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Abstract: In this paper a generic method for fault detection and isolation (FDI) in manufacturing systems 
considered as discrete event systems (DES) is presented. The method uses an identified model of the 
controlled process to be monitored which is built on the basis of observed fault free behavior. A special 
term of accuracy is motivated that helps to identify an efficient model. This paper gives an overview of 
the method that consists of the identification and the use of the identified model for fault detection and 
isolation. Furthermore, the theoretical framework of the method will be explained. Experiences of an 
industrial application are described to show the relevance of the method for large scale manufacturing 
systems in operation.   
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1. INTRODUCTION 

Manufacturing companies have to face a growing 
competition that affects the quality and price of manufactured 
goods as well as the manufacturing process itself. To stay 
competitive it is a key interest of a company to increase the 
availability of its production lines. Besides a reasonable 
maintenance management to avoid downtimes due to e.g. 
mechanical wear it is necessary to detect and to localize 
unforeseen events like faults. Efficient fault detection and 
localization facilitates fast and effective repair actions.  

Automated manufacturing systems are usually controlled by a 
Programmable Logic Controller (PLC) and are often highly 
individual installations. Many systems have a large number 
of digital inputs and outputs (I/Os) which leads to a complex 
system behavior. Sometimes FDI methods are directly 
integrated into the control algorithm running on the PLC. 
Integrating FDI in existing control programs needs a lot of 
expertise for the considered system and leads to 
modifications in the PLC which is usually to be avoided.  

The fact that manufacturing systems are often controlled on 
the basis of binary input information allows considering these 
systems as discrete event systems. In the last 10 to 15 years a 
lot of research on fault diagnosis of discrete event systems 
has been done. Most of the developed approaches are based 
on a diagnoser which has been introduced by (Sampath, et al., 
1996). The diagnoser approach starts with building the 
models of the system components and of the controller 
program by including the fault-free, normal system behavior 
as well as the behavior in case of given faults. The models of 
system components and of the control algorithm are 
composed to obtain the monolithic model of the process. This 

model contains unobservable and observable events. Faults 
are usually modeled as unobservable events. From this model 
a special observer called diagnoser is derived that allows 
detecting and diagnosing the occurrence of an anticipated 
fault by analyzing only observable events. The diagnoser 
estimates the current state of the observed system and 
delivers information of possible faults in the system.  

Another class of diagnostic approaches that works on the 
basis of event order and the timed behavior of a system is 
presented in (Pandalai and Holloway, 2000). This method 
does not work with a state estimation but with so called 
condition templates. It analyzes if the considered system 
creates events in the right order or in given time delays. A 
fault is detected if there are missing or wrong reactions in the 
process.  

(Philippot, et al., 2007) presented a combination of these two 
kinds of approaches that is adapted for fault diagnosis of 
manufacturing systems. Instead of one central diagnoser, a 
set of decentralized diagnosers is developed that delivers 
diagnosis information according to special rules. The timed 
behavior of the considered system is monitored with 
condition templates in each state of the diagnoser. The 
method is very appropriate if a diagnosis system is to be 
developed during the conception phase of a manufacturing 
system. It needs detailed models of the system components as 
well as the determination of the timed system behavior. If a 
formal description of the control algorithm such as 
GRAFCET is available the model for the controller can be 
derived automatically.   

As a common drawback of these approaches a high degree of 
system knowledge is needed. The manual model building or 



 
 

     

 

determination of event orders is a laborious task that can 
make it impossible from an economical point of view to 
install an FDI system. Especially for already existing and 
operating manufacturing systems with many I/Os it can be 
hard to obtain the necessary information such as models for 
non standard components or a formal description of the 
controller program.  

