
HAL Id: hal-00424385
https://hal.science/hal-00424385

Submitted on 15 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An FDI Method for Manufacturing Systems Based on
an Identified Model

Matthias Roth, Jean-Jacques Lesage, Lothar Litz

To cite this version:
Matthias Roth, Jean-Jacques Lesage, Lothar Litz. An FDI Method for Manufacturing Systems Based
on an Identified Model. 13th IFAC Symposium on Information Control Problems in Manufacturing
(INCOM2009), Jun 2009, Moscow, Russia. Paper 58. �hal-00424385�

https://hal.science/hal-00424385
https://hal.archives-ouvertes.fr

An FDI Method for Manufacturing Systems Based on an Identified Model

Matthias Roth*,**. Jean-Jacques Lesage**,
Lothar Litz*

*Institute of Automatic Control, University of Kaiserslautern,
P.O. Box 3049, 67653 Kaiserslautern, Germany, {mroth, litz}@eit.uni-kl.de

**LURPA – Ecole Normal Superieur de Cachan

61, Avenue du Président Wilson, 94235 Cachan Cedex, France, {roth, lesage}@lurpa.ens-cachan.fr

Abstract: In this paper a generic method for fault detection and isolation (FDI) in manufacturing systems
considered as discrete event systems (DES) is presented. The method uses an identified model of the
controlled process to be monitored which is built on the basis of observed fault free behavior. A special
term of accuracy is motivated that helps to identify an efficient model. This paper gives an overview of
the method that consists of the identification and the use of the identified model for fault detection and
isolation. Furthermore, the theoretical framework of the method will be explained. Experiences of an
industrial application are described to show the relevance of the method for large scale manufacturing
systems in operation.

Keywords: Discrete Event Systems, Fault Detection, Fault Isolation, Identification

1. INTRODUCTION

Manufacturing companies have to face a growing
competition that affects the quality and price of manufactured
goods as well as the manufacturing process itself. To stay
competitive it is a key interest of a company to increase the
availability of its production lines. Besides a reasonable
maintenance management to avoid downtimes due to e.g.
mechanical wear it is necessary to detect and to localize
unforeseen events like faults. Efficient fault detection and
localization facilitates fast and effective repair actions.

Automated manufacturing systems are usually controlled by a
Programmable Logic Controller (PLC) and are often highly
individual installations. Many systems have a large number
of digital inputs and outputs (I/Os) which leads to a complex
system behavior. Sometimes FDI methods are directly
integrated into the control algorithm running on the PLC.
Integrating FDI in existing control programs needs a lot of
expertise for the considered system and leads to
modifications in the PLC which is usually to be avoided.

The fact that manufacturing systems are often controlled on
the basis of binary input information allows considering these
systems as discrete event systems. In the last 10 to 15 years a
lot of research on fault diagnosis of discrete event systems
has been done. Most of the developed approaches are based
on a diagnoser which has been introduced by (Sampath, et al.,
1996). The diagnoser approach starts with building the
models of the system components and of the controller
program by including the fault-free, normal system behavior
as well as the behavior in case of given faults. The models of
system components and of the control algorithm are
composed to obtain the monolithic model of the process. This

model contains unobservable and observable events. Faults
are usually modeled as unobservable events. From this model
a special observer called diagnoser is derived that allows
detecting and diagnosing the occurrence of an anticipated
fault by analyzing only observable events. The diagnoser
estimates the current state of the observed system and
delivers information of possible faults in the system.

Another class of diagnostic approaches that works on the
basis of event order and the timed behavior of a system is
presented in (Pandalai and Holloway, 2000). This method
does not work with a state estimation but with so called
condition templates. It analyzes if the considered system
creates events in the right order or in given time delays. A
fault is detected if there are missing or wrong reactions in the
process.

(Philippot, et al., 2007) presented a combination of these two
kinds of approaches that is adapted for fault diagnosis of
manufacturing systems. Instead of one central diagnoser, a
set of decentralized diagnosers is developed that delivers
diagnosis information according to special rules. The timed
behavior of the considered system is monitored with
condition templates in each state of the diagnoser. The
method is very appropriate if a diagnosis system is to be
developed during the conception phase of a manufacturing
system. It needs detailed models of the system components as
well as the determination of the timed system behavior. If a
formal description of the control algorithm such as
GRAFCET is available the model for the controller can be
derived automatically.

