y) dy +

1

2
ex

∫ x

−∞
e−yv(y) dy

which clearly ensures that h2 ≥ h2
x. Since Ψ′

j,K ≥ 0 and λ ≥ 0, this leads to

the non positivity of J4 = −λ
∫

IR Ψ′
j,K(h2 − h2

x) dx.
Gathering (41) and (42) we infer that

d

dt

∫

IR
Ψj,K[u2+u2

x−λ(u3+uu2
x)] dx ≤ −c1

8

∫

IR
Ψ′

j,K(u2+u2
x)+

C

K
(1+‖u0‖4

H1) e−
1

K
(σ0t+L/8) .

Integrating this inequality between 0 and t, (34) follows.
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3.3 Localized estimates

We define the function Φi = Φi(t, x), i = k + 1, .., N , by ΦN = ΨN,K =
ΨK(· − yN (t)) and for i = k + 1, .., N − 1

Φi = Ψi,K − Ψi+1,K = ΨK(· − yi(t)) − ΨK(· − yi+1(t)) , (48)

where Ψi,K and the yi’s are defined in Section 3.2. It is easy to check that

the Φi’s are positive functions and that
N

∑

i=k+1

Φi ≡ Ψk+1,K. We will take

L/K > 4 so that (31) ensures that Φi satisfies for i ∈ {k + 1, .., N},

|1 − Φi| ≤ 2e−
L

8K on ]yi + L/8, yi+1 − L/8[ (49)

and
|Φi| ≤ 2e−

L
8K on ]yi − L/8, yi+1 + L/8[c , (50)

where we set yN+1 := +∞.
It is worth noticing that, somehow, Φi(t) takes care of only the ith bump
of u(t). We will use the following localized version of E and F defined for
i ∈ {k + 1, .., N}, by

Et
i (u) =

∫

IR
Φi(t)(u

2 + u2
x) and F t

i (u) =

∫

IR
Φi(t)(u

3 + uu2
x) . (51)

Please note that henceforth we take K = L1/2/8.
The following lemma gives a localized version of (15). Note that the func-
tionals Ei and Fi do not depend on time in the statement below since we
fix yk+1 < .. < yN+1 = +∞.

Lemma 3.3 Let be given u ∈ H1(IR) with ‖u‖H1 = ‖u0‖H1 and N − k real
numbers yk+1 < .. < yN with yi − yi−1 ≥ 2L/3. For i = k + 1, .., N , set
Ji :=]yi − L/4, yi+1 + L/4[ with yN+1 = +∞, and assume that there exist
xi ∈]yi+L/4, yi+1−L/4[ such that u(xi) = max

Ji

u := Mi > 0. Then, defining

the functional Ei’s and Fi’s as in (48)-(51), it holds

Fi(u) 6 MiEi(u) − 2

3
M3

i + ‖u0‖3
H1O(L−1/2), i ∈ {k + 1, .., N} . (52)

and for any x1 < .. < xk with xk < yk+1 − L/4, setting X := (x1, .., xN ) ∈
IRN , it holds

Ei(u)−E(ϕci) = Ei(u−RX)+4ci(Mi−ci)+‖u0‖2
H1O(L−1/2), i ∈ {k+1, .., N},

(53)
where RX is defined in (26).
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Proof. Let i ∈ {k + 1, .., N} be fixed. Following [20], we introduce the
function g defined by

g(x) =

{

u(x) − ux(x) for x < xi

u(x) + ux(x) for x > xi
.

Integrating by parts we compute

∫

ug2Φi =

∫ xi

−∞
(u3 + uu2

x − 2u2ux)Φi +

∫ +∞

xi

(u3 + uu2
x + 2u2ux)Φi

= Fi(u) − 4

3
u(xi)

3Φi(xi) +
2

3

∫ xi

−∞
u3Φ

′

i −
2

3

∫ +∞

xi

u3Φ
′

i . (54)

Recall that we take K =
√

L/8 and thus |Φ′| ≤ C/K = O(L−1/2). Moreover,
since xi ∈]yi + L/4, yi+1 − L/4[, it follows from (49) that Φi(xi) = 1 +

O(e−L1/2

) and thus
∫

ug2Φi = Fi(u) − 4

3
M3

i + ‖u‖3
H1O(L−1/2) . (55)