Since model building is the main obstacle for the use of 
model-based diagnosis techniques an approach based on an 
identified model is presented in this paper. Only very few 
physical knowledge of the system is necessary. The presented 
method can handle large scale manufacturing systems with a 
very high number of I/Os (>100). In the following parts of 
the paper it will be explained how an appropriate model of an 
automated system can be identified. In contrast to the 
classical diagnoser approach the identified model does not 
contain the system behavior in case of faults but only the 
fault free behavior.  Furthermore it will be explained how this 
fault-free model can be used for fault detection and fault 
isolation even if the faulty behavior is not part of the model. 
With this technique it is possible to localize and to detect 
faults even if they have not been considered before. Each 
behavior that is not part of the identified model is considered 
as faulty and leads to a fault detection. Although the 
modeling effort in comparison to the diagnoser approach is 
much smaller there are some drawbacks. The proposed 
method usually leads to false alerts and actually has to be 
improved in the field of fault localization.  

2. PROPOSED METHODOLOGY 

The proposed method considers a manufacturing system as a 
closed loop discrete event system. To use an identification 
approach without the interference of test signals it is 
necessary that the considered system performs a cyclic (and 
thus repetitive) production. The closed loop consists of the 
PLC and the physical plant that is to be observed. Fig 1 
shows the principle architecture of the method. The first step 
is the identification of an appropriate model of the closed 
loop system. The identification is carried out on the basis of 
I/O vectors of the PLC. In this work the control algorithm 
running on the PLC is considered as fault-free.   
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Fig 1: Principle of the proposed method 

Fault detection is performed in real time by comparing the 
output of the model and the output of the closed loop DES in 
the block “Fault Detection and Isolation”. If discordance 
between observed and modeled sequences appears a fault is 

detected. Furthermore, by comparing observed and expected 
sequences fault localization is possible. The diagnosis 
information can then be displayed to the system operators. 
Unlike to approaches that use a reference model with faults 
like (Sampath, et al., 1996), it is not possible to give 
guarantees concerning the diagnosabilty of certain faults.  

During the fault detection and isolation procedure it may also 
be possible that a deviant I/O vector sequence is not 
considered as faulty but as a false alert. This decision can be 
achieved by the experience of the system operator or by some 
heuristic rules. In this case the model can be updated with the 
new observed sequence. 

In the following chapters a more detailed description of the 
elements of the method is given.  

3. DATA COLLECTION AND ANALYSIS 

In order to get the necessary information for identification 
and FDI to the diagnosis PC, the I/O vectors of the PLC must 
be collected. In Fig 2 the principle of this data collection is 
depicted. After the PLC has read the values of the input data 
it copies them to a local data sector. Then the control 
program is executed and the values of the outputs are set 
according to the control algorithm. At the end of the program 
execution the input and the newly determined output values 
are sent to the PC that contains the FDI methods. With an 
appropriate data link between PLC and PC the method can be 
considered as noninvasive such that there is only a very small 
negative effect of the FDI on the time performance and the 
correctness of the controller. More details on an appropriate 
data link will be given in chapter 7.  
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Fig 2: Data collection within the PLC-cycle 

Fig 3 shows how the I/O vectors are sampled from the real 
values of the I/Os. If the PLC performs a cyclic (and not a 
periodic) execution, the cycle time is not constant. That 
explains why the I/O vectors in Fig 3 are not sampled in 
equidistant time intervals. At the end of each PLC cycle the 
actual vector is sent. If there is at least one I/O with a change 
in value a new I/O vector is created. For presentation 
purposes the I/O vectors are denoted with letters.  

If the observed I/O vector sequence in Fig 3 is analyzed it can 
be seen that the I/O vector C appears twice. Suppose that the 
I/Os in Fig 3 represent the position sensors (index 1-3) and 
the actuator (index n) of a conveyor that is part of a larger 
system like in Fig 4. The vector C can represent both cases 
when the work piece is between position 1 and 2 and when it 
is between position 2 and 3. To distinguish the two physical 



 
 

     

 

states by analyzing the I/O vectors it is necessary to take 
longer sequences into account. The two physical states can be 
distinguished if the preceding vectors of C are also 
considered. The sequences BC and DC differ and thus the 
physical states can be distinguished. 
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Fig 3: Collection of I/O vectors 

For FDI it is crucial to have a very accurate estimation of the 
physical system state since an event that is correct if the 
system is in state 1 may be a fault in another system state 2 
even if it produces the same I/O vectors for both states. In the 
example consider a change in value of the sensor P3 in case 1 
and in case 2. 
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Fig 4: Conveyor with two scenarios 

Before translating the observed sequences of I/O vectors into 
a DES model it is necessary to define the observed language 
that is used for identification. The identification is carried out 
on the basis of p different fault-free production cycles.  