As a common drawback of these approaches a high degree of
system knowledge is needed. The manual model building or

determination of event orders is a laborious task that can
make it impossible from an economical point of view to
install an FDI system. Especially for already existing and
operating manufacturing systems with many I/Os it can be
hard to obtain the necessary information such as models for
non standard components or a formal description of the
controller program.

Since model building is the main obstacle for the use of
model-based diagnosis techniques an approach based on an
identified model is presented in this paper. Only very few
physical knowledge of the system is necessary. The presented
method can handle large scale manufacturing systems with a
very high number of I/Os (>100). In the following parts of
the paper it will be explained how an appropriate model of an
automated system can be identified. In contrast to the
classical diagnoser approach the identified model does not
contain the system behavior in case of faults but only the
fault free behavior. Furthermore it will be explained how this
fault-free model can be used for fault detection and fault
isolation even if the faulty behavior is not part of the model.
With this technique it is possible to localize and to detect
faults even if they have not been considered before. Each
behavior that is not part of the identified model is considered
as faulty and leads to a fault detection. Although the
modeling effort in comparison to the diagnoser approach is
much smaller there are some drawbacks. The proposed
method usually leads to false alerts and actually has to be
improved in the field of fault localization.

2. PROPOSED METHODOLOGY

The proposed method considers a manufacturing system as a
closed loop discrete event system. To use an identification
approach without the interference of test signals it is
necessary that the considered system performs a cyclic (and
thus repetitive) production. The closed loop consists of the
PLC and the physical plant that is to be observed. Fig 1
shows the principle architecture of the method. The first step
is the identification of an appropriate model of the closed
loop system. The identification is carried out on the basis of
I/O vectors of the PLC. In this work the control algorithm
running on the PLC is considered as fault-free.

Closed loop DES

Fault free model

Fault Detection and
Isolation

Controller

Plant

0

1

0

0

,..,

1

0

1

0

,

1

0

0

1

,

1

0

0

0

0

1

0

0

,..,

1

0

1

0

,

1

0

0

1

,

1

0

0

0

Identification

Display Diagnosis
Message

update

0

1

0

0

,..,

1

0

1

0

,

1

0

0

1

,

1

0

0

0

I/O vectors

I/O vectors

Closed loop DES

Fault free model

Fault Detection and
Isolation

Controller

Plant

0

1

0

0

,..,

1

0

1

0

,

1

0

0

1

,

1

0

0

0

0

1

0

0

,..,

1

0

1

0

,

1

0

0

1

,

1

0

0

0

Identification

Display Diagnosis
Message

update

0

1

0

0

,..,

1

0

1

0

,

1

0

0

1

,

1

0

0

0

Closed loop DES

Fault free model

Fault Detection and
Isolation

Controller

Plant

0

1

0

0

,..,

1

0

1

0

,

1

0

0

1

,

1

0

0

0

0

1

0

0

,..,

1

0

1

0

,

1

0

0

1

,

1

0

0

0

Identification

Display Diagnosis
Message

update

0

1

0

0

,..,

1

0

1

0

,

1

0

0

1

,

1

0

0

0

I/O vectors

I/O vectors

Fig 1: Principle of the proposed method

Fault detection is performed in real time by comparing the
output of the model and the output of the closed loop DES in
the block “Fault Detection and Isolation”. If discordance
between observed and modeled sequences appears a fault is

detected. Furthermore, by comparing observed and expected
sequences fault localization is possible. The diagnosis
information can then be displayed to the system operators.
Unlike to approaches that use a reference model with faults
like (Sampath, et al., 1996), it is not possible to give
guarantees concerning the diagnosabilty of certain faults.

During the fault detection and isolation procedure it may also
be possible that a deviant I/O vector sequence is not
considered as faulty but as a false alert. This decision can be
achieved by the experience of the system operator or by some
heuristic rules. In this case the model can be updated with the
new observed sequence.

In the following chapters a more detailed description of the
elements of the method is given.