On the other hand, with (50) at hand,
∫

ug2Φi ≤ Mi

∫

Ji

g2Φi +

∫

Jc
i

|u|g2Φi

≤ Mi

∫ +∞

−∞
g2Φi + ‖u‖L∞(IR)

∫

Jc
i

g2Φi

≤ Mi

(

Ei(u) − 2

∫ xi

−∞
uuxΦi + 2

∫ +∞

xi

uuxΦi

)

+ ‖u‖3
H1 sup

x∈Jc
i

|Φi(x)|

≤ MiEi(u) − 2M3
i + ‖u‖3

H1O(L−1/2) . (56)

This proves (52). To prove (53), we use the relation between ϕ an its deriva-
tive and integrate by parts, to get

Ei(u − RX) = Ei(u) + Ei(RX) − 2

∫

Φi

(

uϕci(· − xi) + ux ∂xϕci(· − xi)
)

= Ei(u) + Ei(RX) − 2

∫

Φiuϕci(· − xi)

+2

∫ +∞

xi

Φiux ϕci(· − xi) − 2

∫ xi

−∞
Φiux ϕci(· − xi)

= Ei(u) + Ei(RX) − 2

∫

Φiuϕci(· − xi) + 2

∫

Φ′
iuϕci(· − xi)
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+2

∫ +∞

zi

Φiux ϕci(· − xi) − 2

∫ zi

−∞
Φiux ϕci(· − xi)

= Ei(u) + Ei(RX) − 4ciu(xi)Φi(xi) + 2

∫

Φ′
iuϕci(· − xi)

−2

∫ +∞

xi

Φ′
iuϕci(· − xi) + 2

∫ xi

−∞
Φ′

iuϕci(· − xi) .

From (49)-(50), it is easy to check that Ei(RX) = E(ϕci)+O(e−
√

L/8). Since

C/K = O(L−1/2) and, in view of (49), Φi(xi) = 1 + O(e−L1/2

), it follows
that

Ei(u) + Ei(ϕci) = Ei(u − RX) + 4ciMi + ‖u‖2
H1O(L−1/2) .

This yields the result by using that E(ϕci) = 2c2
i .

3.4 End of the proof of Theorem 1.2

Proposition 3.2 There exists constants C,C ′ > 0 independent of A such
that

Ik+1,0

(

t0, u(t0)−RX(t0)

)

=

N
∑

i=k+1

Et0
i

(

u(t0)−RX(t0)

)

≤ C(ε+L−1/4) (57)

and

Ik+1,0(t0) =

N
∑

i=k+1

Et0
i (u(t0)) =

N
∑

i=k+1

E(ϕci) + O(ε + L−1/4) . (58)

with |O(x)| ≤ C ′x, ∀x ∈ IR∗
+.

Proof. First it is worth noticing that according to Lemma 3.1, u(t0),
(yk+1(t0), .., yN+1), constructed in (32), and X(t0) = (x1(t0), .., xN (t0)),
constructed in (24), satisfy the hypotheses of Lemma 3.3. Indeed, by con-
struction for i ∈ {k + 1, .., N}, xi ∈ [x̃i(t0) − L/4, x̃i(t0) + L/4, ] ⊂]yi(t0) +

L/4, yi+1(t0)−L/4[ and it is easy to check that |u(t0)| ≤ O(e−
√

L)+O(α) <
3ci/4 ≤ |u(xi)| on ]yi(t0) − L/4, yi+1(t0) + L/4[\[x̃i(t0) − L/4, x̃i(t0) + L/4]
so that

0 < u(t0, xi(t0)) = max
]yi(t0)−L/4,yi+1(t0)+L/4[

u(t0) .
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Therefore, setting Mi = u(t0, xi(t0)), δi = ci − Mi and taking the sum over
i = k + 1, .., N of (52) one gets :

N
∑

i=k+1

(

MiE
t0
i (u(t0)) − F t0

i (u(t0))
)

≥ −2

3

N
∑

i=k+1

M3
i + O(L−1/2)

Note that by (21) and the continuous embedding of H1(IR) into L∞(IR),
Mi = ci + O(

√
α) + O(e−L/8), and thus

0 < Mk+1 < ·· < MN and δi < ci/2, ∀i ∈ {k + 1, .., N} . (59)