Definition 1: The j-th I/O vector in the h-th production cycle 
is defined as 1 1( ) ( ( ), ..., ( ), ( ), ..., ( ))h s m hu j I j I j O j O j=  with 

I1, .., Is and O1, .., Om denoting the considered inputs and 
outputs of the closed loop system.  

Definition 2: If during the h-th production cycle, lh 
I/O vectors have been observed, the sequence is denoted 
as ( ) ( , , ..., )σ (1) (2) ( )

h h h hh u u u l= .  

With these definitions it is possible to define the set of 
observed words with length q observed during p different 
production cycles. This set represents the set of observed 
I/O vector sequences 

Definition 3: The observed words of length q are denoted as 

( ) ( ) ( )( )
1

Obs
1 1

, 1 , ..., 1
il qp

q
i i i

i j

W u j u j u j q
− +

= =

=
 

+ + − 
 
∪ ∪  . 

As explained by the example of Fig 4 longer words describe 
the physical state of a system more accurately than shorter 
ones by including the history of the system. An objective of 
the identification algorithm is to increase the length of 
correctly identified words. Thus, it works on the basis of 
words of a given length rather than on single I/O vectors.  

The union of the observed words with length from 1 to n can 
be considered as the observed language. 

Definition 4: The observed language of length n is 

1

n
n i
Obs Obs

i

L W
=

=∪  

The aim of the identification algorithm is to build a model 
that produces exactly the same language n

IdentL  as the 

observed language:  

n n
Obs IdentL L=  

Before the identification of the model can be performed, it is 
necessary to state if the language and thus the words of a 
given length of the system have been completely observed. If 
the language is not completely observed it is possible that 
new words will be observed that are part of the fault free 
system behavior. Since the identified model will not be able 
to produce the new words (n n

Obs IdentL L= ) a false alert will be 

raised. To state if a language or the words of a certain length 
n are completely observed the cardinality of the set n

ObsW can 

be analyzed. If the set converges to a stable level over time it 
is very likely that each word of a certain length has been 
observed.  

4. IDENTIFICATION OF A DES MODEL 

To decrease the modeling effort in comparison with the 
classical approaches mentioned in the introduction, the 
observed language of the closed loop DES is to be translated 
into a finite state machine by an appropriate identification 
algorithm. Since a system with interaction of controller 
(deterministic behavior) and physical process (non-
deterministic behavior) has to be identified, an appropriate 
model is a non-deterministic autonomous automaton with 
output (NDAAO):  

Definition 5: 0(NDAAO , , , , x )r λ= X Ω  

X finite set of states,  
Ω output alphabet, 

: 2r → XX  non-deterministic transition relation, 
:λ →X Ω  output function, 

x0 initial state. 

The dynamics of this automaton is: Given a current state x(i), 
the automaton can evolve in any state x(j) such that 



 
 

     

 

( ) ( ( ))x j r x i∈ . When several reachable states are possible, the 

choice is not determined. 

The output alphabet Ω consists of the observed I/O vectors 
such that in the case of an identified NDAAO 1

ObsW=Ω . 

λ assigns a word and thus an I/O vector from the output 
alphabet to each state.  

The NDAAO generates a set of words of length n from each 
state x(i) that is defined as: 

Definition 6: 

1 1
( ) : ( ( ( )))x iW w w x iλ= ∈ =Ω   and 

1
( ) { : ( ( ( )), ( ( 1)), ...,

( ( 1))) : ( 1) ( ( )) 2}

n n
x iW w w x i x i

x i n x j r x j i j i n

λ λ
λ

> = ∈ = +

+ − + ∈ ∀ ≤ ≤ + −

Ω
 

The definition of the language of length n of the NDAAO 
follows definition 4:  

Definition 7: The language of length n of an NDAAO is 

( )
1 ( )

n
n i
Ident x i

i x i X

L W
= ∈

=∪ ∪  

Thus, the language consists of all the words up to length n 
that can be produced starting from each state ( )x i X∈ .  