3. DATA COLLECTION AND ANALYSIS

In order to get the necessary information for identification
and FDI to the diagnosis PC, the I/O vectors of the PLC must
be collected. In Fig 2 the principle of this data collection is
depicted. After the PLC has read the values of the input data
it copies them to a local data sector. Then the control
program is executed and the values of the outputs are set
according to the control algorithm. At the end of the program
execution the input and the newly determined output values
are sent to the PC that contains the FDI methods. With an
appropriate data link between PLC and PC the method can be
considered as noninvasive such that there is only a very small
negative effect of the FDI on the time performance and the
correctness of the controller. More details on an appropriate
data link will be given in chapter 7.

Input Reading

Program execution

Output Writing

End of I/O vector calculus

Diagnosis computer
with FDI algorithms

data

link

Input Reading

Program execution

Output Writing

End of I/O vector calculus

Diagnosis computer
with FDI algorithms

data

link

Fig 2: Data collection within the PLC-cycle

Fig 3 shows how the I/O vectors are sampled from the real
values of the I/Os. If the PLC performs a cyclic (and not a
periodic) execution, the cycle time is not constant. That
explains why the I/O vectors in Fig 3 are not sampled in
equidistant time intervals. At the end of each PLC cycle the
actual vector is sent. If there is at least one I/O with a change
in value a new I/O vector is created. For presentation
purposes the I/O vectors are denoted with letters.

If the observed I/O vector sequence in Fig 3 is analyzed it can
be seen that the I/O vector C appears twice. Suppose that the
I/Os in Fig 3 represent the position sensors (index 1-3) and
the actuator (index n) of a conveyor that is part of a larger
system like in Fig 4. The vector C can represent both cases
when the work piece is between position 1 and 2 and when it
is between position 2 and 3. To distinguish the two physical

states by analyzing the I/O vectors it is necessary to take
longer sequences into account. The two physical states can be
distinguished if the preceding vectors of C are also
considered. The sequences BC and DC differ and thus the
physical states can be distinguished.

0
1

0
1

0
1

0
1

t

t

t

t

t

…

Index
I/O vector

1

2

3

s+m

End of PLC cycle

…

1

0

0

...

0

1

0

0

...

1

0

0

0

...

1

0

1

0

...

1

0

0

0

...

1

0

0

1

...

1

A B C D C E

c1 cj

0
1
0
1

0
1
0
1

0
1
0
1

0
1
0
1

t

t

t

t

t

…

Index
I/O vector

1

2

3

s+m

End of PLC cycle

…

1

0

0

...

0

1

0

0

...

1

0

0

0

...

1

0

1

0

...

1

0

0

0

...

1

0

0

1

...

1

A B C D C E

c1 cj

Fig 3: Collection of I/O vectors

For FDI it is crucial to have a very accurate estimation of the
physical system state since an event that is correct if the
system is in state 1 may be a fault in another system state 2
even if it produces the same I/O vectors for both states. In the
example consider a change in value of the sensor P3 in case 1
and in case 2.

Case1

P1 P2 P3

actuator

Case2

1

0

0

...

0

1

0

0

...

1

0

0

0

...

1

0

1

0

...

1

0

0

0

...

1

0

0

1

...

1

A B C D C E

P1

P2

P3

actuator

Case1

P1 P2 P3

actuator

Case2

1

0

0

...

0

1

0

0

...

1

0

0

0

...

1

0

1

0

...

1

0

0

0

...

1

0

0

1

...

1

A B C D C E

P1

P2

P3

actuator

Fig 4: Conveyor with two scenarios

Before translating the observed sequences of I/O vectors into
a DES model it is necessary to define the observed language
that is used for identification. The identification is carried out
on the basis of p different fault-free production cycles.

Definition 1: The j-th I/O vector in the h-th production cycle
is defined as 1 1() ((), ..., (), (), ..., ())h s m hu j I j I j O j O j= with

I1, .., Is and O1, .., Om denoting the considered inputs and
outputs of the closed loop system.

Definition 2: If during the h-th production cycle, lh
I/O vectors have been observed, the sequence is denoted
as () (, , ...,)σ (1) (2) ()

h h h hh u u u l= .

With these definitions it is possible to define the set of
observed words with length q observed during p different
production cycles. This set represents the set of observed
I/O vector sequences

Definition 3: The observed words of length q are denoted as

() () ()()
1

Obs
1 1

, 1 , ..., 1
il qp

q
i i i

i j

W u j u j u j q
− +

= =

=

+ + −

∪ ∪ .