We set ∆t0
0 Fi(u) = F t0

i (u(t0))−F 0(u(0)), ∆t0
0 E(u) = Et0(u(t0))−E0(u(0)),

∆t0
0 Ii,λ(u) = Ii,λ(t0, u(t0)) − Ii,λ(0, u(0)). Using the Abel transformation

and the monotonicity estimate (34) (note that 0 ≤ 1/Mi ≤ 2/ck+1 for
i ∈ {k + 1, .., N}), we get

N
∑

i=k+1

Mi

(

∆t0
0 E(u)− 1

Mi
∆t0

0 F (u)
)

=

N
∑

i=k+1

(Mi−Mi−1)∆
t
0Ii,1/Mi

6 O(e−σ0

√
L)

and thus

N
∑

i=k+1

(

MiE
0
i (u0) − F 0

i (u0))
)

≥ −2

3

N
∑

i=k+1

M3
i + O(L−1/2) . (60)

By (7), the exponential decay of the ϕci ’s and the Φi’s, and the definition
of Ei and Fi, it is easy to check that

|E0
i (u0) − E(ϕci)| + |F 0

i (u0) − F (ϕci)| ≤ O(ε2) + O(e−
√

L), ∀i ∈ {1, .., N} .
(61)

Injecting this in (60), taking advantage of (59) and using that E(ϕci) = 2c2
i

and F (ϕci) = 4c3
i /3, we obtain

N
∑

i=k+1

(ciδ
2
i − 1

3
δ3
i ) =

N
∑

i=k+1

δ2
i (ci −

1

3
δi) 6 O(ε2 + L−1/2)

=⇒
N

∑

i=k+1

δ2
i = O(ε2 + L−1/2). (62)

On the other hand, summing (53) for i = k + 1, .., N one gets

Ik+1,0(t0)−
N

∑

i=k+1

E(ϕci) =

N
∑

i=k+1

Et0
i

(

u(t0)−RX(t0)

)

+4

N
∑

i=k+1

ciδi+O(L−1/2) .

(63)

19



Using (59) and the almost monotonicity of t 7→ Ik+1,0(t), we infer that

N
∑

i=k+1

Et0
i

(

u(t0) − RX(t0)

)

≤ Ik+1,0(0) −
N

∑

i=k+1

E(ϕci) + O(ε + L−1/4)

and (61)-(62) then yield (57). Finally, with (57) at hand, (58) follows directly
from (62)-(63). �

Now, it is crucial to note that (C-H) is invariant by the change of unknown
u(t, x) 7→ −u(t,−x). Therefore setting, for any v ∈ H1(IR),

Ĩk,0(t, v) :=

∫

IR
Ψ(yk(t) − x)[v2(x) + v2

x(x)] dx ,

with
yk(t) = x̃k(0) + ckt/2 + L/4 ,

we infer from Proposition 3.2 that

Ĩk,0

(

t0, u(t0) − RX(t0)

)

≤ C(ε + L−1/4) (64)

and

Ĩk,0(t0, u(t0)) =
k

∑

i=1

E(ϕci) + O(ε + L−1/4) . (65)

Hence,

Ĩk,0(t0, u(t0)) + Ik+1,0(t0, u(t0)) =
N

∑

i=1

E(ϕci) + O(ε + L−1/4)

= E(u0) + O(ε + L−1/4) .

Since E(u(t0)) = E(u0) we deduce that

∫

IR

[

1−Ψ(yk(t0)−x)−Ψ(x−yk+1(t0))
]

[u2(t0, x)+u2
x(t0, x)] dx = O(ε+L−1/4) .

Therefore, since |1 − Ψ(yk(t0) − x) − Ψ(x − yk+1(t0))| ≤ O(e−
√

L) for x ∈
IR\]yk − L/4, yk+1 + L/4[ and by the exponentional decay of ϕ, (20) and
(22),

∫ yk+1+L/4

yk−L/4
|RX(t0)|2 + |∂xRX(t0))|2 ≤ O(e−

√
L/4) ,
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it follows that
∫

IR

[

1−Ψ(yk(t0)−·)−Ψ(·−yk+1(t0))
]

[(u(t0)−RX(t0)
2+(ux(t0)−∂xRX(t0))

2] = O(ε+L−1/4) .

(66)
Combining (57), (64) and (66) we infer that

E(u(t0) − RX(t0)) = O(ε + L−1/4)

which concludes the proof of (19) since, according to Proposition 3.2, |O(x)| ≤
C|x| for some constant C > 0 independent of A. This proves (8) whereas
(9) follows from (20) and (23).
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