In (Klein, et al., 2005) an original identification algorithm 
that delivers an appropriate model for FDI is described in 
detail. It works on the basis of words of the parametric 
length k. Basically, states that represent observed words of 
length k are connected in the order the words have been 
observed. The algorithm delivers a model that is k+1-
complete (Moor, et al., 1998). This means that the automaton 
generates exactly the observed words of length k+1: 

1 1k k
Obs IdentL L+ += . The parameter k can be chosen such that each 

physical system state can unambiguously be identified by an 
I/O vector sequence of length k. Each sequence of length k is 
assigned to exactly one automaton state even if it appears 
several times during the observation. The choice of k in the 
example of Fig 4 would thus be k=2.  

As a small example suppose that the following three 
sequences have been observed: 

( )
1

A,B,C,D,E,C,Aσ =  ( )
2

A,D,B,C,D,A,C,Aσ =  and 

( )
3

A,D,B,C,F,D,E,C,Aσ = . 

x0
A

x1
B

x2
C

x4
E

x7
A

x3
D

x8
A

x9
C

x6
D

x10
F

x11
D

x5
C

x0
A

x1
B

x2
C

x4
E

x7
A

x3
D

x8
A

x9
C

x6
D

x10
F

x11
D

x5
C

 

Fig 5: Identified NDAAO with k=2 

Fig 5 shows the identified automaton for parameter k=2. 
Even if it contains unobserved sequences of length 4 

( ( )
4

A, B, C, Fσ = ), it does only contain words of length 3 

that have been observed since 1 1k k
Obs IdentL L+ += . In the case that 

each two physical system states can be distinguished by a 
sequence of length k, each model state represents exactly one 
system state which is advantageous for FDI as explained for 
the example in Fig 4.  

5. FAULT DETECTION AND ISOLATION 

5.1 Fault detection and model initialization 

To use the identified model for FDI it must be run in parallel 
with the considered system. In Fig 1 the principle is shown: 
The I/O vector sequence of the closed loop system is 
compared with an I/O vector sequence of the model. If the 
model is not able to produce the observed I/O vector 
sequence, a fault is detected. The comparison of sequences is 
realized as follows: It is checked if the output of the actual 
state ( ( ))x iλ  or the output of one of its post states 

( ( )) | ( ) ( ( ))x j x j r x iλ ∈ corresponds to the newly observed 

I/O vector. If this is the case, the determined state becomes 
the new actual state. If not, a fault is detected.  

When a fault has been detected the model must be 
reinitialized. Hence, a new actual model state that 
corresponds to the system state must be determined. Since the 
model is identified on the basis of k-long I/O vector 
sequences, it is necessary to collect up to the next k new 
I/O vectors as the observed word of length k Obs

kW . If an 

automaton state exists that can be reached by a state 
trajectory starting in a state ( )x i X∈  with x(i) Obs

k kW W= state 

x(i+n-1) according to definition 6 becomes the actual state of 
the model. 

If the model is reinitialized very quickly after a fault 
detection (e.g. within k new vectors) it is possible that the 
detected fault was a false alert. In this case it is possible to 
perform an online update of the model (see section 6) 
depending on the decision of a system operator.  

5.2 Fault Localization Techniques  

Since the identified model does not contain any information 
of the system in case of a fault like in the classical diagnoser 
approach, specific fault localization techniques are necessary. 
For the considered systems with many I/Os, fault localization 
consists of giving possible inputs or outputs that may lead to 
the faulty component. Thus, sensor faults are related to inputs 
and actuator faults are related to outputs. 

The localization technique presented here is inspired by the 
residual technique known from continuous time systems 
(Isermann 2005). The main idea is to compare the observed 
and the expected behavior of the system (Roth et al., 2009). 
Since the localization aims at giving inputs and outputs as 
fault candidates it is necessary to give some definitions that 
introduce rising and falling edges of I/Os in the model.  