As explained by the example of Fig 4 longer words describe
the physical state of a system more accurately than shorter
ones by including the history of the system. An objective of
the identification algorithm is to increase the length of
correctly identified words. Thus, it works on the basis of
words of a given length rather than on single I/O vectors.

The union of the observed words with length from 1 to n can
be considered as the observed language.

Definition 4: The observed language of length n is

1

n
n i
Obs Obs

i

L W
=

=∪

The aim of the identification algorithm is to build a model
that produces exactly the same language n

IdentL as the

observed language:

n n
Obs IdentL L=

Before the identification of the model can be performed, it is
necessary to state if the language and thus the words of a
given length of the system have been completely observed. If
the language is not completely observed it is possible that
new words will be observed that are part of the fault free
system behavior. Since the identified model will not be able
to produce the new words (n n

Obs IdentL L=) a false alert will be

raised. To state if a language or the words of a certain length
n are completely observed the cardinality of the set n

ObsW can

be analyzed. If the set converges to a stable level over time it
is very likely that each word of a certain length has been
observed.

4. IDENTIFICATION OF A DES MODEL

To decrease the modeling effort in comparison with the
classical approaches mentioned in the introduction, the
observed language of the closed loop DES is to be translated
into a finite state machine by an appropriate identification
algorithm. Since a system with interaction of controller
(deterministic behavior) and physical process (non-
deterministic behavior) has to be identified, an appropriate
model is a non-deterministic autonomous automaton with
output (NDAAO):

Definition 5: 0(NDAAO , , , , x)r λ= X Ω

X finite set of states,
Ω output alphabet,

: 2r → XX non-deterministic transition relation,
:λ →X Ω output function,

x0 initial state.

The dynamics of this automaton is: Given a current state x(i),
the automaton can evolve in any state x(j) such that

() (())x j r x i∈ . When several reachable states are possible, the

choice is not determined.

The output alphabet Ω consists of the observed I/O vectors
such that in the case of an identified NDAAO 1

ObsW=Ω .

λ assigns a word and thus an I/O vector from the output
alphabet to each state.

The NDAAO generates a set of words of length n from each
state x(i) that is defined as:

Definition 6:

1 1
() : ((()))x iW w w x iλ= ∈ =Ω and

1
() { : ((()), ((1)), ...,

((1))) : (1) (()) 2}

n n
x iW w w x i x i

x i n x j r x j i j i n

λ λ
λ

> = ∈ = +

+ − + ∈ ∀ ≤ ≤ + −

Ω

The definition of the language of length n of the NDAAO
follows definition 4:

Definition 7: The language of length n of an NDAAO is

()
1 ()

n
n i
Ident x i

i x i X

L W
= ∈

=∪ ∪

Thus, the language consists of all the words up to length n
that can be produced starting from each state ()x i X∈ .

In (Klein, et al., 2005) an original identification algorithm
that delivers an appropriate model for FDI is described in
detail. It works on the basis of words of the parametric
length k. Basically, states that represent observed words of
length k are connected in the order the words have been
observed. The algorithm delivers a model that is k+1-
complete (Moor, et al., 1998). This means that the automaton
generates exactly the observed words of length k+1:

1 1k k
Obs IdentL L+ += . The parameter k can be chosen such that each

physical system state can unambiguously be identified by an
I/O vector sequence of length k. Each sequence of length k is
assigned to exactly one automaton state even if it appears
several times during the observation. The choice of k in the
example of Fig 4 would thus be k=2.

As a small example suppose that the following three
sequences have been observed:

()
1

A,B,C,D,E,C,Aσ = ()
2

A,D,B,C,D,A,C,Aσ = and

()
3

A,D,B,C,F,D,E,C,Aσ = .

x0
A

x1
B

x2
C

x4
E

x7
A

x3
D

x8
A

x9
C

x6
D

x10
F

x11
D

x5
C

x0
A

x1
B

x2
C

x4
E

x7
A

x3
D

x8
A

x9
C

x6
D

x10
F

x11
D

x5
C

Fig 5: Identified NDAAO with k=2

Fig 5 shows the identified automaton for parameter k=2.
Even if it contains unobserved sequences of length 4

(()
4

A, B, C, Fσ =), it does only contain words of length 3

that have been observed since 1 1k k
Obs IdentL L+ += . In the case that

each two physical system states can be distinguished by a
sequence of length k, each model state represents exactly one
system state which is advantageous for FDI as explained for
the example in Fig 4.