 
 

     

 

Definition 8: 

1 1 1 1( _1, _ 0, ..., _1, _ 0, _1, _ 0, ..., _1, _ 0)s s m mE I I I I O O O O=  

denotes the set of rising and falling edges of the system I/Os.  

1 _1I denotes the rising edge and 1 _ 0I denotes the falling 

edge of input 1I . 

Definition 9: ( (1), (2))ES u u denotes the set of observed rising 

and falling edges between two consecutive I/O vectors u(1) 
and u(2).  

Using the function given in definition 9 it is possible to get 
all the rising and falling edges that appear when a state is left 
by iterating over its transition relation.  

The fault localization consists of operations on sets defined in 
definition 9.  As an example of such an operation consider 
the automaton given in Fig 6. From the actual state x1 an I/O 
vector with the rising edge c_1 and the falling edge b_0 is 
observed on the system. The observed I/O vector can not be 
produced by the model as explained in chapter 5.1. Thus, a 
fault is detected. One possible question that leads to the 
localization of the fault is: “what happened unexpectedly?” 
An answer can be found in the calculus of a residual using 
the previously defined sets. uactual denotes the I/O vector that 
led to fault detection and x denotes the actual state before the 
fault was detected: 

 
' ( )

Res ( ( ), ) \ ( ( ), ( '))actual
x r x

ES x u ES x xλ λ λ
∀ ∈

= ∪  

First, all the observed rising and falling edges between the 
last actual state and the newly observed I/O vector are taken 
( ( ( ), )actualES x uλ ). The observed set is: {c_1, b_0}. Then, the 

union of all edges is built that appear when the actual state x 
is left to another state ' ( )x r x∈ resulting in {b_0, d_0}. For 

the example in Fig 6, the residual delivers the rising edge c_1 
that is not part of the modeled following behavior but has 
been observed ({c_1, b_0}\{b_0, d_0}={c_1}). If a fault 
happens that leads to a directly observable change in value of 
an I/O, this I/O is usually part of the presented residual.  
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Fig 6: Automaton with rising and falling edges of I/Os 

If large scale systems with numerous I/Os are considered, the 
presented residual approach can help to deliver a small set of 
fault candidates to the system operator which represents a 
good estimate where the fault could have happened. 

6. ONLINE ENHANCEMENT OF THE MODEL 

In large scale systems with high concurrency it is usually not 
possible to observe the whole fault-free language within a 

short time. Thus, it can be necessary to apply an incomplete 
model for the FDI process and to perform updates when an 
unknown fault-free I/O vector sequence has been observed 
after the learning phase. A newly observed sequence that is 
not yet part of the model can be declared as fault free by the 
system operator or by the analysis of the re-initialization 
process as sketched in chapter 5.1. An update algorithm must 
ensure that the model is still k+1-complete after processing a 
new sequence.  

Suppose that the new sequence that is to be included in the 
model is σnew. During fault detection, the model tries to 
produce the sequence with a state trajectory that ends in xactual 
from where a certain I/O vector ( )new newu i σ∈ cannot be 

produced by the state itself or by one of its successors.  

Update algorithm:  

Check if | ( ( ),.., ( ))k
x new newx X W u i u i k∃ ∈ = + .  

If yes: ( ) : ( )actual actualr x r x x= ∪ and 

: ( 1)actualx x i n= + − according to definition 6.  

If no: create | ( ( ) {}, ( ) ( ))new new new newx r x x u iλ= = , 

( ) : ( )actual actual newr x r x x= ∪ and :actual newx x=  

Proceed with the analysis of ( 1)new newu i σ+ ∈ . If ( 1)newu i +  

cannot be produced by xactual itself or by one of its successors 
start the update algorithm again starting at ( 1)newu i + . 

Remarks: The check at the beginning of the algorithm also 
delivers a “no” if there are less than k new I/O vectors in the 
sequence. It also delivers a “no” if a certain state can produce 
the given sequence  ( ( ),.., ( ))new newu i u i k+  and other 

additional sequences.   