5. FAULT DETECTION AND ISOLATION

5.1 Fault detection and model initialization

To use the identified model for FDI it must be run in parallel
with the considered system. In Fig 1 the principle is shown:
The I/O vector sequence of the closed loop system is
compared with an I/O vector sequence of the model. If the
model is not able to produce the observed I/O vector
sequence, a fault is detected. The comparison of sequences is
realized as follows: It is checked if the output of the actual
state (())x iλ or the output of one of its post states

(()) | () (())x j x j r x iλ ∈ corresponds to the newly observed

I/O vector. If this is the case, the determined state becomes
the new actual state. If not, a fault is detected.

When a fault has been detected the model must be
reinitialized. Hence, a new actual model state that
corresponds to the system state must be determined. Since the
model is identified on the basis of k-long I/O vector
sequences, it is necessary to collect up to the next k new
I/O vectors as the observed word of length k Obs

kW . If an

automaton state exists that can be reached by a state
trajectory starting in a state ()x i X∈ with x(i) Obs

k kW W= state

x(i+n-1) according to definition 6 becomes the actual state of
the model.

If the model is reinitialized very quickly after a fault
detection (e.g. within k new vectors) it is possible that the
detected fault was a false alert. In this case it is possible to
perform an online update of the model (see section 6)
depending on the decision of a system operator.

5.2 Fault Localization Techniques

Since the identified model does not contain any information
of the system in case of a fault like in the classical diagnoser
approach, specific fault localization techniques are necessary.
For the considered systems with many I/Os, fault localization
consists of giving possible inputs or outputs that may lead to
the faulty component. Thus, sensor faults are related to inputs
and actuator faults are related to outputs.

The localization technique presented here is inspired by the
residual technique known from continuous time systems
(Isermann 2005). The main idea is to compare the observed
and the expected behavior of the system (Roth et al., 2009).
Since the localization aims at giving inputs and outputs as
fault candidates it is necessary to give some definitions that
introduce rising and falling edges of I/Os in the model.

Definition 8:

1 1 1 1(_1, _ 0, ..., _1, _ 0, _1, _ 0, ..., _1, _ 0)s s m mE I I I I O O O O=

denotes the set of rising and falling edges of the system I/Os.

1 _1I denotes the rising edge and 1 _ 0I denotes the falling

edge of input 1I .

Definition 9: ((1), (2))ES u u denotes the set of observed rising

and falling edges between two consecutive I/O vectors u(1)
and u(2).

Using the function given in definition 9 it is possible to get
all the rising and falling edges that appear when a state is left
by iterating over its transition relation.

The fault localization consists of operations on sets defined in
definition 9. As an example of such an operation consider
the automaton given in Fig 6. From the actual state x1 an I/O
vector with the rising edge c_1 and the falling edge b_0 is
observed on the system. The observed I/O vector can not be
produced by the model as explained in chapter 5.1. Thus, a
fault is detected. One possible question that leads to the
localization of the fault is: “what happened unexpectedly?”
An answer can be found in the calculus of a residual using
the previously defined sets. uactual denotes the I/O vector that
led to fault detection and x denotes the actual state before the
fault was detected:

' ()

Res ((),) \ ((), ('))actual
x r x

ES x u ES x xλ λ λ
∀ ∈

= ∪

First, all the observed rising and falling edges between the
last actual state and the newly observed I/O vector are taken
(((),)actualES x uλ). The observed set is: {c_1, b_0}. Then, the

union of all edges is built that appear when the actual state x
is left to another state ' ()x r x∈ resulting in {b_0, d_0}. For

the example in Fig 6, the residual delivers the rising edge c_1
that is not part of the modeled following behavior but has
been observed ({c_1, b_0}\{b_0, d_0}={c_1}). If a fault
happens that leads to a directly observable change in value of
an I/O, this I/O is usually part of the presented residual.

x0
0101

00

x1
0101
11

x3
0000
11

x2
0001
11

e_1 f_1

b_0
d_0

b_0 d_0 x4

0010
11

c_1 b_0

d_0 c_1

a b c d
e f

c_1

0�1: a_1

1�0: a_0

F
0011

11

x0
0101

00

x1
0101
11

x3
0000
11

x2
0001
11

e_1 f_1

b_0
d_0

b_0 d_0 x4

0010
11

c_1 b_0

d_0 c_1

a b c d
e f

c_1

0�1: a_1

1�0: a_0

F
0011

11

Fig 6: Automaton with rising and falling edges of I/Os

If large scale systems with numerous I/Os are considered, the
presented residual approach can help to deliver a small set of
fault candidates to the system operator which represents a
good estimate where the fault could have happened.

6. ONLINE ENHANCEMENT OF THE MODEL

In large scale systems with high concurrency it is usually not
possible to observe the whole fault-free language within a

short time. Thus, it can be necessary to apply an incomplete
model for the FDI process and to perform updates when an
unknown fault-free I/O vector sequence has been observed
after the learning phase. A newly observed sequence that is
not yet part of the model can be declared as fault free by the
system operator or by the analysis of the re-initialization
process as sketched in chapter 5.1. An update algorithm must
ensure that the model is still k+1-complete after processing a
new sequence.

Suppose that the new sequence that is to be included in the
model is σnew. During fault detection, the model tries to
produce the sequence with a state trajectory that ends in xactual
from where a certain I/O vector ()new newu i σ∈ cannot be

produced by the state itself or by one of its successors.

Update algorithm:

Check if | ((),.., ())k
x new newx X W u i u i k∃ ∈ = + .

If yes: () : ()actual actualr x r x x= ∪ and

: (1)actualx x i n= + − according to definition 6.

If no: create | (() {}, () ())new new new newx r x x u iλ= = ,

() : ()actual actual newr x r x x= ∪ and :actual newx x=

Proceed with the analysis of (1)new newu i σ+ ∈ . If (1)newu i +

cannot be produced by xactual itself or by one of its successors
start the update algorithm again starting at (1)newu i + .

Remarks: The check at the beginning of the algorithm also
delivers a “no” if there are less than k new I/O vectors in the
sequence. It also delivers a “no” if a certain state can produce
the given sequence ((),.., ())new newu i u i k+ and other

additional sequences.

As an example suppose the following sequence has been
observed with an NDAAOk=2 starting in state x0 (see Fig 7):

()A,B,G,C,F,D,E
new

σ = . From state x1 the automaton will

not be able to produce the sequence and must thus be
updated. Since k=2, sequences of length k+1=3 must be
analyzed. There does not exist a state x with 3 (, ,)xW G C F= ,

hence a new state with ()newx Gλ = is created. The analysis

proceeds with the vector C. Although there exist states with
the output C, there does not exist a state that can only produce
the next observed subsequence CFD. State x2 can produce
CFD but also other sequences like CDE or CDA. Connecting
the new State xnew = x12 to x2 would lead to a sequence of
length 3 that is in the model but has not been observed
(GCD). Thus, a new state with ()newx Cλ = is created and the

next vector of
new

σ , F, is analyzed. Since state x10 is only able

to produce the new following sequence FDE, the before
created state is connected to 10x and the update is finished.

The identification algorithm in (Klein, et al., 2005) ensures
that there is only one state from where a certain sequence of
length k+1 can be produced.

It is possible to implement the update algorithm in a very
efficient way, such that even automata with up to several
hundred states can be treated online with a standard PC.

x0
A

x1
B

x2
C

x4
E

x7
A

x3
D

x8
A

x9
C

x6
D

x10
F

x11
D

x5
C

x12
G

x13
C

x0
A

x1
B

x2
C

x4
E

x7
A

x3
D

x8
A

x9
C

x6
D

x10
F

x11
D

x5
C

x12
G

x13
C

Fig 7: Updating of an NDAAO with k=2

7. APPLICATION

The described method has been applied to an industrial coil
winding process with about 80 I/Os that is controlled by a
PLC. The process automatically changes a coil when a
predefined batch of fabric is coiled up. The inclusion of FDI
algorithms in the PLC was not possible since only minimal
change of the control program was desired. To implement a
noninvasive data link between PLC and diagnosis PC a UDP
(User Datagram Protocol) connection was established. The
PLC sends its I/O vectors at the end of each controller cycle
to the PC using a direct Ethernet link without passing the
message through a network. The efficiency of the PLC
program is not affected if the UDP data connection fails. It
just keeps on sending I/O vectors without waiting for a
confirmation message. Since the machine has already been
running for over 10 years the necessary knowledge for
manual model-building was not available and could not be
obtained within reasonable time and cost. Hence, the
identification approach was chosen.