As an example suppose the following sequence has been 
observed with an NDAAOk=2 starting in state x0 (see Fig 7): 

( )A,B,G,C,F,D,E
new

σ = . From state x1 the automaton will 

not be able to produce the sequence and must thus be 
updated. Since k=2, sequences of length k+1=3 must be 
analyzed. There does not exist a state x with 3 ( , , )xW G C F= , 

hence a new state with ( )newx Gλ =  is created. The analysis 

proceeds with the vector C. Although there exist states with 
the output C, there does not exist a state that can only produce 
the next observed subsequence CFD. State x2 can produce 
CFD but also other sequences like CDE or CDA. Connecting 
the new State xnew = x12 to x2 would lead to a sequence of 
length 3 that is in the model but has not been observed 
(GCD). Thus, a new state with ( )newx Cλ = is created and the 

next vector of 
new

σ , F, is analyzed. Since state x10 is only able 

to produce the new following sequence FDE, the before 
created state is connected to 10x  and the update is finished. 

The identification algorithm in (Klein, et al., 2005) ensures 
that there is only one state from where a certain sequence of 
length k+1 can be produced.  



 
 

     

 

It is possible to implement the update algorithm in a very 
efficient way, such that even automata with up to several 
hundred states can be treated online with a standard PC. 
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Fig 7: Updating of an NDAAO with k=2  

7. APPLICATION 

The described method has been applied to an industrial coil 
winding process with about 80 I/Os that is controlled by a 
PLC. The process automatically changes a coil when a 
predefined batch of fabric is coiled up. The inclusion of FDI 
algorithms in the PLC was not possible since only minimal 
change of the control program was desired. To implement a 
noninvasive data link between PLC and diagnosis PC a UDP 
(User Datagram Protocol) connection was established. The 
PLC sends its I/O vectors at the end of each controller cycle 
to the PC using a direct Ethernet link without passing the 
message through a network. The efficiency of the PLC 
program is not affected if the UDP data connection fails. It 
just keeps on sending I/O vectors without waiting for a 
confirmation message. Since the machine has already been 
running for over 10 years the necessary knowledge for 
manual model-building was not available and could not be 
obtained within reasonable time and cost. Hence, the 
identification approach was chosen. 

For the identification of the fault free model over 380 
production cycles have been observed. Fig 8 shows how the 
cardinality for the word sets containing the words of length n 
from n equals 1 to 5. It can be seen that for small values of n 
the plots almost converge to a stable level. As described in 
chapter 3 the identification parameter k must be determined 
such that each system state can unambiguously be determined 
by a sequence of k I/O vectors. For the industrial application, 
situations comparable to the example of Fig 4 have been 
determined as the most critical ones. Hence, for the 
identification of an appropriate FDI model k should be 
chosen to k=2. The resulting model has 562 states.  
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Fig 8: Cardinality of the observed word sets  

As explained in chapter 3 the evolution of 1 3k
obs obsW W+ = should 

converge to a stable level. Fig 8 shows that the set does not 
perfectly converge but it seems to be relatively near to that 
point. It can be seen that for larger values of n achieving a 
stable level takes much more time than for smaller values. As 
the non-convergence of the graph for n=3 implies, new fault-
free I/O vector sequences have been observed using the 
identified model as an observer. Each new I/O vector 
sequence of length k+1 leads to an alert and to a re-
initialization of the model. If the alert is declared as a false 
alert, the new sequence can be included into the model by 
using the online update algorithm of chapter 6. An FDI-tool 
using the described method is currently running at a 
production site of the industrial partner.  

8. OUTLOOK 

Current research aims at a decentralized identification 
approach that should cope better with the problem of 
incomplete observation. The formulation of appropriate 
residuals is also a field of current research. To systematically 
develop further residuals, symptoms of possible faults in 
manufacturing system that are observed with the presented 
approach are analyzed. Furthermore the timed behavior of 
manufacturing systems is soon to be included in the model. 
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