For the identification of the fault free model over 380
production cycles have been observed. Fig 8 shows how the
cardinality for the word sets containing the words of length n
from n equals 1 to 5. It can be seen that for small values of n
the plots almost converge to a stable level. As described in
chapter 3 the identification parameter k must be determined
such that each system state can unambiguously be determined
by a sequence of k I/O vectors. For the industrial application,
situations comparable to the example of Fig 4 have been
determined as the most critical ones. Hence, for the
identification of an appropriate FDI model k should be
chosen to k=2. The resulting model has 562 states.

0

200

400

600

800

1000

1200

1 36 71 106 141 176 211 246 281 316 351 386

Size of

n = 1

n = 2

n = 3

n = 4

n = 5

Production cycles in chronological order

W Obs
n

0

200

400

600

800

1000

1200

1 36 71 106 141 176 211 246 281 316 351 386

Size of

n = 1

n = 2

n = 3

n = 4

n = 5

Production cycles in chronological order

W Obs
n

Fig 8: Cardinality of the observed word sets

As explained in chapter 3 the evolution of 1 3k
obs obsW W+ = should

converge to a stable level. Fig 8 shows that the set does not
perfectly converge but it seems to be relatively near to that
point. It can be seen that for larger values of n achieving a
stable level takes much more time than for smaller values. As
the non-convergence of the graph for n=3 implies, new fault-
free I/O vector sequences have been observed using the
identified model as an observer. Each new I/O vector
sequence of length k+1 leads to an alert and to a re-
initialization of the model. If the alert is declared as a false
alert, the new sequence can be included into the model by
using the online update algorithm of chapter 6. An FDI-tool
using the described method is currently running at a
production site of the industrial partner.

8. OUTLOOK

Current research aims at a decentralized identification
approach that should cope better with the problem of
incomplete observation. The formulation of appropriate
residuals is also a field of current research. To systematically
develop further residuals, symptoms of possible faults in
manufacturing system that are observed with the presented
approach are analyzed. Furthermore the timed behavior of
manufacturing systems is soon to be included in the model.

REFERENCES

Isermann, R. (2005). Model-based fault-detection and
diagnosis – status and applications, Annual Reviews in
Control 29 (2005), pp. 71-85.

Klein, S., Lesage, J.-J., Litz, L. (2005). Fault Detection of
Discrete Event Systems Using an Identification
Approach. 16th IFAC World Congress, Prague (Czech
Republic) CDRom paper n°02643

Moor, T., Raisch, J. and O’Young, S. (1998). Supervisory
Control of Hybrid Systems via l-complete
approximations, Proceedings of the 4th IEEE Workshop
on Discrete Event Systems WODES’98, Cagliari (Italy),
pp. 426-431.

Pandalai, D.N. and L.E. Holloway (2000). Template
Languages for Fault Monitoring of Timed Discrete Event
Processes. IEEE Transactions on Automatic Control,
vol 4, No. 5, pp. 868-882.

Philippot, A., Sayed-Mouchaweh M., Carré-Ménétrier V.
(2007). Unconditional Decentralized Structure for the
Fault Diagnosis of Discrete Event Systems. Proceedings
of the 1st IFAC Workshop on Dependable Control of
Discrete Systems, Cachan (France), pp. 255-260

Roth, M., Lesage, J.-J., Litz, L. (2009). A Residual Inspired
Approach for Fault Localization in DES. Proceedings of
the 2nd IFAC Workshop on Dependable Control of
Discrete Systems, Bari (Italy), (accepted for publication)

Sampath, M., R. Sengutpa, S. Lafortune, K. Sinnamohideen
and D. Teneketzis (1996). Failure Diagnosis using
Discrete-Event Models. IEEE Transactions on Control
Systems Technology, vol 4, No. 2, pp. 105-124.

